

Implementing Real-Time
Cardiac Imaging Using
the TMS320C3x DSP
APPLICATION REPORT: SPRA192

 Authors: Peter Chou
 Hong Jiang

 Advisor: Professor Z.-P. Liang
 Department of Electrical Engineering
 University of Illinois at Urbana-Champaign

 Digital Signal Processing Solutions
 July 1997

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor
product or service without notice, and advises its customers to obtain the latest version of relevant information
to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at
the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are
utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each
device is not necessarily performed, except those mandated by government requirements.

Certain application using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license, either
express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property
right of TI covering or relating to any combination, machine, or process in which such semiconductor products
or services might be or are used.

Copyright © 1997, Texas Instruments Incorporated

TRADEMARKS

TI is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

kluge

Contents
Abstract... 7
1. Introduction... 8
2. MRI and the Problem of Motion ... 9

2.1 How MRI Works.. 9
2.2 The Problem of Motion ... 10

3. Incorporating the TMS320C3x in an MRI System ... 11
4. Medical Applications .. 13
5. Conclusion .. 14
Appendix A. Source Code... 15
Appendix B. Radix-2 FFT Source Code.. 17
Appendix C. AIC Library Source Code... 21
References.. 28

kluge

Implementing Real-Time Cardiac Imaging Using the TMS320C3x DSP 7

Implementing Real-Time Cardiac
Imaging Using the TMS320C3x DSP

Abstract

Magnetic resonance imaging (MRI) is a powerful medical diagnostic
tool providing very detailed three-dimensional images of both
stationary and moving objects. Unfortunately, current MRI systems
cannot produce high definition images of moving objects in real time
because of errors and artifacts caused by movement in the images.
One method used to correct these artifacts collects position data
using navigator echoes and post-processes the data to reverse the
effects of object motion. Nevertheless, the physician still must wait
for the data to be processed before viewing the images.

This application report describes a novel dynamic MRI method for
real-time, high-resolution cardiac imaging using the Texas
Instruments (TI) TMS320C3x digital signal processor (DSP). The
TMS320C3x processes the data as it is being received, creating
real-time images of moving organs. Applications for real-time
dynamic imaging include cardiac imaging, angiography, and
abdominal imaging.

8 SPRA192

1. Introduction

Despite the impressive advances in medical technology through the
ages, proper medical diagnosis still requires the human body to be
examined directly. Physicians require a tool that allows them to peer
deeply within the human anatomy to diagnose illness and suggest
courses of action. To date, this need has been met using various
imaging techniques, such as x-ray computed tomography (CT),
positron emission tomography (PET), ultrasound, and MRI. Out of
these modalities, MRI produces images with superior soft-tissue
contrast and resolution. Moreover, MRI is minimally invasive and
uses non-ionizing radiation, so it is not known to be harmful to
human tissue. As a result, MRI holds tremendous promise in
medical applications.

MRI possesses great potential as a medical imaging tool scanning
stationary objects to produce high-definition images. However, in
many applications, physicians are more concerned with moving
objects than with static ones. For example, it is often necessary to
acquire images of a beating heart, a breathing lung, or a moving
abdomen. Unfortunately, the movement associated with the organ
causes errors, motion artifacts known as ghosting, and general
degradation in the resulting images. One method to cope with these
image artifacts uses a computer to post-process the data by
performing time-consuming calculations after all the data is
acquired. The desired image can be produced only after a lengthy
amount of calculation time. Current MRI systems cannot manipulate
the data quickly enough for real-time dynamic images.

Hong Jiang and Professor Z.-P. Liang at the University of Illinois
have recently developed a dynamic magnetic resonance imaging
method for real-time high-resolution cardiac imaging. Present day
MRI machines require collecting extra position data and post-
processing them to achieve the desired result. We propose that
dynamic MRI systems could be improved by using a dedicated DSP
to continuously process and correct data as it is acquired, rather
than collecting all the data first and then post-processing.
Implementing an existing MRI system with the Texas Instruments
TMS32OC3x DSP chip for real-time data acquisition control and
processing makes real-time dynamic imaging possible. The new
system has amazing potential for wide-scale implementation in all
MRI systems and facilitates accurate diagnoses of current medical
problems.

Implementing Real-Time Cardiac Imaging Using the TMS320C3x DSP 9

2. MRI and the Problem of Motion

This section explains the principles of MRI and describes how
motion affects MRI results.

2.1 How MRI Works

MRI is based on the concept of nuclear magnetic resonance (NMR).
NMR is observed when a strong magnet creates a strong, steady
magnetic field that causes some of the protons of the atoms making
up the target tissue to line up and spin together in the same
direction.

A radio-frequency signal is applied to disrupt the spin of the protons.
When the signal stops, the protons release energy as they move
back to their aligned positions. A receiver coil measures the energy
released as well as the time it takes for the protons to return to their
original states. These radio-frequency pulses are applied multiple
times in various ways to acquire the imaging data.

A computer then manipulates the data using various mathematical
techniques to form an image. Because the image contrast of the
picture depends on proton density and other tissue characteristics,
MRI images possess great soft tissue contrast.

MRI systems form images by relating the magnitude of the received
signal from each volume element, or voxel, of the object to the
proton NMR properties of the tissues in that voxel. To form an
image, it must be possible to identify the spatial location of the
voxels corresponding to the received signals. This is accomplished
by using varying magnetic fields to spatially encode the signals from
different voxels with varying frequency and phase shift so that each
unique location corresponds to a unique frequency and phase-shift
value.

To frequency encode data along one dimension, a gradient
magnetic field is applied during data acquisition along the
dimension. The received signal is a composite consisting of many
different frequencies, each frequency corresponding to a different
spatial location along the frequency-encoded dimension.

The Fourier transform can be applied to the composite signal to give
its frequency distribution, allowing extraction of the individual
frequencies and amplitudes. This information gives the spin density
at the particular spatial location along one dimension, which is used
as the image data for the dimension.

10 SPRA192

To form a two-dimensional image, phase encoding must be used to
provide image data along the other dimension. Unlike frequency
encoding, which is applied with a single gradient and scan, phase
encoding involves applying numerous gradients and taking
numerous scans. Thus, the process of phase encoding is
responsible for the long period of time required to generate an
image.

2.2 The Problem of Motion

Medical professionals often need to acquire detailed images of
moving tissue, such as a beating heart, moving abdomen, or
breathing lungs. The long data acquisition time of MRI causes the
resultant images of moving objects to be degraded, containing blurs,
motion artifacts, and ghosts. One method to measure and correct
the effects of motion involves accompanying the imaging data with
navigator echoes1 to provide a record of displacements during
imaging. A computer can then be used to apply a set of algorithms
to reverse the effects of the displacements. Using a computer to
post-process the data is an intensive and time-consuming task that
can only be performed after all the data is acquired. Thus, corrected
images can be produced only after lengthy amounts of time spent on
calculations. Because of the time and amount of processing needed
to remove and correct these errors, the ability to image motion is the
most significant limitation in current MRI systems.

Implementing Real-Time Cardiac Imaging Using the TMS320C3x DSP 11

3. Incorporating the TMS320C3x in an MRI System

Because of the slow nature of the phase-encoding process during
MRI acquisition, motion causes changes in the position of structures
between phase-encoding measurements. We used the Texas
Instruments TMS32OC3x DSP to monitor the image data as it is
being acquired to detect this motion. Our goal was to process the
image data as it occurs on the fly rather than after all the data is
collected. The TMS320C3x DSP must perform the computations
quickly enough to keep up with the data acquisition rate and allow
the scanner to produce images of moving objects with no delay.

Essentially, the TMS320C3x allows the MRI to produce dynamic
images of moving objects in real-time. This breakthrough has direct
applications in cardiac imaging, angiography, and abdominal
imaging. The effects are wide and far-reaching, having potential
applications in functional imaging, reduced time required for
imaging, increased utilization in medical facilities, and possibly a
reduction in the costs of the scans.

We denote the navigator signal from the first phase-encoding scan,
XR[k]. This is the reference data, which provides the original
reference position and is in the frequency domain, or k-space. We
denote the data acquired in each of the subsequent phase-encoding
scans, XD[k]. This is the dynamic data, which provides the new
position of the structure, which may or may not have moved.

The movement of the specimen causes linear phase shifts in XD[k],
the frequency data received. According to the Fourier transform, a
phase shift in the frequency domain corresponds to a displacement
in the spatial domain. Thus, to detect phase shifts in the frequency
data, we transform the data to the spatial domain and calculate the
spatial shift. Let xR[t] denote the inverse Fourier transform of XR[k],
and xD[t] the inverse Fourier transform of XD[k]. Then, the amount of
displacement is determined by first performing a cross-correlation of
the two signals, given by:

∑ =
−=

0
][][][

m DR tmxmxty

The amount of spatial displacement is now simply given by the
location of the peak of the cross-correlation function y[t]. If this value
is greater than some threshold, there was too much motion and the
DSP signals the computer controlling the data acquisition to re-scan.
Otherwise, if the amount of displacement is smaller than the
threshold, the motion is within tolerable limits and the next scan is
made. Since the motion is normally constrained within a certain
range, only a partial cross-correlation need be computed.

12 SPRA192

To provide different soft-tissue contrast, the data acquisition delay
may vary in the millisecond to second range. For example, imaging
techniques based on a gradient-recall echo usually have time delays
ranging from 5 to 15 milliseconds. For the real-time system to be
useful, the on-line data processing must occur during this short time.
We can see from above that the most computational-intensive
processes are the complex-value FFT and the cross-correlation.
For data of length 256, using the TMS32OC3x on-chip memory, the
FFT can be computed in about 1 millisecond2, and the partial cross -
correlation can also be done in approximately the same time. Thus,
we can achieve this speed requirement and successfully measure
high-resolution motion on the fly.

Implementing Real-Time Cardiac Imaging Using the TMS320C3x DSP 13

4. Medical Applications

Using MRI to probe deep inside the human body has many benefits.
It is safe and produces high quality images containing
unprecedented levels of soft-tissue information. As a result, MRI is
finding increased applications in medicine. MRI systems equipped
with the TMS320C3x will be even more versatile.

The precision of MRI pictures means that physicians can get as
much information from the image as from looking directly at the
tissue. Thus, MRI has the potential to reduce the number of certain
diagnostic surgeries. Because MRI is especially valuable in clearly
defining soft tissue, it has applications in diagnosing brain and
nervous system disorders. MRI images are used in oncology to
identify diseased tissue and tumors by locating accumulations of
fluids. Additionally, the effectiveness of a treatment can be
evaluated without having to perform invasive surgery or expose the
patient to harmful radiation. The TMSC320C3x enables an MRI
system to provide real-time images of these moving tissues.

In addition, the outstanding contrast and spatial resolution of MRI
has led to its increased use in functional imaging to view and map
brain function. The real-time imaging method is certainly applicable
in this imaging application due to its dynamic nature.

Magnetic resonance angiography is also increasing in viability.
Because there is no harm of radiation and MRI does not require the
injection of contrast agents, it is a safer alternative to x-rays.
Furthermore, computers can generate for cardiologists views of
different cross sections from different angles based on MRI data.
Cardiovascular disease is better diagnosed, because MRI can see
right into the heart and blood vessels, making it possible to measure
blood flow and the effects of plaque in the arteries. Blood flow and
flow effects can be even better imaged with our real-time
implementation.

Cost is certainly a factor in the scope of an MRI application. As MRI
increases in speed, the cost per procedure will most likely decrease,
thus enabling it to be used in more procedures. MRI clearly already
enjoys a wide array of applications; using the TMS320C3x
enhancement broadens the scope of applications even further.

14 SPRA192

5. Conclusion

The phenomenon of NMR and its use in MRI has far-reaching
effects in medicine. The main advantage of MRI is that it offers
strong contrast resolution in scans of soft tissues and has the ability
to probe the molecular characteristics of nuclear species in healthy
and diseased tissue. Furthermore, MRI is safe, unlike other imaging
modalities (such as the x-ray).

The main limitation of MRI is its inability to produce high-quality
images of moving organs. This results from the significant image
degradation caused by motion artifacts and the large amount of data
processing needed to correct these image artifacts. By
implementing the Texas Instruments TMS320C3x DSP as a
controller and on-line data processor during the data acquisition
process, it is possible to monitor the data for motion and generate
an image unaffected by motion artifacts in real-time. The speed of
the DSP makes it possible to perform the required computations in
real-time during the data acquisition.

The greatest application of real-time MRI is in generating images of
moving organs such as the heart. Because the chip runs more
quickly, scans that once took minutes can now be done in seconds.
This has great implications on the general populace by allowing
more patients to be screened in shorter times. In the future, we
expect to be able to use real-time MRI to generate high-quality
cardiac and abdominal images, as well as more precise images of
blood flow. Functional imaging will also become more advanced
with the capability of generating high-quality real-time images. The
additional applications of MRI are endless. MRI has definitely made
a great impact and will continue to play a major role in the field of
medicine in the future.

Implementing Real-Time Cardiac Imaging Using the TMS320C3x DSP 15

Appendix A. Source Code

#define MAG-SQ(x,y) (x*x+y*y)

extem fft(int, int, float *);
extem volatile float *input, *output;
extem int r_buffer, t_buffer;
extem volatile int buffer_rcvd, buffer_xmtd;

main()
{
float ref_data[2*N], dyn_data[2*Nj;
float max, sum;
int i, j, peak_location;

r_buffer = 2*N;
t_buffer = OUTSIG_LEN;

init-c3O();
init_arrays(t_buffer, r_buffer);
init_aic();

/* read in reference data */
while (!buffer_rcvd);
for (i = 0; i < 2*N; i++)
ref_data[i] = input[i];
buffer_rcvd = 0;

/* fft reference data */
fft(N, M, ref_data);

/* Compute magnitudes (squared) and store in ref_data */
for (i = 0; i < 2*N; i+=2)
ref_data[i/2) = MAG_SQ(ref_data[i], ref_data[i+l]);

while(1)
{
 /* read in dynamic data */
 while(!buffer_rcvd);
 for (i = 0; i < 2*N; i++)
 dyn_data[i] = input[I];
 buffer_rcvd = 0;

 /*fft dynamic data */
 fft(N, M, dyn_data);

 /* Compute magnitudes (squared) and store in dyn_data */
 for (i = 0; i < 2*N; i+=2)
 dyn_data[i/21 = MAG_SQ(dyn_data[i], dyn_data[i+ I]);

 /*Correlate dyn_data and ref_data, and put result in dyn_data */
 for (i = 0; i < N; i++)
 {
 sum = O.;
 for (j = 0; j < N - i; j++)
 sum + = ref_data[j] * dyn_data[j+I];

16 SPRA192

 dyn_data[I] = sum;
 {

 /*Find the location of the peak in dyn_data,
 and decide whether to accept or reject the data */
 peak_location = 0;
 max = dyn_data[0];

 for (i = 1; i < N; i++)
 if (dyn_data[I] > max) peak_location = i;

 if (peak_location < THRESHOLD)
 {
 output = continue_signal;
 buffer_xmtd = 0;
 }
 else
 {
 output = repeat_signal;
 buffer_xmtd = 0;
 {
 {
{

Implementing Real-Time Cardiac Imaging Using the TMS320C3x DSP 17

Appendix B. Radix-2 FFT Source Code
**
*Name:
* fft --- radix-2 complex FFF to be called as a C function.
*
*Synopsis:
* int fft(N, M, data)
* int N FFT size: N-2**M
* int M Number of stages - log2(N)
* float*data Array with input and output data
*
*Description:
* Generic function to do a radix-2 FFT computation on the 32OC30.
* The data array is 2*N-long, with real and imaginary values alternating.
* The program is based on the FORTRAN program in the Burrus and Parks
* book, p.111.
* The computation is done in place, and the original data is destroyed.
* Bit reversal is implemented at the end of the function. If this is not
* necessary, this part can be commented out.
* The sine/cosine table for the twiddle factors is expected to be supplied
* during link time, and it should have the following format:
*
* .global _sine
* .data
* -sine .float value1 = sin(0*2*pi/N)
* .float value2 = sin(I *2*pi/N)
*
* .float value(5N/4) = sin((5*N/4-I)*2*pi/N)
*
* The values valuel, value2, etc., are the sine wave values. For an
* N-point FFT, there are N+N/4 values for a full and a quarter period of
* the sine wave. In this way, a full sine and cosine period are available
* (superimposed).
*
*Stack structure upon the call:
* +----------------+
* -FP(4) | data |
* -FP(3) | M |
* -FP(2) | N |
* -FP(l) |return addr |
* -FP(0) | old FP |
* +----------------+
*
*Registers used: RO, RI, R2, R3, R4, R5, R6, R7, ARO, AR], AR2, AR4, AR5
* AR6,AR7,IRO,IRI,RS,RE,RC
*
*AUTHOR: PANOS E. PAPAMICHALIS
* TEXAS INSTRUMENTS OCTOBER 13,1987
*

*
FP .set AR3

 .GLOBL _fft ; ENTRY POINT FOR EXECUTION
 .GLOBL _sine ; ADDRESS OF SINE TABLE

 .BSS FFTSIZ,l
 .BSS LOGFFT,l

18 SPRA192

 .BSS INPUT,l

 .TEXT

SINTAB .word _sine

;INITIALIZE C FUNCTION

_fft: PUSH FP ;SAVE DEDICATED REGISTERS
 LDI SP,FP
 PUSH R4
 PUSH R5
 PUSHF R6
 PUSHF R7
 PUSH AR4
 PUSH AR5
 PUSH AR6
 PUSH AR7

 LDI *-FP(2),R0 ;MOVE ARGUMENTS TO LOCATIONS MATCHING
 STI R0,@FFTSIZ ; THE NAMES OF THE PROGRAM
 LDI *-FP(3),R0
 STI R0,@LOGFFT
 LDI *-FP(4),R0
 STI R0,@INPUT

;INITIALIZE FFT ROUTINE

 LDI @FFTSIZ,IR1
 LSH -2,IR1 ;IR1=N/4,POINTER FOR SIN/COS TABLE
 LDI 0,AR6 ;AR6 HOLDS THE CURRENT STAGE NUMBER
 LDI @FFTSIZ,IR0
 LSH 1,IR0 ;IR0=2*N1 (BECAUSE OF REAL/IMAG)
 LDI @FFTSIZ,R7 ;R7=N2
 LDI 1,AR7 ;INITIALIZE REPEAT COUNTER OF FIRST LOOP
 LDI 1,AR5 ;INITIALIZE IE INDEX (AR5=IE)

; OUTER LOOP

LOOP: NOP *++AR6(1) ;CURRENT FFT STAGE
 LDI @INPUT,AR0 ;AR0POINTS TO X(I)
 ADDI R7,AR0,AR2 ;AR2 POINTS TO X(L)
 LDI AR7,RC
 SUBI 1,RC ;RC SHOULD BE ONE LESS THAN DESIRED#

;FIST LOOP

 RPTB BLK1
 ADDF *AR0,*AR2,R0 ;R0=X(I)+X(L)
 SUBF *AR2++,*AR0++,R1 ;R1=X(I)-X(L)
 ADDF *AR2,*AR0,R2 ;R2=Y(I)+Y(L)
 SUBF *AR2,*AR0,R3 ;R3=Y(I)-Y(L)
 STF R2,*AR0-- ;Y(I)=R2 AND…
|| STF R3,*AR2-- ;Y(L)=R3
BLK1 STF R0,*AR0++(IR0) ;X(I)=R0 AND…
|| STF R1,*AR2++(IR0) ;X(L)=R1 AND AR0,2 = AR0,2+2*N1

;IF THIS IS THE LAST STAGE, YOU ARE DONE

Implementing Real-Time Cardiac Imaging Using the TMS320C3x DSP 19

 CMPI @LOGFFT,AR6
 BZD END

;MAIN INNER LOOP

 LDI 2,AR1 ;INIT LOOP COUNTER FOR INNER
LOOP

 LDI @SINTAB,AR4 ;INITIALIZE 1A INDEX (AR4=IA)
INLOP: ADDI AR5,AR4 ;IA=IA+IE;AR4 POINTS TO COSINE
 LDI AR1,AR0
 ADDI 2,AR1 ;INCREMENT INNER LOOP COUNTER

 ADDI @INPUT,AR0 ;(X(1),y(I)) POINTER
 ADDI R7,AR0,AR2 ;(X(L),Y(L)) POINTER
 LDI AR7,RC
 SUBI 1,RC ;RC SHOULD ONE LESS THAN DESIRED#
 LDF *AR4,R6 ;R6=SIN

; SECOND LOOP

 RPTB BLK2
 SUBF *AR2,*ARO,R2 ;R2=X(I)-X(L)
 SUBF *+AR2,*+ARO,Rl ;R1=Y(I)-Y(L)
 MPYF R2,R6,RO ;R0=R2*SIN AND…
|| ADDF *+AR2,*+ARO,R3 ;R3=Y(I)+Y(L)
 MPYF Rl,*+AR4(IRI),R3 ;R3=R1*COS AND…
|| STF R3,*+ARO ;Y(I)=Y(I)+Y(L)
 SUBF RO,R3,R4 ;R4=R1*COS-R2*SIN
 MPYF R1,R6,RO ;R0=R1*SIN AND…
|| ADDF *AR2,*ARO,R3 ;R3=X(I)+X(L)
 MPYF R2,*+AR4(IRl),R3 ;R3=R2*COS AND…
|| STF R3,*ARO++(IRO) ;X(I)=X(I)+X(L) AND AR0=AR0+2*N1
 ADDF RO,R3,R5 ;R5=R2*COS+R1*SIN
BLK2 STF R5,*AR2++(IRO) ;X(L)=R2*COS+R1*SIN, INCR AR2 AND…
|| STF R4,*+AR2 ;Y(L)=R1*COS-R2*SIN

 CMPI R7,AR1
 BNE INLOP ;LOOP BACK TO THE INNER LOOP

 LSH 1,AR7 ;INCREMENT LOOP COUNTER FOR NEXT TIME

 LSH 1,AR5 ;IE=2*IE
 LDI R7,IR0 ;N1=N2
 LSH -1,R7 ; N2=N2/2
 BR LOOP ;NEXT FFT STAGE

;DO THE BIT-REVERSING OF THE OUTPUT

END: LDI @FFTSIZ,RC ;RC=N
 SUBI I,RC ;RC SHOULD BE ONE LESS THAN DESIRED#
 LDI @FFTSIZ,IR0 ;IR0 = SIZE OF FFT=N
 LDI @INPUT,AR0
 LDI @INPUT,AR1

RPTB BITRV
 CMPI AR0,AR1
 BGE CONT

20 SPRA192

 LDF *AR0,R0
|| LDF *AR1,R1
 STF R0,*AR1
|| STF R1,*AR0
 LDF *+AR0(1),R0
|| LDF *+AR1(1),R1
 STF R0,*+AR1(I)
|| STF R1,*+AR0(I)
CONT NOP *++AR0(2)
BITRV NOP *AR1++(IR0)B

; RESTORE THE REGISTER VALUES AND RETURN

 POP AR7
 POP AR6
 POP AR5
 POP AR4
 POPF R7
 POPF R6
 POP R5
 POP R4
 POP FP
RETS

Implementing Real-Time Cardiac Imaging Using the TMS320C3x DSP 21

Appendix C. AIC Library Source Code
!<arch>
aicdrvr.c/ 697924910 0 0 0 17365 ’
/***/
/* AICDRVR.C */
/* */
/* TMS32OC3x - AIC DRIVER */
/* :TMS32OC3x CODE */
/* Compile and archive into aic.lib */
/*
/* (C) 1991 TEXAS INSTRUMENTS, HOUSTON */
/***/
#include <math.h>
#include <stdlib.h>
#include <aic.h>

/**/
/* GLOBAL VARIABLES */
/**/
int t_buffer = BLOCK_SIZE; /* SIZE OF I/O BUFFER(S) */
int r_buffer = BLOCK_SIZE; /* SIZE OF I/O BUFFER(S) */
VPVF output /* OUTPUT DATA BUFFER FOR PROCESSOR */
VPVF input; /* INPUT DATA BUFFER FOR PROCESSOR */
VPVF output_xfer; /* OUTPUT DATA BUFFER FOR ISR/AIC */
VPVF input_xfer, /* INPUT DATA BUFFER FOR ISR/AIC */
VI buffer_rcvd = FALSE ; /* CPU-ISR COMM FLAG (INPUT) */
VI buffer_xmtd = FALSE ; /* CPU-ISR COMM FLAG (OUTPUT) */
VI r_index = 0; /* INDEX INTO INPUT AND OUTPUT DATA ARRAYS */
VI t_index = 0; /* INDEX INTO INPUT AND OUTPUT DATA ARRAYS */
VI i; /* GENERIC COUNTER VARIABLE */

/**/
/* AIC CONTROL VARIABLES
 */
/**/
AIC_COMMAND_0 aic_command_0; /* AIC COMMAND WORD 0 */
AIC_COMMAND_1 aic_command_1; /* AIC COMMAND WORD 1 */
AIC_COMMAND_2 aic_command_2; /* AIC COMMAND WORD 2 */
AIC_COMMAND_3 aic_command_3; /* AIC COMMAND WORD 3 */
volatile AIC_PRIMARY aic_primary;
VI secondary_transmit = OFF-, /* FLAG TO SENT SECONDARY TRANSMIT*/
VI aic_secondary = 0; /* COMMAND SENT ON SECONDARY TRANSMIT
int ie; /* ENABLED INTERRUPTS TEMP VARIABLE */

#ifASYNC
/**/
/* C_INT05() OR C_INT07()
/* SERIAL PORT0/1 TRANSMIT INTERRUPT SERVICE ROUTINE */
/* 1. IF SECONDARY TRANSMISSION SEND AIC COMMAND WORD*/
/* 2. OTHERWISE IF COMMAND SEND REQUESTED SETUP FOR SECONDARY */
/* TRANSMISSION ON NEXT INTERRUPT */
/* 3. OTHERWISE WRITE OUT OUTPUT DATA */
/* 4. RESET SAMPLE INDEX AND FLAG IF FRAME IS FULL */
/* AND SWAP BUFFER POINTERS */
/* 5. IF REAL TIME IS NOT MET GO TO ERROR HANDLER */
/**/
#if SER-NUM
void c_int05(void) {}

22 SPRA192

void c_int07(void)
#else
void c_int07(void) {}
void c_int05(void)
#endif
{
VPVF swap;

if (secondary_transmit)
{
 SERIAL_PORT_ADDR(SER_NUM)->x_data = aic_secondary;
 Secondary_transmit = OFF;
 put_ie(ie); /* RESTORE GET ENABLED INTS */
}
else
{
 if (aic_primary._bitval.command == SECONDARY_REQ)
 {
 ie = get_ie(); /* GET ENABLED INTS */
 if(SER_NUM)
 put_ie(0x40); /* ENABLE SERIAL PORT INT */
 else
 put_ie(0x10);
 secondary_transmit = ON;
 }

aic_primary._bitval.data = outpuT_xfer[t_index];
SERIAL_PORT_ADDR(SER_NUM)->x_data = aic_primary._intval:

 if (++t_index == t_buffer)
 {
#ifERROR_CHECK
 if(buffer_xmtd == TRUE) error_in_real_time();
#endif
 swap = output_xfer;
 output_xfer = output;
 output = swap;
 t_index = 0;
 buffer_xmtd = TRUE;
 }
}
aic_primary._bitval.command = STANDARD;
}

/**/
/* C-INT06() OR C_INT08() */
 SERIAL PORT0/1 RECEIVE INTERRUPT SERVICE ROUTINE
 1. READ INPUT DATA
 2. RESET SAMPLE INDEX AND FLAG IF FRAME IS FULL
 AND SWAP BUFFER POINTERS
 3. IF REAL TIME IS NOT MET GO TO ERROR HANDLER
/**/
#if SER_NUM
void c_int06(void) {}
void c_int08(void)
#else
void c_int08(void) {}
void c_int06(void)

Implementing Real-Time Cardiac Imaging Using the TMS320C3x DSP 23

#endif
{
 VPVF swap;

 aic_primary._intval = SERIAL_PORT_ADDR(SER_NUM)->r_data & 0x0FFFF;
 input_xfer[r_index] = aic_primary._bitval.data;

 if (++r_index == r_buffer)
 {
#ifERROR_CHECK
 if(buffer_rcvd == TRUE) error_in_real_time()
#endif

 swap = input;
 input = input_xfer;
 input_xfer = swap;
 r_index = 0
 buffer_rcvd = TRUE;
 }
}
#else /* IF NOT ASYNC */

/**/
/*C_INT05() OR C_Int07() /*
/* SERIAL PORT 0/1 TRANSMIT AND RECEIVE INTERRUPT SERVICE ROUTINE/*
/* 1. IF SECONDARY TRANSMISSION SEND AIC COMMAND WORD /*
/* 2. OTHERWISE IF COMMAND SEND REQUESTED SETUP FOR SECONDARY/*
/* TRANSMISSION ON NEXT INTERRUPT AND RECEIVE DATA /*
/* 3. OTHERWISE WRIT7E OUT OUTPUT DATA AND RECEIVE INPUT DATA/*
/* 4. RESET SAMPLE INDEX AND FLAG IF FRAME IS FULL /*
/* AND SWAP BUFFER POINTERS /*
/* 5. IF REAL TIME IS NOT MET GO TO ERROR HANDLER /*
/**/
#if SER_NUM
void c_int05(void) {}
void c_int06(void) {}
void c_int08(void) {}
void c_int07(void) {}
#else
void c_int06(void) {}
void c_int07(void) {}
void c_int08(void) {}
void c_int05(void)
#endif
{
 VPVF swap;

if (secondary_transmit)
{
 SERIAL_PORT_ADDR(SER_NUM)->x_data = aic_secondary;
 secondary_transmit = OFF;
 put_ie(ie); /* RESTORE GET ENABLED INTS
}
else
}
 if (aic_primary._bitval.command == SECONDARY_REQ)
 {
 ie = get_ie(); /*GET ENABLED INTS */
 if(SER_NUM)

24 SPRA192

 put_ie(0x40); /* ENABLE SERIAL PORT INT */
 else
 put_ie(0x10);
 secondary_transmit = ON;
 }

 aic_primary._bitval.data = output_xfer[t_index];
 SERIAL_PORT_ADDR(SER_NUM)->x_data = aic_primary._intval;

 aic_primary._intval = SERIAL_PORT_ADDR(SER_NUM)->R_data & 0x0FFFF;
 input_xfer[r_index] = aic_primary._bitval.data;

 if (++r_index == r_buffer)
 {
#if ERROR_CHECK
 if(buffer_rcvd == TRUE) error_in_real_time();
#endif
 swap = input;
 input = input_xfer;
 input_xfer = swap;
 r_index = 0;
 buffer_rcvd = TRUE;
 }
 if (++t_index == t_buffer)
 {
#ifERROR_CHECK
 if(buffer_xmtd == TRUE) error_in_real_time()
#endif
 swap = output_xfer;
 output_xfer = output;
 output = swap;
 t_index = 0;
 buffer_xmtd = TRUE;
 }
 }
 aic_primary._bitval.command = STANDARD:
}
#endif

/**/
/* INIT_ARRAYS(): INITIALIZE DATA ARRAY PARAMETERS /*
/**/
void init_arrays(int t_buffer, int r_buffer)
{
 int i;
 /* -- */
 /* INITIALIZE AND ZERO FILL ARRAYS
 /* -- */
 if(!(input = (float *) malloc(r_buffer))) heap_overflow();
 if(!(output = (float *) malloc(r_buffer))) heap_overflow();
 if(!(input_xfer = (float *) malloc(r_buffer))) heap_overflow();
 if(!(output_xfer = (float *) malloc(r_buffer))) heap_overflow();
 for(i = 0; i < t_buffer; i++) output[i] = output_xfer[i] = 0.0;
}

/**/
/* INIT_AIC(): INMALIZE COMMUNICATIONS TO AIC */
/* NOTE: i IS A VOLAIILE TO FORCE TIME DELAYS AND TO FORCE */
/* READS OF SERIAL PORT DATA RECEIVE REGISTER TO CLEAR */

Implementing Real-Time Cardiac Imaging Using the TMS320C3x DSP 25

/* THE RECEIVE INTERRUPT FLAG */
/**/
void init_aic(void)
{
 RESET_AIC; /* RESET AIC */
 WAIT(50); /* KEEP RESET LOW FOR SOME PERIOD OF TIME */

 /* -- /*
 /* SET AIC CONFIGURATION CHIP
 /* 1. ALLOW 8 KhZ SAMPLING RATE AND 3.6 KHZ ANTIALIASING FILTER */
 /* GIVEN A 7.5 MHZ MCLK TO THE AIC FROM A 30 MHZ TMS32OC30 */
 /* 2. ENABLE A/D HIGHPASS FILTER */
 /* 3. SET SYNCHRONOUS TRANSMIT AND RECEIVE IF NOT ASYNC */
 /* 4. ENABLE SINX/X D/A CORRECTION FILTER */
 /* 5. SET AIC FOR +/- 1.5 V INPUT */
 /* -- */
 aic_primary._bitval.command = STANDARD;
 aic_primary._bitval.data = 0;
 aic_primary._bitval.unused = 0;

#if TLC32046
 aic_command_0.command = 0; /* SETUP AIC COMMAND WORD ZERO */
 aic_command_0.ra = 26; /* ADJUST SAMPLING RATE TO 8 kHz */
 aic_command_0.ta = 26; /* AND 3.6 kHz ANTIALIAS FILTER */

 aic_command_1.command = 1; /* SETUP DEFAULT AIC COMMAND WORD 1 */
 aic_command_1.ra_prime = 1;
 aic_command_1.ta_prime = 1;
 aic_command_1.d_f = 0;

 aic_command_2.command = 2; /* SETUP DEFAULT AIC COMMAND WORD 2 */
 aic_command_2.rb = 18;
 aic_command_2.tb = 18;

 aic_command_3.command = 3;
 aic_command_3.highpass = ON; /* TURN ON INPUT HIGHPASS FILTER */
 aic_command_3.loopback = OFF; /* DISABLE AIC LOOPBACK */
 aic_command_3.aux = OFF; /* DISABLE AUX INPUT */
#ifASYNC
 aic_command_3.sync = OFF; /* DISABLE SYNCHRONOUS A/D AND D/A */
#else
 aic_command_3.sync = ON; /* ENABLE SYNCHRONOUS A/D AND D/A */
#endif
 aic_command_3.gain = THREE_V; /* SET FOR LINE-LEVEL INPUT */
 aic_command_3.d_8 = 0;
 aic_command_3.sinx = ON; /* ENABLE SIN x/x CORRECTION FILTER */
 aic_command_3.dl0out =OFF; /*DISABLED10OUT(TEL-I/F MODE) */
 aic_command_3.dllout =OFF; /*DISABLED11OUT(TEL-I/F MODE) */
 aic_command_3.d_cdef = 0;
#else
 aic_command_0.command = 0; /* SETUP AIC COMMAND WORD ZERO */
 aic_command_0.ra = 13; /* ADJUST SAMPLING RATE TO 8 kHz */
 aic_command_0.ta = 13; /* AND 3.6 kHz ANTIALIAS FILTER */

 aic_command_1.command = 1; /* SETUP DEFAULT AIC COMMAND WORD I */
 aic_command_1.ra_prime = 1;
 aic_command_1.ta_prime = 1;
 aic_command_1.d_f = 0;

26 SPRA192

 aic_command_2.command = 2; /* SETUP DEFAULT AIC COMMAND WORD 2 */
 aic_command_2.rb = 36;
 aic_command_2.tb = 36;

 aic_command_3.command = 3;
 aic_command_3.highpass = ON; /* TURN ON INPUT HIGHPASS FILTER */
 aic_command_3.loopback = OFF; /* DISABLE AIC LOOPBACK */
 aic_command_3.aux = OFF; /* DISABLE AUX INPUT */
#ifASYNC
 aic_command_3.sync = OFF; /* DISABLE SYNCHRONOUS A/D AND D/A */
#else
 aic_command_3.sync = ON; /* ENABLE SYNCHRONOUS A/D AND D/A */
#endif
 aic_command_3.gain = LINE_V; /* SET FOR LINE-LEVEL INPUT
 aic_command_3.d_8 = 0;
 aic_command_3.sinx = ON; /* ENABLE SIN x/x CORRECTION FILTER
 aic_command_3.d_abcdef = 0;
#endif

#if MSTR-CLOCK
 /* --- */
 /* CONFIGURE TIMER 0 TO ACT AS AIC MCLK */
 /* THE TIMER IS CONFIGURED IN THE FOLLOWING WAY */
 /* 1. THE TIMER’S VALUE DRIVES AN ACTIVE-HIGH TCLK 0 PIN */
 /* 2. THE TIMER IS RESET AND ENABLED */
 /* 3. THE TIMER’S IS IN PULSE MODE */
 /* 4. THE TIMER HAS A PERIOD OF TWO INSTRUCTION CYCLES */
 /* -- */
 TIMER_ADDR(TIMER_NUM)->period = 1;
 TIMER_ADDR(TIMER_NUM)->gcontrol = FUNC|HLD|GO |CLKSRC;
#endif
 /* -- */
 /* CONFIGURE SERIAL PORT 0
 /* 1. EXTERNAL FSX, FSR, CLKX, CLKR */
 /* 2. VARIABLE DATA RATE TRANSMIT AND RECEIVE */
 /* 3. HANDSHAKE DISABLED */
 /* 4. ACTIVE HIGH DATA AND CLK */
 /* 5. ACTIVE LOW FSX,FSR */
 /* 6. 16 BIT TRANSMIT AND RECEIVE WORD */
 /* 7. TRANSMIT INTERRUPT */
 /* 8. RECEIVE INTERRUPT ENABLED/RECEIVE */
 /* 9. FSX, FSR, CLKX, CLKR, DX, DR CONFIGURED AS SERIAL */
 /* PORT PINS /*
/* -- */
 SERIAL_PORT_ADDR(SER_NUM)->gcontrol - 0x0;

 SERIAL_PORT_ADDR(SER_NUM)->s_x_control = CLKXFUNC | DXFUNC | FSXFUNC;
 SERIAL_PORT_ADDR(SER_NUM)->s_r_control = CLKRFUNC | DRFUNC | FSRFUNC;

 SERIAL_PORT_ADDR(SER_NUM)->gcontrol = XVAREN | RVAREN | FSXP | FSRP |
 XLEN_16 | RLEN_16 | XINT | RINT |
 RRESET | XRESET;

 /* CLEAR SERIAL TRANSMIT DATA */
 SERIAL_PORT_ADDR(SER_NUM)->x_data = 0x0;

UN_RESET_AIC;
CL_INT_FL_REG;

Implementing Real-Time Cardiac Imaging Using the TMS320C3x DSP 27

#if SER_NUM
 EN_SER_PORT_XMT_INT_1;
#else
 EN_SER_PORT_XMT_INT_0;
#endif

#ifASYNC
#if SER_NUM
 EN_SER_PORT_RCV_INT_1;
#else
 EN_SER_PORT_RCV_INT_0;
#endif
#endif

 EN_GLOBAL_INTS; /* SET GLOBAL INTERRUPT ENABLE BIT */
 /* --- */
 /* MODIFY AIC CONFIGURATION */
 /* --- */
 configure_aic(*((int *) &aic_command_0));
 configure_aic(*((int *) &aic_command_3));
}

/**/
/* CONFIGURE_AICO: INITIATE AIC CONFIGURATION WORD TRANSMISSION ON NEXT */
INTERRUPT AFTER ALL PREVIOUS COMMANDS ARE SENT */
/**/
void configure_aic(int i)
{
 while((aic_primary._bitval.command==SECONDARY_REQ) || secondary_transmit);
 aic_secondary = i;
 aic_primary._bitval.command = SECONDARY_REQ;
}

/**/
/* GET_IE(): read ie register */
/**/
int get_ie(void)
{
 asm(" LDI IE,R0");
}
/**/
/* PUT_IE(): write ie register */
/**/
void put_ie(int ie_value)

#if_REGPARM
 asm(" LDI AR2,IE");
#else
 asm(" LDI *-FP(2),IE");
#endif /* _REGPARM
}

28 SPRA192

References

1 R. L. Ehman and J. F. Felmlee, "Adaptive Technique for High-Definition MR Imaging of Moving
Structures," Radiology, vol. 173, no. 1, pp. 255-263, 1989.
2 Texas Instruments TMS32OC3x User’s Guide, p.11-125, 1994.

