
Software Coding Guidelines
for ’C5x Developers

Application Report

Mansoor A. Chishtie
Digital Signal Processing Applications — Semic onductor Group

SPRA149
October 1994

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

TI warrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer.
Use of TI products in such applications requires the written approval of an appropriate TI officer.
Questions concerning potential risk applications should be directed to TI through a local SC
sales office.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI warrant or
represent that any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright 1996, Texas Instruments Incorporated

1

Introduction

This report furnishes guidelines to DSP application software developers on how to organize and structure
their software to facilitate its maintenance and ease its porting to any custom-defined DSP hardware
platform. The model DSP platform used here is a PCMCIA-based ’C5x DSP card with an external
connector for an analog interface. (For details on the card, see the preceding report, The PCMCIA DSP
Card: An All-in-One Communications System.)

The guidelines in this report should be used in conjunction with the following documents:

• TMS320 Fixed-Point DSP Assembly Language Tools User’s Guide

• TMS320C2x/C5x Optimizing C Compiler User’s Guide

Hardware Platform Overview

A model DSP hardware platform that will be used as a test and demonstration bed for various DSP
applications consists of a PCMCIA type II card with an embedded 25-ns ’C51 digital signal processor and
memory. This card complies with the PCMCIA I/O card specifications. This card is capable of running in
either standard or smart mode. In standard mode, the DSP is nonfunctional, and the card behaves like any
other PCMCIA memory card. The host can switch the card into smart mode by writing a predetermined
signature sequence to a memory location. In smart mode, the embedded DSP is active and executes code
from the card memory. Memory available on the first version of this card is 192K words, mapped as
multiple 64K pages in data and program spaces.

There are two standard methods for data transfer and command handshake between the host and the DSP:
the shared PCMCIA memory and a pair of dual-ported memory-mapped registers. The shared PCMCIA
memory, when properly initialized by a PCMCIA card controller, acts like extended memory to the PC
memory map. This is the preferred way of transferring large blocks of code or data to and from the
embedded DSP. Note that this mode of access may impose additional time constraints on the real-time
execution of an application because the DSP halts while the PC is accessing the shared memory.

Both the host and the DSP can read or write to the dual-ported memory-mapped registers that provide the
other host-DSP interface. Access to these registers does not affect the normal operation of the DSP or the
host processor. Both sides can poll special bit flags or enable themselves to be interrupted whenever the
other side accesses these registers. This register-based communication link is especially suited for sending
commands and occasional data parameters to the other end. This feature should be fully utilized by
applications to pass results back to the host and let the host apply real-time control functions (such as mode
change, start, stop, etc.) to the applications.

For applications that require an analog interface to the outside world, a special connector is provided at the
back end of the PCMCIA card; the connector can interface special peripherals to the DSP serial port or bit
I/O. Additionally, digital data can be sent over the serial link from an external processor or controller. The
connector also supports a TI JTAG emulator (XDS-510) that facilitates application software debug directly
on the card.

This hardware platform overview is provided for illustration purposes only. The following discussion is
equally applicable to any other ’C5x-based hardware platform.

Software Organization

It is strongly recommended that the following guidelines be observed to organize DSP application
software. This will not only result in well-structured code, but it will also make the application easier to
port to any other hardware platform.

2

Organize each software application as a collection of modules or files that belongs to one of the following
categories:

• Source Modules (*.c, *.asm): C or assembly source code files should not define any global
constants or macros.

• Include Modules (*.h, *.inc): All include files for C modules must use file extension *.h, and
all such files for assembly modules must use extension *.inc. Include files should define all
global constants, macros, or variable types. They should not allocate memory or define
functions, because this prevents them from being included by multiple source files. All functions
and variables that form part of the overall interface to a *.c or *.asm file should be declared in
a *.h or *.inc file. This provides a convenient overview of the interface and allows the compiler
or assembler to check for errors.

• Linker Command File (*.cmd): This command file is used by the TI COFF linker to link multiple
modules into a single executable COFF output file.

• Data Vectors (*.dat): These files should contain only data to be used for tests or algorithms.
There must not be any code in these data files. These files, if used, will probably be included or
copied (.include or .copy directives) in other source files or assembled as stand-alone modules.

• Make File (*.mak, *.prj): It is strongly recommended that you maintain a project make file that
checks for any out-of-date target files and builds them automatically. Note that both Microsoft
and Borland make-file utilities use mutually compatible file syntax.

Organize source code files so that each file will fall under one of the categories shown in Figure 1:

Figure 1. Categories of Source Code Files

Routines
Core

Initialization
Hardware

Routines
Test

Routines
Control

Routines
Input/Output

3

• Core Routines: Include all software modules that implement the core algorithm. These routines
should be independent of hardware-specific implementations. The only target-specific
information that these routines should contain is the knowledge of the target DSP processor, in
case the modules are in assembly language. Developers of independent applications may want
to group these routines into additional categories on the basis of their functionality.

• Control Routines: These routines consist of all software modules that implement control
functions. These control functions may include a C-like main function for program flow control,
task handling and scheduling functions, interrupt service routines that pass control to core
routines, a command handler that interprets host commands, and routines that initialize variables
and tables. Some of these modules may contain some hardware-specific information, but their
primary task is to control the program flow. They must not handle any input/output functions
or external peripheral accesses. Note that interrupt service routines (ISRs) that handle on-chip
or external peripherals must not be grouped here. The intention is to keep any modifications to
these routines at a minimum when the software is ported to a new platform.

Task Scheduling

(main ())
Function

Main Control
Processing
Command

Initialization
Software

Control Routines

• Input/Output Routines: These routines should handle all the input/output activities of the
application, including accesses to any on-chip or external peripherals and I/O ports. As an
example, DSP code that handles host communication protocol falls under this category. A serial
port ISR and other functions that access an I/O-mapped external peripheral also belong to this
category. It is recommended that each peripheral driver be arranged as one source file.

Drivers
On-Chip Peripheral HostExternal

Peripheral Drivers Drivers
Interface

Memory Drivers
Overlay

Input/Output Routines

• Hardware Initialization Routines: In general, most nonhardware-specific initialization routines
belong to the control routines category. However, since core routines must not have
hardware-specific implementations, all functions that initialize external hardware such as
external peripherals, host processor, etc., must be grouped separately. Note that these routines
will differ from input/output routines in that they are invoked only once during system
initialization.

4

• Test Routines: Application developers should provide a test procedure to verify functionality of
their applications. This is especially important when an application is ported (or modified) to
a different hardware platform. This test procedure can be in the form of a test program that calls
different modules of an application separately to determine their integrity, or it can be in the form
of input data vectors that can be processed by the application and output data vectors to be used
for verification of the results.

Memory Organization

Proper memory organization is essential for application portability and maintenance. The following
guidelines are mandatory:

• Addresses of data variables and tables should not be hard-coded. For example, you cannot use
the .set directive to equate a label to an address. This is effectively a form of hard-coded memory
allocation because variable addresses are determined during assembly time. The .usect, .sect,
and other similar assembler directives should be used to allocate uninitialized and initialized
variables. It is recommended that all variable definitions and allocations be done in separate
files, as in the following examples:

Var_addr .set 0800h **Hard-Coded Addr**

Var_addr .usect ”Section_name”,1 ** Addr Def. by Linker**

If a peripheral is mapped to a unique address, then this mapping should be clearly identified in
the linker command file.

• No assumption should be made about the type of COFF loader available to a host. In many cases,
the host would not have access to a smart loader that can autoinitialize global variables during
loading (similar to the –c option in the COFF linker). In other cases, an application can be
preloaded in nonvolatile memory so that a loader is unnecessary. Therefore, an application
should initialize all data variables during system initialization. One side effect of this restriction
is that no initialized data can exist in data memory; all initialized tables and variables must be
in program memory. They can be later copied to data memory, if necessary, by the software
initialization module. This, however, implies that the total code size of an application will
become larger than necessary. If the program size is getting unreasonably large because of this
restriction, you can choose to ignore this restriction if your system loader can initialize data
memory directly. In this case, all initialized data sections must be clearly identified in the linker
command file.

• Avoid any restrictions on placement of variables and tables in memory, if possible. Occasionally,
an application may require that restrictions be imposed on where a table can be placed in
memory. This may happen because 1) a particular DSP feature (for example, bit-reversed
addressing) demands it, or 2) it makes an algorithm implementation easier. Any such restriction
should be clearly defined in the COFF linker command file in the form of extended comments.

• Global variables and local variables should be defined in separate sections. However, memory
can be reused, and local variables of independent functions can occupy the same physical

5

memory space when you use the GROUP and UNION linker directives (see the appendix for
a sample linker command file).

• All code and data sections should be mapped to physical addresses during link time. In other
words, the linker command file should be the only module in which absolute addresses are
defined.

• If your application uses overlays or multiple memory pages, you should use the TI COFF linker
syntax to define these overlays (see the appendix for an example linker command file).
Additionally, you should write a driver module to be a part of the input/output routines that will
handle the custom-defined memory overlay/page control implementation. This driver module
should comply with the following restrictions:
– The module must be located in on-chip memory. This restriction is intended to guarantee

that the DSP will not be accessing off-chip memory when bank-switching occurs.
– Due to pipelining of instructions by the DSP, the next three instructions following a

bank-switch instruction can still access the previous bank. To avoid this, you must make
sure that the three instructions immediately following a bank-switch must not access the
address range that corresponds to the switched memory bank. Note that if this driver module
is called as a subroutine, then a return (RET) instruction immediately after the bank-switch
will guarantee that the switch has occurred before the DSP fetches instructions from the new
bank:

Bank_Switch: ; bank switch routine

...

out *,PA0 ; switch in new memory bank

ret ; return to new bank

Programming Guidelines

• Many DSP applications use mixed-mode (C and assembly) programming techniques to
compromise between the need for efficient code and ease of programming. However, in some
cases, an application may completely be written in DSP assembly language. In such cases, it is
highly recommended that at least a dummy C main() function be written that simply transfers
control to an assembly function. In this way, a basic C environment is automatically set up by
main(), which leads to easier integration of any C functions in the future. If main() is the only
C function in an application, then the rest of the functions need not adhere to C calling
conventions.

• Many mixed-mode applications strictly follow the C convention for function calls, parameter
passing, and variable allocation. However, you may need to avoid these constraints to efficiently
implement some assembly-level functions. All such exceptions must be clearly identified and
described in corresponding documentation. In some cases, when an assembly language function
is called only by other assembly functions, context is not maintained across the function calls.
These functions, although legal, must be clearly identified as non-C-callable functions to avoid
any future maintenance problems.

6

• Self-modifying code should not be written. Such code is commonly used in interrupt vector
tables (IVT), where one ISR can be patched for another during runtime. You can avoid this by
using a software semaphore in ISR or by using an LAMM/BACC sequence to replace a more
conventional B address sequence in IVT. The following interrupt vector table code example
illustrates the use of an LAMM/BACC instruction to fetch the address of an ISR from a data
memory location (in data page 0):

INT1: lamm INT1_Addr

bacc

• For relocatable sections of code, do not use the .asect directive. Instead, use the runtime and
load-time address options of the TI linker. This emphasizes our strategy of not allowing absolute
addresses in assembly modules. Note that the .asect directive requires an absolute address to be
specified as a parameter.

• Avoid using numerical constants as instruction parameters. Code listings are more readable
when constants are replaced by meaningful labels. You can do this with the .set directive, as
shown in the following example:

replace:

add #07FFFh

with:

One_Q15 .set 07FFFh

add #One_Q15

Source Code Documentation

• All source modules, whether in assembly or C, must maintain a modification history table that
lists the date and time of each modification in chronological order, the person who made the
change, and a brief description of the change.

• Line-by-line comments are highly recommended, especially for assembly language modules.
All functions in a module, whether assembly or C, must clearly describe the
implementation-specific details of the function.

• All functions should be preceded by a function header that gives the function description, input
and output parameter lists, global variables used, a list of nested function calls, a list of functions
that can call this function, and entry/exit conditions. Note that entry and exit conditions are
especially important for assembly functions because processor context is not often maintained
across function calls.

7

Appendix: A Sample Linker Command File for the ’C5x Card

The following linker command file is listed here to illustrate how to use the TI COFF linker syntax to define
overlays and multiple code/data pages for the ’C5x PCMCIA card version 1.0. This command file would
require minimum modifications to adapt to any ’C5x application running on this PCMCIA card.

f1.obj f2.obj f3.obj f4.obj f5.obj f6.obj

-o f.out

-m f.map

/***

PCMCIA ’C5x Card Memory Map: version 1.0

At reset, page 0 is in the ’C5x program space and page 1 is in data space.

If page 2 is enabled, it is dual-mapped in both program and data spaces. Each
application must carefully divide page 2 into two or more sections, and each
section must be considered as either program or data, but not both. In the
following example, the PRAM2 section is mapped as program, and the RAMEXT2
section is mapped as data, but this can be modified by an application.

The RAMSA and RAMDA memory blocks (in both page 0 and page 1) are defined as
overlays. This means that runtime addresses of multiple code and data
sections can be bound to these overlay sections. Note, however, that you must
copy any initialized section to an overlay area before it can be used.

All pages are 64K words in length.

Page 2Page 1Page 0
FFFF

2000

0000

FFFF

0C00

0800

0500

0100

007F

0060

0000

FFFF

FE00

2400

2000

0000

PRAM2

RAMTEXT2

RAMEXT

RAMSA

XXXXXXXXXX

RAMDA

XXXXXXXXXX

RAMB2

XXXXXXXXXX

RAMDA

RAMEXT

RAMSA

PRAM

Program/DataDataProgram

***/
MEMORY

{

 page 0 : /* Program Only */

 PRAM : origin = 00000h, length = 02000h

 RAMSA : origin = 02000h, length = 00400h /* Overlay Section */

 RAMEXT: origin = 02400h, length = 0DA00h

 RAMDA : origin = 0FE00h, length = 00200h /* Overlay Section */

 page 1 : /* Data Only */

8

 RAMB2 : origin = 00060h, length = 00020h

 RAMDA : origin = 00100h, length = 00400h /* Overlay Section */

 RAMSA : origin = 00800h, length = 00400h /* Overlay Section */

 RAMEXT: origin = 00C00h, length = 0F400h

 page 2 : /* Dual-Mapped in Program and Data */

 PRAM2 :origin = 00000h, length = 02000h /* Contains Code */

 RAMEXT2:origin = 02000h, length = 0E000h /* Contains Data */

}

SECTIONS

{

 PROG1: load = PRAM page 0

 {

 f1.obj(.text)

 }

 PROG2: load = PRAM2 page 2

 {

 f2.obj(.text)

 }

 DATA1: load = RAMEXT page 1

 {

 f1.obj(.data)

 }

 DATA2: load = RAMEXT2 page 2

 {

 f2.obj(.data)

 }

 UNION : run = RAMSA page 0 /* Overlay Section: */

 { /* f3 and f4 functions */

 .text1 : load = RAMEXT page 0 /* will be copied and */

 { /* run from RAMSA page0 */

 f3.obj(.text)

 }

 .text2 : load = RAMEXT page 0

 {

 f4.obj(.text)

 }

 }

 UNION : run = RAMDA page 0 /* Overlay Section: */

 { /* f5 and f6 functions */

9

 .text3 : load = RAMEXT page 0 /* will be copied and */

 { /* run from RAMDA page0 */

 f5.obj(.text)

 }

 .text4 : load = PRAM page 0

 {

 f6.obj(.text)

 }

 }

 UNION : run = RAMSA page 1 /* Overlay Section: */

 { /* local variables of */

 .bss1 : /* f3 and f4 functions */

 { /* overlay each other */

 f3.obj(.bss) /* in RAMSA page 1 */

 }

 .bss2 :

 {

 f4.obj(.bss)

 }

 }

 UNION : run = RAMDA page 1 /* Overlay Section: */

 { /* local variables of */

 .bss3 : /* f5 and f6 functions */

 { /* overlay each other */

 f5.obj(.bss) /* in RAMDA page 1 */

 }

 .bss4 :

 {

 f6.obj(.bss)

 }

 }

}

10

