TMS320 DSP
DESIGNER’'S NOTEBOOK

Mastering the 'C4x DMA

APPLICATION BRIEF: SPRA234

Rosemarie Piedra
Digital Signal Processing Products
Semiconductor Group

Texas Instruments
May 1994

%‘ TEXAS
INSTRUMENTS



IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor
product or service without notice, and advises its customers to obtain the latest version of relevant information
to verify, before placing orders, that the information being relied on is current.

Tl warrants performance of its semiconductor products and related software to the specifications applicable at
the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are
utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each
device is not necessarily performed, except those mandated by government requirements.

Certain application using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate Tl officer. Questions concerning
potential risk applications should be directed to Tl through a local SC sales office.

In order to minimize risks associated with the customer’'s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

Tl assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does Tl warrant or represent that any license, either
express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property
right of Tl covering or relating to any combination, machine, or process in which such semiconductor products
or services might be or are used.

Copyright © 1997, Texas Instruments Incorporated



TRADEMARKS

Tl is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.



CONTACT INFORMATION

US TMS320 HOTLINE
US TMS320 FAX

US TMS320 BBS

US TMS320 email

(281) 274-2320
(281) 274-2324
(281) 274-2323
dsph@ti.com



Contents

F N 015 £ = (] U PR
DeSigN Problem e
ST 11U o] o IR






Mastering the 'C4x DMA

Abstract

This document briefly discusses the following four items:

O What are the basic differences between the 'C3x and 'C4x
DMA?

O What to do if the DMA is slower than expected or never finishes?
Q How to program the 'C4x DMA?

O What program examples are available and how to get them.

Mastering the 'C4x DMA 7



s

Design Problem

What are the basic differences between the 'C3x and 'C4x DMA?
What to do if the DMA is slower than expected or never finishes?
How to program the 'C4x DMA?

What program examples are available and how to get them.

Solution

The 'C4x DMA is one of the most powerful DMAs available in the
market. It gives features not available in traditional DSPs.

Basic Differences Between 'C3x and 'C4x DMASs

'C3x and 'C4x DMAs are functionally similar. The 'C4x adds the
following features:

1) More DMA channels (1 for the 'C3x vs. 6/12 for the 'C4x).

2) The 'C4x DMA is faster: the 'C3x DMA requires one cycle of
internal register setup time when the DMA is reading from
external memory. The 'C4x DMA doesn’t require this extra cycle.

3) The 'C4x DMA has more features than the 'C3x DMA, such as
autoinitialization mode, bit-reversed addressing, and split mode.

4) The 'C4x DMA allows you to control the priority between CPU
and DMA. The 'C3x DMA always has lower priority than the
CPU.

5) The 'C4x DMA interrupts are totally independent of the CPU
interrupts. The 'C4x DMA doesn’t require an instruction fetch
boundary to acknowledge the interrupt. The 'C3x DMA detects
DMA interrupts in fetch boundaries.

What to do if the DMA is Slower Than Expected or Never
Finishes?

The maximum sustained data transfer rate of the 'C40 DMA is one
word every two cycles (50 MB/s for a 50-MHz 'C4x), provided a O-
wait-state memory and a DMA with higher priority over the CPU (or
if there are no conflicts). Memory (0-wait-state) with no conflicts is
50 MBY/s. If DMA reads and writes to external memory are
interleaved, the maximum sustained rate is 33 MB/s (one word
transferred every three cycles: one for read and two for write).
Arbitration between DMA channels does not impose any overhead
cycles.

The following factors may slow down or even stop the DMA:

O Contention with the CPU: Even though DMA has its own internal
buses, CPU/DMA memory access conflicts may exist. You can

8 SPRA234



g

avoid that by allocating DMA source and destination addresses
in buses that the CPU is not using at that time. The 'C4x offers
two external buses and a dual-access on-chip RAM. Study
carefully the 'C4x block-diagram (Figure 2-1 in the 'C4x Users
Guide, 1993) to discover possible contentions. A double-
buffering scheme with two data buffers in the system (one for
CPU processing and one for DMA transfer) being switched
between CPU and DMA may help in some applications. An
example of this can be found in “Parallel 2-D FFT
Implementation with TMS320C4x FFTs” (SPRAO31). If
contention with the CPU cannot be avoided, select the DMA
priority (bits 0,1 in DMA control register) more convenient to your
application.

O Source and/or destination addresses are not ready.
This may be caused by:

B A non-zero-wait-state memory. Remember, after reset the
default value for external wait states is 7, therefore you have
to set the global and local memory-control registers to your
specific settings.

B An interrupt not being received if using DMA read and/or
write synchronization. For example, reading (writing) with
sync mode from/to the comm ports can only take place when
there is data in the input FIFO (or when there is space in the
output FIFO).

O The DMA data transfer rate is slower in the sync transfer mode
because it takes two cycles to reset the request from the
interrupt. Therefore, the maximum transfer rate in the sync mode
is one word every four cycles. However, these two extra cycles
can be absorbed if multiple DMA are running at the same time
and most of the time the effect is negligible. Refer to section
9.11.2 of the 'C4x Users Guide, 1993.

If neither of the two first factors explain why a DMA transfer never
finishes, take a look at the DMA registers values. Wrong values in
any of the nine DMA registers may indicate a programming error.
Take a special look at the DMA control register, start bit and status
bits to detect if the DMA has been halted.

Mastering the 'C4x DMA 9



10

SPRA234

Programming the 'C4x DMA?

The DMA is a memory-mapped peripheral. Therefore you can
program it from C as well as from Assembly in a very easy way. The
following examples are discussed in this application note. Source
code and batch files can be downloaded from the BBS (filename:
C4xdmaex.exe).

*** Unified Mode DMA ***

O Example 1: Unified-mode DMA transfers data between comm
ports using read sync.

O Example 2: Unified-mode DMA uses autoinitialization (method 1)
to transfer two data blocks.

O Example 3: Unified-mode DMA uses autoinitialization (method 2)
to transfer two data blocks.

*** Split Mode DMA ***

O Example 4: Split-mode auxiliary DMA transfers data between
comm ports using read sync.

O Example 5: Split-mode auxiliary and primary channel
send/receive data to and from comm ports.

O Example 6: Split-mode DMA autoinitializes both auxiliary and
primary channels (auxiliary transfers one block and primary
transfers two blocks).

You can compile those examples by typing:
goex exanpl el

(this invokes a batch file that runs the compiler and linker). You can
find examples of DMA programming in Assembly language in the
'C4x Users Guide (Chapter 12). Also, you can use a C-callable
Assembly routine to achieve the same result. Refer to set_dma.asm
routine in [1] for source code. Here is an example of how it can be
invoked (use register for parameter passing to reduce instruction
cycles):

set _dnma( DMAADDR, CTRLREG, SRC, SRC_| DX, COUNTER, DST, DST_|
DX, LI NK_PTR)



