
Application Report
SPRA656 - March 2000

1

Implementation of G.729 on the TMS320C54x
Lim Hong Swee Texas Instruments Singapore (Pte) Ltd

Marketing & Sales

ABSTRACT

The main objective of this project is to implement the ITU-U G.729 8-kbit/s Vocoder (Voice
Coder). The ANSI C code is available from ITU but it is not suitable for implementation in real
time using a digital signal processor (DSP) due to the large computational time required for
the encoder and decoder. The main task of this project is to study and understand the ITU-U
G.729 standard and convert the ANSI C codes into TMS320C54x assembly language for
real-time implementation.

The implemented vocoder should be tested using real-time speech signals captured from an
analog-to-digital converter (ADC). This project uses the TMS320C54x evaluation module
(EVM) board as the development platform.

THis application report is structured as follows: section 1 gives a background of speech
coding, section 2 gives an overview of the ITU-U G.729 standard, section 3 discusses
software design and conversion to assembly language, and section 4 gives the result of the
real-time testing and problems encountered.

Contents

1 Properties of Speech Signal 2.
1.1 Attributes of a Speech Coder 3.

1.1.1 Bit Rate 4.
1.1.2 Speech Quality 4.
1.1.3 Delay 4.
1.1.4 Channel Error Sensitivity (Robustness) 4.

2 ITU-U G.729 Recommendation 5.
2.1 General Description of the Coder 5.
2.2 G.729 Encoder 6.
2.3 G.729 Decoder 9.

3 Implementation of G.729 9.
3.1 Multiplication of numbers 10.

3.1.1 32-Bit by 32-Bit Multiplication 11.
3.1.2 32-Bit by 16-Bit Multiplication 11.
3.1.3 Overflow Handling 11.

3.2 Conversion of C-Code to Assembly 11.
3.2.1 Parameter Passing in C Functions 12.

3.3 Pipeline Issue 14.

4 Real-Time Testing 15.
5 Conclusion 17.
6 References 17.

SPRA656

2 Implementation of G.729 on the TMS320C54x

List of Figures

Figure 1. Speech Production Model for Vocoders 3.
Figure 2. Block Diagram of Conceptual CELP Synthesis Model 6.
Figure 3. Encoding Principle of the CS-ACELP Encoder 7.
Figure 4. Flowchart of G.729 Encoder Routine 8.
Figure 5. Decoding Principle of the CS-ACELP Encoder 9.
Figure 6. Q15 Format Representation 9.
Figure 7. Q14 Format Representation 10.
Figure 8. Multiplying Two Q4 Numbers 10.
Figure 9. TMS320C54x Pipeline Stages 14.
Figure 10. Example of Pipeline Conflict of Standard Instruction 15.
Figure 11. Pipeline Conflict Handling by the DSP 15.
Figure 12. Practical Implementation of the G.729 Vocoder 16.
Figure 13. Non-Real-Time Implementation of the G.729 Vocoder 17.

List of Tables

Table 1. Bit Allocation of the G.729 CS-ACELP 8-kbit/s Vocoder (10-ms frame) 5.
Table 2. Decimal Value Representation of Hex Values for Different Q Formats 10.

1 Properties of Speech Signal

Traditionally, speech has always been transmitted over a twisted pair with a bandwidth of about
3.4 kHz. In order to digitize speech, the analog waveform is first sampled at the Nyquist rate of 8
kHz, quantized and companded to either 8- or 16-bit pulse code modulation (PCM). Hence, a
raw uncoded speech can be represented using a bit rate of 128 Kbit/s (16-bit PCM multiplied by
8000 samples/s), which is an extremely high bit rate. Specifically, for a signal with a bandwidth
of 3.4 kHz and a signal-to-noise ratio (SNR) of 30 dB (which corresponds to very good speech
quality, i.e., toll quality), and assuming an additive white Gaussian noise (AWGN) channel, the
bit rate C, based on Shannon’s Channel Capacity Theorem is given by:

C � W log2�1 � P
G
�

Where W is the bandwidth and P/G is the SNR. The equation above shows that the bit rate
required to represent speech with a small error is about 34 kbit/s. Although this a reduction of a
factor of 3, it is still too high for modern telecommunication systems. The Shannon limit of 34
kbit/s is in fact an upper bound since it does not take into account the redundancies in speech
signals. By using techniques such as linear prediction, the long- and short-term redundancies in
speech may be recovered to yield an even low bit rate.

It is important to have a good understanding of speech signal properties in order to understand
the operation of the speech coder. Speech properties have to do with the time and frequency
domain characteristics of speech as well as the factor of human perception.

SPRA656

3 Implementation of G.729 on the TMS320C54x

The time domain characteristics of speech can be broadly characterized into unvoiced and
voiced segments. Unvoiced segments are aperiodic and have a noise-like appearance. A good
example of unvoiced speech is the enunciation of the silent ‘f’. The fact that unvoiced segments
are noise-like in their appearance suggests that we can replace it with say a Gaussian noise
source and the human hear will not be able to perceive the difference. This fact is made use of
in the decoder in the event of frame erasure. Voiced segments, on the other hand, are found to
be periodic and have short- and long-term correlations. An example of voiced speech is the
enunciation of vowel sounds. Short-term correlation implies redundancies between adjacent
samples, while long-term correlation suggests periodicity, i.e., similarity between sequential
cycles of samples. Both forms of redundancies may be removed using a short- and long-term
predictor respectively. Figure 1 shows a speech production model for vocoders.

X

Pitch

Periodic
excitation

Random
noise Gain

Voice/unvoiced
switch

Spectral
envelope

model

Spectral
parameters

Speech

Figure 1. Speech Production Model for Vocoders

The frequency domain characteristics of speech lie in regions called formants or formant
frequencies. Formant corresponds to the resonant frequencies of the vocal tract and is usually
below 4 kHz. It is the region where most of the speech energy is concentrated. The Formant
Vocoder is formed by encoding the locations of the formants. This information can also be used
by the decoder (synthesizer) for postprocessing to enhance the formant of the synthesized
speech.

The final important characteristic of speech has to do with human perception. The human ear, as
it turns out, is susceptible to what is known as spectral masking. This means that a signal can be
made inaudible to the human ear if it is masked out by another signal of higher energy and is in
the same frequency range.

1.1 Attributes of a Speech Coder

Speech coders have several attributes, some of which are conflicting. Speech coders are
usually optimized along some of these attributes according to the application needs. The main
attributes of a speech coder are as follows:

SPRA656

4 Implementation of G.729 on the TMS320C54x

1.1.1 Bit Rate

Bit-rate reduction is the primary motivation for speech coding. Most existing standards,
including the G.729 (8 kbit/s), specify fixed-rate coders. The required bit rates are often
dependent on the communication channel and the intended application. For example, for
satellite and cellular phones, bit rates ranges from 3.3 to 13 kbit/s, and for general telephone
network, the bit rates in use are 16 kbit/s and above.

1.1.2 Speech Quality

Speech quality is a vital attribute of speech coders. The main difficulty is in finding an objective
criterion that correlates well for a variety of speech coders and input signals. Subjective tests
such as the Mean Opinion Score (MOS), where different groups of trained and untrained
listeners are asked to characterize each set of utterances on a scale of 1 (unacceptable quality)
to 5 (excellent quality). An MOS of 4 or higher defines “toll” quality which means that the
reconstructed speech is indistinguishable from the original speech.

1.1.3 Delay

Delay is important especially for real-time full-duplex communications. The delay threshold is
dependent on the nature of the application. For example, for highly interactive conversations,
delay above 150 ms may be perceived as an impairment. On the other hand, for normal
conversation, a delay of 400 to 500 ms may be tolerated without significant reduction in overall
performance. However, it must be noted that in a system without echo cancellers, the delay
threshold can be as low as 100 ms.

Coder delay is often divided into four components. The first is the algorithm delay, which is delay
due to the accumulation of one frame of speech plus any look ahead (G.729 has an algorithm
delay of 15 ms). The second is the transmission delay, which is incurred in transmitting the
encoded parameters of the particular frame. The third delay is due to multiplexing, which is
incurred in cases of multiple-access channel. The final delay is the computational delay due to
the actual processing of the speech frame. This delay is incurred by the encoder and decoder.

1.1.4 Channel Error Sensitivity (Robustness)

Channel errors are divided into two main types. The first is random errors, which are usually due
to channel noise. This is normally specified as bit error rate (BER) and is limited to about 1%. To
counter random errors, a sufficient signal-to-noise ratio must be achieved. In addition, channel
coding, which is different from speech coding (source coding), is performed. Channel coding is
often implemented by adding redundancies to the transmitted information to make it more robust
against channel error. The drawback, however, is the additional overhead incurred due to the
redundancies added. The second type of error is burst error, which is more common in mobile
channels and arises due to mechanism such as fading. To guard against such error, error
detection schemes are implemented. In G.729, a parity bit is inserted in the encoded parameter
(80 bits) for error detection.

SPRA656

5 Implementation of G.729 on the TMS320C54x

2 ITU-U G.729 Recommendation

This section attempts to explain how the G.729 vocoder works as stated in the ITU standard.
The ITU-U G.729 recommendation contains the description of an algorithm for the coding of
speech signals at 8 kbit/s using Conjugate-Structure Algebraic-Code Excited Linear Prediction
(CS-ACELP). The CS-ACELP coder is designed to operate with a digital signal by first
performing telephone bandwidth filtering (Recommendation G.712) of the analog signal, then
sampling it at 8000 Hz, followed by conversion to 16-bit linear PCM for input to the encoder. The
output of the decoder is converted back into analog signal by similar means.

2.1 General Description of the Coder

The G.729 vocoder is based on the Code-Excited Linear-Prediction (CELP) model. The coder
operates on a speech frame of 10 ms which corresponds to 80 samples at a sampling rate of
8000 samples per second. For every 10-ms frame, the speech signal is analyzed to extract the
parameters of the CELP parameters. They are the Linear-Prediction Filter coefficients, adaptive
and fixed-codebook indices and gains. These parameters are encoded and transmitted. The bit
allocation of the coder parameters is shown in Table 1. At the decoder, these parameters are
used to retrieve the excitation and synthesis filter parameters. Speech is reconstructed by
filtering this excitation through the short-term synthesis filter shown in Figure 2. The short-term
synthesis filter is based on a tenth-order Linear Prediction filter. The long-term synthesis filter is
implemented using the so-called adaptive-codebook approach. After computing the
reconstructed speech, it is further enhanced by a post-filter.

Table 1. Bit Allocation of the G.729 CS-ACELP 8-kbit/s Vocoder (10-ms frame)

Parameter Codeword Subframe1 Subframe 2 Total per frame

Line Spectrum pairs L0,L1,L2,L3 – – 18

Adaptive-Codebook Delay P1,P2 8 5 13

Pitch-Delay Parity P0 1 – 1

Fixed-Codebook Index C1,C2 13 13 26

Fixed-Codebook Sign S1.S2 4 4 8

Codebook gains (stage 1) GA1, GA2 3 3 6

Codebook gains (stage 2) GB1, GB2 4 4 8

Total 80

Note that the 10-ms speech frame is subdivided into two 5-ms subframes. All the parameters
except line spectrum pairs (LSPs) are encoded for each subframe. The reason for splitting into
two subframes is to prevent the spectral transition from one frame to another from being abrupt
and hence improving the speech quality.

SPRA656

6 Implementation of G.729 on the TMS320C54x

Excitation
codebook

Long-term
synthesis

Short-term
synthesis Post

filter

Parameter decoding

Received
bit stream

filter filter
Output
speech

Figure 2. Block Diagram of Conceptual CELP Synthesis Model

2.2 G.729 Encoder

The encoding principle is shown in Figure 3. The input signal is high-pass filtered and scaled in
the preprocessing block. The preprocessed signal serves as the input for the subsequent
analysis. Linear Prediction is done once in a 10-ms frame to compute the linear prediction (LP)
coefficients. These coefficients are converted to LSP and quantized (18 bits) using predictive
two-stage Vector Quantization (VQ) . The excitation signal is chosen by using an
analysis-by-synthesis search procedure in which the error the original speech and reconstructed
speech is minimized according to a perceptually weighted distortion measure. This is done by
filtering the error signal with a perceptual weighting filter, whose coefficients are derived from the
unquantized LP filter coefficients. The amount of perceptual weighting is made adaptive to
improve the performance for input signals with a flat frequency-response.

The excitation parameters (fixed- and adaptive-codebook parameters) are determined per
subframe of 5 ms (40 samples) each. The quantized and unquantized LP filter coefficients are
used for the second subframe (see Figure 3), while in the first subframe, interpolated LP filter
coefficients (both quantized and unquantized) are used. An open-loop pitch delay is estimated
once per 10-ms frame based on the perceptually weighted speech signal sw(n). Then, the
following operations are repeated for each subframe. The target signal x(n) is computed filtering
the LP residual through the weighted synthesis filter W(z)/A(z). Next, the impulse response h(n)
of the weighted synthesis filter is computed. Closed-loop pitch search is then done to find the
adaptive codebook delay and gain, using target signal x(n) and impulse signal h(n), by searching
around the value of the open-loop pitch delay. A fractional pitch with a resolution of 1/3 is used.
The pitch is encoded with 8 bits for the first subframe and differentially with 5 bit for the second
subframe. The target signal x(n) is then updated before being used in the fixed-codebook search
to find the optimum excitation. An algebraic codebook with 17 bits is used for the fix-codebook
excitation. With this, the gains of the adaptive codebook and fixed codebook are vector
quantized using 7 bits, (with moving average prediction applied to the fixed-codebook gain).
Finally, the filter memories are updated using the determined excitation signal. Figure 4 shows
the overall encoding steps in flowchart form.

SPRA656

7 Implementation of G.729 on the TMS320C54x

+ +

Fixed
codebook

Adaptave
codebook

Preprocessing

LP analysis
quantization
interpolation

LPC information

Synthesis
filter 1/A(z)

S(n)

S(n)

LPC
information

Perceptual
weighting

W(z)

Pitch
analysis

Fixed-
codebook

search

Parameters
encoding

LPC
information

Gains
quantization

Gp

Gc
U(n)

Input
speech

LP coefficients
computed are for
second subframe

Figure 3. Encoding Principle of the CS-ACELP Encoder

SPRA656

8 Implementation of G.729 on the TMS320C54x

Input speech
(80 samples)

High-pass filter
and

scaling

Compute LP

Convert LP to

Quantization of

Interpolate LP for

Compute perceptual

Compute

Compute impulse

Adaptive-codebook

Update target

Fixed-codebook

Quantization

Compute total

Compute target

Encodes P1,P0

Encodes C1,S1

Encodes GA1,GB1

Preprocessing

LP coefficients

Encodes L0, L1,

Perform once for every 10-ms frame Perform once for every 5-ms frame

coefficients

LSP for
quantization

LSP parameters

first subframe

weighting filter
coefficients and

weighted speech

open-loop
pitch delay

are to be used
for second
subframe

L2, and L3

signal x(n)

response for
weighted filter, h(n)

search

signal x(n)

search

of gain

excitation and update
filter’s memories

and P2

and C2,S2

and GA2,GB2

Figure 4. Flowchart of G.729 Encoder Routine

SPRA656

9 Implementation of G.729 on the TMS320C54x

2.3 G.729 Decoder

The decoder principle is shown in Figure 5. First the parameter’s indices are extracted from the
received bitstream. These indices are decoded to obtain the coder parameters corresponding to
a 10-ms frame. These parameters are the LSP coefficients, the two fractional pitch delays, the
two fixed-codebook vectors, and the two sets of adaptive-codebook and fixed-codebook gains.
The LSPs are interpolated and converted to LP coefficients for each subframe. For every 5-ms
subframe, the following operations are repeated. First, the excitation is constructed by adding
the adaptive and fixed-codebook vectors and scaling by their respective gains. Next, the speech
is reconstructed by filtering the constructed excitation signal through the LP synthesis filter.
Finally, the reconstructed speech is passed through a postprocessing stage, which includes an
adaptive postfilter based on long- and short-term synthesis filters, followed by a high-pass filter
and scaling operation.

+

Fixed
codebook

Adaptave
codebook

Short-term
synthesis filter

Gp

Gc Postprocessing

Figure 5. Decoding Principle of the CS-ACELP Encoder

3 Implementation of G.729
The software is implemented on the TMS320C54x 16-bit fixed-point DSP. The fixed-point DSP
represents a fractional number by using a fixed decimal point, is one of the limitations of the
fixed-point DSP. In classifying the different ranges of the decimal number, a Q-format is used.
Different Q-formats represent different locations of the decimal point, and thus the integer range.
Figure 6 shows a format of a Q15 number. Note that every bit after the decimal point has a
resolution of � and the most-significant bit is used as the sign bit.

15 bits

Decimal number equivalent

Decimal point

Sign bit

S 1
2

1
4

1
8

1
16

���

Figure 6. Q15 Format Representation

From Figure 6, we can see that the maximum positive number is obtained when the sign bit is 0
and the rest are 1s (7FFFH). The negative limit is obtained when the sign bit is 1 and the rest of
the bits are 0s (8000H). This gives a range for the Q15 format to be –1.0 to 0.9999694 ≅ 1.0.

Therefore, we can increase the decimal range by shifting the decimal point to the right as shown
in Figure 7.

SPRA656

10 Implementation of G.729 on the TMS320C54x

14 bits

S 1
2

1
4

1
8

1
16

x

Figure 7. Q14 Format Representation

In Q14, the decimal range has been increased to –2.0 to 1.9999694 ≅ 2. However, the increase
in range means a decrease in precision. Table 2 shows some of the decimal values for different
Q formats. In the case of 32-bit representations, the decimal range is still the same except for a
better precision.

Table 2. Decimal Value Representation of Hex Values for Different Q Formats

Decimal values

Hex Value Q15 Q14 Q13 Q12 Q11 Q10

7FFFH 1.00000000 2.000000 4.000000 8.000000 16.000000 32.000000

3FFFH 0.50000000 1.00000000 2.00000000 4.00000000 8.00000000 16.00000000

1FFFH 0.25000000 0.50000000 1.00000000 2.00000000 4.00000000 8.00000000

0FFFH 0.12500000 0.25000000 0.50000000 1.00000000 2.00000000 4.00000000

07FFH 0.06250000 0.12500000 0.25000000 0.50000000 1.00000000 2.00000000

03FFH 0.03125000 0.06250000 0.12500000 0.25000000 0.50000000 1.00000000

01FFH 0.01562500 0.03125000 0.06250000 0.12500000 0.25000000 0.50000000

00FFH 0.00781250 0.01562500 0.03125000 0.06250000 0.12500000 0.25000000

007FH 0.00390625 0.00781250 0.01562500 0.03125000 0.06250000 0.12500000

3.1 Multiplication of numbers

When two numbers are multiplied, an extra sign bit is generated. For example, multiplication of
two Q4 numbers is shown in Figure 8.

s x x x x → Q4

s y y y y → Q4×

s s z z z z z z z z → Q8

s z z z z z z z z 0 → Q9

Cause error if stored to memory

Perform left shift or FRCT = 1

Figure 8. Multiplying Two Q4 Numbers

Therefore, an additional left shift is required to remove the redundant sign bit. This results in a
Q9-format number. The removal of the additional sign bit can be done automatically by setting
the FRCT bit in the DSP.

For a 16-bit multiplication, a 32-bit result is obtained. However, only the high word is stored in
memory, the low word of the 32-bit result is truncated.

SPRA656

11 Implementation of G.729 on the TMS320C54x

For better accuracy, a 32-bit result is maintained during a series of multiplications (convolution),
i.e., multiply and accumulate. The truncation is performed only on the final result. To further
improve the accuracy or the resolution of multiplication, a special number format called the
double precision format (DPF) is used in this implementation. This format is used when single
precision is not enough but full 32-bit precision is not needed. The mathematical operations
pertaining to the DPF is not standard 32-bit operation. For example, a 32-bit by 32-bit
multiplication would only produce a 32-bit result instead of a 64-bit result. However, note that a
16-bit DSP is used. As such, no matter how many bit is used in the multiplication process, only
16 bits will be stored. In DPF, the 32-bit integer is extracted into hi_word and lo_word. Both high
and low words contain the sign, this allows fast multiplication. The format is as follows:

L_32 = hi_word<<16 + lo_word<<1

hi_word = L_32>>16

lo_word = (L_32 – hi_word)>>1

The next subsection shows some operations involving DPF.

3.1.1 32-Bit by 32-Bit Multiplication

This operation multiplies two 32-bit integers and produces a 32-bit integer product. All operands
in this operation are in DPF. The operation is given as:

L_32 = (hi1*hi2)<<1 + ((hi1*lo2)>>15 +(lo1*hi2)>>15))>>1

where hi and lo are the high and low parts of the 32-bit number, respectively. This operation can
also be viewed as the multiplication of two Q31 numbers which produces a Q31 result.

3.1.2 32-Bit by 16-Bit Multiplication

This operation multiplies a 32-bit number (DPF) with a 16-bit number, and produces a 32-bit
product. The operation is given as:

L_32 = (hi1*lo2)<<1 + ((lo1+lo2)>>15)<1

where lo2 is the 16-bit number.

3.1.3 Overflow Handling

An overflow occurs when the value of the number stored in an accumulator exceeds a certain
range. In the G.729 implementation, the value in the accumulator is always limited to the range
80000000H to 7FFFFFFFH; these values are the most negative and the most positive limit,
respectively. Overflow is handled automatically by setting the OVM bit in the PMST register.

3.2 Conversion of C-Code to Assembly

The purpose of converting from the C language format to the assembly language format is to
reduce the execution time of the vocoder. When the entire C file was run on the EVM board, it
takes about 500 ms to encode a frame. This is very impractical for real-time applications
because the delay for processing a frame is too large. Routines that consume the most
computational resources are rewritten in assembly language. Before subroutines can be
rewritten, the procedure of passing parameters in the C routine must be determined.

SPRA656

12 Implementation of G.729 on the TMS320C54x

3.2.1 Parameter Passing in C Functions

Parameter passing in a C routine is accomplished via the stack. The C compiler imposes a strict
set of rules on function calls. Except for special-support functions, any function that calls or is
called by a C function must follow these rules. Instead of explaining the rules, Example 1
illustrates the function-calling convention. Note from the example, the first parameter always
passes through accumulator A, and the rest of the parameters pass through the stack. The
called function must reserve whatever stack space it requires (through the “Frame” command) to
prevent corrupting data of the calling function. The required space is calculated based on the
local variables (in C) and the maximum number of variables passed to called function (nested
call) . When calling a C function, the stack pointer must always point to an even address. This
can be achieved by ensuring that the number of PSHM instructions plus the amount of space
reserved adds up to an odd number. Whenever the DSP encounters a CALL instruction, the
return address is pushed onto the stack. Thus, prior to the entrance of the called function, the
stack pointer is already pointing to odd address. Making sure that the stack pointer always
points to an even address is to facilitate a 32-bit instruction (i.e., DLD, DADD, etc.). Example 1
explains parameter passing.

As shown in Example 1, interfacing an assembly subroutine to a main C routine is very easy if
the function-calling convention is followed correctly.

SPRA656

13 Implementation of G.729 on the TMS320C54x

In C Environment

void func1(int x, int y, int Array[]); /*prototype declaration */
void func2(int x, int y); /*prototype declaration */
int k1,k2; /* global variables */
void main(void)
 {
 int Data[2]; /* main routine local variables */
 …
 func1(k1,k2,Data); /* k1 passed to accumulator A */
 /* k2 passed to accumulator SP(0) + */
 /* Address of Data[] passed to SP(1) */
}

Subroutine

void func1(int k1, int k2, int Data[])
{
 int var1,var2,
 var1 = k1+k2;
 …
 func2(var1,var2); /* var1 passed to accumulator A */
 /* var2 passes to SP(0) + */
}
+ SP(#offset from current stack pointer)

Assembly Language Environment

 ;main routine
PSHM AR1 ; PSHM + FRAME #
FRAME #-4 ; → ODD NUMBER
…
…
;func1(k1,k2,Data)

LD *(_k2),A ;
STL A,*SP(0)
LDM SP,A ;
ADD #2,A ;#Data
STL A,*SP(1)
CALL #_func1
…
…
FRAME #4 ;
POPM AR1 ;
RET ;
…

func1() routine

PSHM AR1 ;
FRAME # -4 ;Reserve space
…
..
STL A,*SP(1) ; k1
…. ; k2 stored in SP(6)
;func2(var1,var2)
LD *SP(3),A ; var2
STL A,*SP(0) ;
LD *SP(2),A ; var1
CALL #_func2 ;
…
…
FRAME #4
POPM AR1
RET

High address

SP after entering
func2()

SP after entering
func1()/before
entering func2()

SP after entering
main()/before
entering func1()

SP before
entering main()

func1() local
variables

main() local
variables

var1 → A

k1 → A

Parameters
passed to
func2()

Parameters
passed to
func1()

Stack

Ret PC

var2

k1

var1

var2

AR1

Ret PC

k2

#Data

Data[0]

Data[1]

AR1

Ret PC

First parameter
from calling function

Pass fisrt parameter
to called function via
accumulator A

Example 1. Example of Parameter Passing to Subroutine

SPRA656

14 Implementation of G.729 on the TMS320C54x

3.3 Pipeline Issue

The C54xx DSP has a six-stage instruction pipeline. The six stages are independent of each
other, which allows overlapping execution of instructions in a given clock cycle. During any one
given cycle, one to six instructions can be active, each at a different stage of execution.
Although this speeds up execution, it also poses the problem of pipeline conflict. That is, two
stages of the pipeline might demand the same resources (i.e., memory, address unit etc.).
Programmers writing C54 assembly code must take note of this constraint or unexpected errors
will occur. The logic of the code written could be correct but pipeline conflict might force the DSP
to fetch the wrong data or address. However, if the code is written entirely in ANSI C, the C
compiler will take care of the pipeline issue. The different stages of the pipeline are shown in
Figure 9.

Fetch address
of next instruction

Decode current
instruction

Fetch data1 and data2,

Fetch current
instruction

Load address of data1,
if required

Executes the instruction

if required

Load data write address
of instruction, if required

Load address of data2,
if required

Update auxiliary register
and stack pointer

and write data,
if required

Prefetch Fetch Decode Access Read Execute/write

Figure 9. TMS320C54x Pipeline Stages

The C54x also has a set of protected instructions that is executed at the read stage — that is,
one stage before the execute/write stage. These protected instructions are aimed to reduce
pipeline conflicts but some might crash the pipeline if not used properly. Figure 10 shows how a
pipeline conflict for a standard instruction is prevented by adding one latency. To overcome the
problem of pipeline crash, a NOP instruction is added to force a delay of 1 cycle. The C54xx
also has a mechanism to avoid pipeline conflict but it only applies to protected instructions. It
simply delays the protected instruction from progressing to the execution phase, which is the
same as a standard instruction. This is illustrated in Figure 11.

The converted assembly routines were checked thoroughly for pipeline conflicts. In most cases,
the errors caused the DSP to fetch the wrong data and the auxiliary registers were not updated
correctly.

SPRA656

15 Implementation of G.729 on the TMS320C54x

STLM A,AR1;

LD *AR1,A;

STLM A,AR1;

NOP

LD *AR1,A;

Conflict: Instruction 1 tries to update AR1
with new address but at the same time,
instruction 2 reads data addresses by the
previous content of AR1. No error is
generated but data read will be incorrect.

Delay by 1 cycle;
No conflict

P1 F1 D1 A1 R1 E1

P2 F2 D2 A2 R2 E2

P1 F1 D1 A1 R1 E1

P2 F2 D2 A2 R2 E2

Figure 10. Example of Pipeline Conflict of Standard Instruction

STLM A,AR1

MVDK 200H,AR1

Pipeline conflict occurs since the

DSP automatically adds an

E1

x protected instruction executed its
instruction 1 cycle earlier

additional delay to avoid conflict

Figure 11. Pipeline Conflict Handling by the DSP

4 Real-Time Testing

The software was tested in real time using an audio analog-to-digital converter to capture human
speech. One of the ways to meet the real-time requirement for the G.729 vocoder is to ensure
that it does not take more than 10 ms to encode and decode a frame for full-duplex
transmission. As already mentioned, the speech frame is 10 ms long (80 samples). The vocoder
should complete any encoding and decoding of the previous frame before the current frame is
captured. Of course, other measures can also be implemented to meet the real-time
requirement if the 10-ms timing cannot be measured. The real-time requirement of the G.729
vocoder is shown in Figure 12.

SPRA656

16 Implementation of G.729 on the TMS320C54x

ADC

Analog interface circuit

DAC

8000 samples/s

Encoder

Decoder

Serial
I/O

10-ms
speech
frame

(80 samples)

Memory buffer

Near-end
input speech

Decoded speech
(from far end)

80 bits
TX

RX

G.729 vocoder

Figure 12. Practical Implementation of the G.729 Vocoder

From the timings shown, it can be seen that even after the whole vocoder’s routines were
converted to assembly language, the vocoder could meet the real-time requirement. For the
purpose of evaluating the quality of the decoded speech, a non-real-time test was set up (see
Figure 13). First, 500 frames corresponding to 40000 samples were captured. Next, each frame
was encoded with the parameters sent to the decoding routine. From there, the simulated
received bitstream was decoded and the reconstructed speech was stored back to the original
speech buffer.

The decoded speech was sent to the Analog-Interface Circuit only when all the frames had been
processed. The decoded speech was amplified (using on-board power amplifier) and sent to a
pair of speakers. From the result obtained, the reconstructed speech was near toll-quality except
for some interferences. The interferences might be an attribute of the noisy environment of the
PC’s motherboard.

SPRA656

17 Implementation of G.729 on the TMS320C54x

ADC

Analog interface circuit

DAC

Encoder

Decoder

Input speech

Speech buffer

Power

(500 frames)

amplifierSpeaker

Figure 13. Non-Real-Time Implementation of the G.729 Vocoder

5 Conclusion

A non-real-time ITU G.729 8kbit/s vocoder was successfully implemented on a TMS320C54x
DSP. This vocoder works on an 80-sample (80x16 bits = 1280 bits) speech frame and encodes it
with 80 bits, thus, it has a compression ratio of 16:1. Vocoder plays a very important role in
digital communication, especially in a cellular system. With less bits to send, bandwidth
requirement per user will decrease and hence, user capacity will increase.

The vocoder can be made real-time if the codes are optimized so that the computational time is
reduced to 10 ms or less. The vocoder was tested using voice samples captured through an
analog-to-digital converter and the decoded speech was found to be near toll quality.

6 References
1. Panos E. Papamichalis, Practical Approaches to Speech Coding, Prentice-Hall, Englewood

Cliffs, NJ, 1987.
2. “An Introduction to Speech Coding,” in W. B. Kleijn and K. K. Paliwal (eds.), Speech Coding and

Synthesis, Elsevier, 1995.
3. ITU-T Recommendation G.729, March 1996, C Source Code and Test Vectors for

Implementation Verification of the G.729 8 Kbit/s CS-ACELP Speech Coder.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those
pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright 2000, Texas Instruments Incorporated

