
Application Report
SPRA867 – December 2002

1

Parametric Equalization on TMS320C6000 DSP
Remi Payan Catalog DSP

ABSTRACT

This application report details the implementation of a multiband parametric equalizer on the
TMS320C6000 DSP platform. The entire application is written in standard C; it reaches an
excellent level of performance and allows user to control the equalizer through a graphic
interface on the host computer. The purpose of this report is to demonstrate how TI DSP
products and tools can be used in professional audio applications, and to propose solutions
for such systems. The first part is dedicated to the design of the filter bank, its associated
equations, coding, optimization, and benchmark; the second part shows how TI tools can
leverage the integration of this module in a realistic professional audio environment.

Contents

1 Introduction 3.

2 Implementation 3.
2.1 Filtering Equations 3.

2.1.1 Filter Topology 3.
2.1.2 Coefficients Computation 6.

2.2 Coding and Optimization 7.
2.2.1 Cascaded Biquad Filters 7.
2.2.2 Block Processing 8.
2.2.3 Stereo Processing 9.

2.3 Benchmarks 10.
2.3.1 Performance 10.
2.3.2 Signal-to-Noise Ratio (SNR) 11.

3 DSP/BIOS Integration 12.
3.1 Frame Size and System Latency 12.
3.2 DSP/BIOS-Based Software Architecture 13.

4 Multiband Equalizer Demo 14.
4.1 Getting Started 14.

4.1.1 Hardware Setup 14.
4.1.2 Software Setup 14.

4.2 Host Application 15.

5 References 16.

Appendix A Biquad Coefficients Computation 17.

Appendix B Optimization: Compiler Feedbacks 19.

Trademarks are the property of their respective owners.

SPRA867

2 Parametric Equalization on TMS320C6000 DSP

B.1 Single Sample Cascaded Biquad Routine 19.
B.2 Block Cascaded Biquad Routine 20.
B.3 Stereo Block Cascaded Biquad Routine 21.

Appendix C Filters Frequency Responses 22.

Appendix D Signal to Noise Ratio (SNR) Curves 24.

List of Figures

Figure 1. Biquad Filter, Direct Form II Transpose 4.
Figure 2. Biquad Filter, Direct Form II Transpose, b0 Factorization 5.
Figure 3. 2 Cascaded Biquad Filters, Direct Form II Transpose, b0 Factorization 6.
Figure 4. THD+N Measurement Software System 11.
Figure 5. Multiband Equalizer Demo Software Architecture 13.
Figure 6. Host Application Graphic User Interface 16.
Figure C–1. Low-Shelf Filters Frequency Responses 22.
Figure C–2. High-Shelf Filters Frequency Responses 22.
Figure C–3. Peaking Filters Frequency Responses 23.
Figure C–4. Band-Pass Filters Frequency Responses 23.
Figure D–1. SNR Without Processing 24.
Figure D–2. SNR for Low-Shelf Filters 25.
Figure D–3. SNR for High-Shelf Filters 26.
Figure D–4. SNR for Peaking Filters 27.
Figure D–5. SNR for Band-Pass Filters 28.

List of Tables

Table 1. CPU Load versus Frame Size and Number of Biquads 10.
Table 2. MIPS per Band versus Frame Size and Number of Biquads 10.

SPRA867

3 Parametric Equalization on TMS320C6000 DSP

1 Introduction

By announcing its recent TMS320C6713 audio digital signal processor (DSP), Texas
Instruments has shown its engagement in delivering outstanding performance to the
professional audio world, while maintaining an affordable cost.

This application report details the implementation of a multiband parametric audio equalizer on
the TMS320C6000 platform. It is based on 32-bit floating-point processing (IEEE 754 single
precision format), and optimized first for multiple cascaded biquad filters, and second for
block-based processing.

A parametric equalizer is a filter bank where each filter can be tuned. Parameters are:

• Filter type including low-shelf, hi-shelf, peak, and eventually low-pass and high-pass
frequency

• Gain in decibel (dB)

• Center (peak), mid-point (low-shelf, hi-shelf) or cut-off (low-pass, high-pass) frequency

• Quality factor (resonance)

The parametric equalizer is different than a graphic equalizer, where each filter selects a fixed
band of frequency, and users can only adjust the gain in that band. The parametric equalizer
shown in this report features a graphic user interface (GUI) based on real-time data exchange
(RTDX) technology provided by TI tools.

2 Implementation

A parametric equalizer provides a finite set of filters that users can tune. Each filter is in fact a
second order infinite impulse response (IIR) filter in which the coefficients are calculated
according to given parameters. This section details the structure retained for the application and
the way it has been optimized, then discusses coefficients calculation, and finally exposes the
performances obtained in terms of cycle count and noise level.

2.1 Filtering Equations

2.1.1 Filter Topology

The accuracy and stability of IIR filters depend on their topology. A good topology takes care of
limiting accumulator overflow, and minimizing error feedback in the structure. As mentioned in
[2], some topologies are recommended for audio applications. For the purpose of this document,
a direct form II transpose is used, which takes into account these considerations.

2.1.1.1 Biquad Filter

The core of an equalizer is a biquad filter, i.e., a second order recursive filter (IIR). Figure 1
illustrates a standard audio topology (direct form II transpose), assuming normalization by a0.

SPRA867

4 Parametric Equalization on TMS320C6000 DSP

z–1

z–1

X Yb0

b1

b2

–a1

–a2

Figure 1. Biquad Filter, Direct Form II Transpose

The associated discrete transfer function is: H(z) �
Y(z)
X(z)

�

b0 � b1 � z�1 � b2 � z�2

1 � a1 � z�1 � a2 � z�2
.

In the time domain, this translates into the following equation:

y(n) � b0 � x(n) � b1 � x(n � 1) � b2 � x(n � 2) � a1 � y(n � 1) � a2 � y(n � 2)

By calculating the coefficients, b0, b1, b2, a1, a2 , we can define the actual type and effects of the
filter (see section 2.1.2).

In order to minimize the number of operations needed in the processing function, coefficient b0
can be factored out of the whole biquad structure. When cascading the filters, this coefficient
can be pre-calculated for the entire cascaded chain once only.

SPRA867

5 Parametric Equalization on TMS320C6000 DSP

z–1

z–1

X Yb0

–a1

–a2

b1′

b2′

Figure 2. Biquad Filter, Direct Form II Transpose, b0 Factorization

The new values for b1 and b2 are: b1� �
b1

b0
, b2� �

b2

b0
.

2.1.1.2 Cascaded Biquad Filters

A multiband parametric equalizer requires several biquad filters to be cascaded. Factorizing all
b0 coefficients from all filters out of the whole cascaded structure is now possible, as shown in
Figure 3.

SPRA867

6 Parametric Equalization on TMS320C6000 DSP

z–1

z–1

X b0

–a11

–a21

b11′

b21′

z–1

z–1

Y

–a12

–a22

b12′

b22′

Figure 3. 2 Cascaded Biquad Filters, Direct Form II Transpose, b0 Factorization

In this figure, coefficients of the first biquad have been suffixed with a (1), whereas coefficients of
the second biquad have been suffixed with a (2). A prime sign (′) means the coefficient is biased
due to structural modifications. Compared to direct form II coefficients as defined in section
2.1.1.1, new coefficients are defined as:

b0� � b0,1 � b0,2

b1,1� �
b1,1

b0,1
, b2,1� �

b2,1

b0,1

b1,2� �
b1,2

b0,2
, b2,2� �

b2,2

b0,2

In other words, there is only 1 b0 coefficient per cascaded biquad structure, and 4 more
coefficients (b1, b2, a1, a2) per biquad.

2.1.2 Coefficients Computation

In a parametric equalizer, five types of filters are typically required: shelving (low-shelf and
high-shelf), peaking, and band-pass (low-pass and high-pass) filters. Their descriptions are
given in terms of gain (for peaking and shelving filters), central frequency (for peaking filters),
mid-point frequency (for shelving filters) or cut-off frequency (for band-pass filters), and quality
factor. Appendix C shows frequency response curves associated to each type of filter, for
various settings.

A typical method to transform those physical parameters into numerical coefficients is to start
from the analog description of the filters in the Laplace domain, and to apply a bilinear transform,
while taking into account frequency pre-warping (frequency axis distortion induced by the
bilinear transform). This method [1] gives the results described in Appendix A.

SPRA867

7 Parametric Equalization on TMS320C6000 DSP

Such computations, including trigonometric and exponential functions, cannot be done in real
time. In systems requiring flexibility in those parameters, pre-computed coefficients tables are
widely used. However, we will see further how TI DSP tools allow performing those calculations
in the background, while the CPU continues to focus on its main processing task.

2.2 Coding and Optimization

This section describes the coding and optimization of the multiband equalizer function. It does
not details the whole optimization process; for this purpose, please refer to [3].

2.2.1 Cascaded Biquad Filters

The code below shows an implementation of a cascaded biquads structure. The loop iterates on
consecutive biquad filters. Notice the “restrict” keyword is used to specify that pointers are not
aliased (they do not point to the same memory locations).

This core loop treats only four coefficients per biquads. It is assumed that the input has
previously been (or will be later) scaled by b0, as shown in section 2.1.1.2.

float biquad_c(
int numBiquad,
const float * restrict c,
float * restrict d,
float y
)
{
 int i;
 float d0, d1, c0, c1, c2, c3, temp0, temp1;
 const double *c_ptr = (double *)c;
 double *d_ptr = (double *)d;

 for (i = 0; i < numBiquad; i++) {
 d0 = _itof(_lo(d_ptr[i]));
 d1 = _itof(_hi(d_ptr[i]));
 c0 = _itof(_lo(*c_ptr));
 c1 = _itof(_hi(*c_ptr++));
 c2 = _itof(_lo(*c_ptr));
 c3 = _itof(_hi(*c_ptr++));

 temp0 = d0 + c0*y;
 temp1 = c1*y;
 y += d1;

 d[2*i+1] = temp0 + c2*y;
 d[2*i+0] = temp1 + c3*y;
 }
 return y;
}

In this code, the variables c_ptr and d_ptr are pointers to double words (64 bits), respectively, to
the coefficients array and the filter history array (delayed values). This is to insure the use of the
double-word load capabilities of the TMS320C67xx architecture. Intrinsics permit separating the
high and low parts of the loaded double word (_hi and _lo), and re-interpreting the result as
single-precision floating-point values (_itof).

SPRA867

8 Parametric Equalization on TMS320C6000 DSP

The compiler feedback (see section B.1) mentions an iteration interval of 4 cycles for this
software-pipelined loop. This means a new iteration starts every 4 cycles.

2.2.2 Block Processing

The multiband equalizer consists of several cascaded biquad filters; we now need to modify the
code in order to process a buffer of samples.

The first solution consists of adding an outer “for” loop, that would read a new input value before
the inner loop and store the result afterwards. In that case, only the inner loop will software
pipeline, and its prolog and epilog will be repeated within the outer loop [3].

A better solution consists of merging the inner and outer loops into one single loop, and using
conditional statements to update the input values, indexes and pointers, as shown in the code
below (the setup code has been removed).

y = in[0];

for (i=0,j=0,k=0; j < Ns*Neq; i++,j++)
{
 if (i==Neq)
 {
 i=0;
 c_ptr = (double *)c;
 y = in[++k];
 }

 d0 = _itof(_lo(d_ptr[i]));
 d1 = _itof(_hi(d_ptr[i]));
 c0 = _itof(_lo(*c_ptr));
 c1 = _itof(_hi(*c_ptr++));
 c2 = _itof(_lo(*c_ptr));
 c3 = _itof(_hi(*c_ptr++));
 temp0 = d0 + c2*y;
 temp1 = c3*y;
 y += d1;

 d[2*i+1] = temp0 + c0*y;
 d[2*i+0] = temp1 + c1*y;

 out[k] = b0 * y;
 }
}

Section B.2 shows the compiler feedback for this code. The iteration interval is 7 cycles, which
means the reload of the values impacted the code by adding 3 cycles to the iteration interval of
the loop.

SPRA867

9 Parametric Equalization on TMS320C6000 DSP

2.2.3 Stereo Processing

In a typical stereo equalizer, the same filtering is applied to both left and right channels.
Performing the calculations on both sides at the same time can further optimize a stereo
equalizer. The source code below shows the main processing loop for such an equalizer.

yL = in[0];
yR = in[Ns];

for (i=0, j=0, kL=0, kR=Ns; j < Ns*Neq; i++,j++)
{
 if (i==Neq) {
 i=0;
 c_ptr = (double *)c;
 d_ptr = (double *)d;
 yL = in[++kL];
 yR = in[++kR];
 }

 d0L = _itof(_lo(d_ptr[2*i+0]));
 d0R = _itof(_hi(d_ptr[2*i+0]));

 c0 = _itof(_lo(*c_ptr));
 c1 = _itof(_hi(*c_ptr++));
 c2 = _itof(_lo(*c_ptr));
 c3 = _itof(_hi(*c_ptr++));

 temp0L = d0L + c2*yL;
 temp0R = d0R + c2*yR;

 temp1L = c3*yL;
 temp1R = c3*yR;

 d1L = _itof(_lo(d_ptr[2*i+1]));
 d1R = _itof(_hi(d_ptr[2*i+1]));

 yL += d1L;
 yR += d1R;

 d[4*i+2] = temp0L + c0*yL;
 d[4*i+3] = temp0R + c0*yR;
 d[4*i+0] = temp1L + c1*yL;
 d[4*i+1] = temp1R + c1*yR;

 out[kL] = b0 * yL;
 out[kR] = b0 * yR;
}

This routine treats both left and right buffers (actually the same buffer, first half filled with Ns
samples from the left channel, and the second half with samples from the right channel).

The compiler feedback (section B.3) reports an iteration interval of 12 cycles, which is less than
twice the number of the mono version. Parallelism has been increased. It also points out that
ideally, it could be further optimized down to 8 cycles from a resource partitioning and
dependency point of view.

SPRA867

10 Parametric Equalization on TMS320C6000 DSP

2.3 Benchmarks

2.3.1 Performance

Measurements of the CPU load were made using DSP/BIOS CPU load graph. Table 1 and
Table 2 expose the results, in percentage of the CPU load and in megahertz per band (MHz),
with respect to frame size and number of biquad filters used. The formula used is:

MHz�band �
CPUload(%).10�2

NumBands
� 150

The idle load represents the overhead of the framework, including transformation of fixed-point
samples from the codec into floating-point representation. Only the processing code and data
(filter coefficients and buffers) sit in internal memory. All the rest is linked into external memory
(SDRAM), and 1 way of L2 cache is activated, i.e., the higher 16kbytes section of internal
memory is configured as cache memory.

Table 1. CPU Load versus Frame Size and Number of Biquads

Multiband Equalizer Benchmark (% CPU Load)

Frame Size

8 16 32 64

Idle Load

Num Bands 10.98 7.13 5.17 4.27

4 2.26 1.8 1.64 1.56

8 3.59 3.26 3.07 3.01

16 6.57 6.16 5.93 5.88

32 12.26 11.93 11.73 11.63

64 24.08 23.49 23.24 23.12

128 48.67 47.69 47.23 46.88

Table 2. MIPS per Band versus Frame Size and Number of Biquads

Multiband Equalizer Benchmark (MHz per Band)

Frame Size

Num Bands 8 16 32 64

4 0.848 0.675 0.615 0.585

8 0.673 0.611 0.576 0.564

16 0.616 0.578 0.556 0.551

32 0.575 0.559 0.550 0.545

64 0.564 0.551 0.545 0.542

128 0.570 0.559 0.553 0.549

SPRA867

11 Parametric Equalization on TMS320C6000 DSP

As expected, performance increases along with the number of biquads and the frame size. At
some point (here, 128 biquad filters), it slightly decreases due to cache effect. Thrashing
increases along with the amount of data to process. No cache optimization was achieved in this
demo project (refer to [4] for TMS320C6000 cache architecture details).

As mentioned in section 2.2.3, the stereo processing code could be further optimized down to 8
cycles per loop, in case the application would justify spending time on this optimization. This
would reduce the MIPS numbers shown above to 8/12 (around 67 %) of their respective values.

2.3.2 Signal-to-Noise Ratio (SNR)

This section describes the method used to measure the SNR of the filters implemented in the
application, and comments on the results shown in Appendix D.

2.3.2.1 Test Bench

Figure 4 represents a diagram of the software system that was designed to perform SNR
measurements. The whole test bench was realized on the TMS320C6000 platform.

Sine
generator

24-bit
quantizer

Notch filter
(Q = 100)

RMS
measureFilter

Figure 4. THD+N Measurement Software System

A 24-bit quantized sine generator is built using the double precision sin() function from the
standard C math library. The signal is quantized in a 24-bit fixed-point format in order to fit into
the format of an ADC converter, and then transformed into single precision floating-point
representation to feed the input of the benchmarked filter.

The output, consisting in the filtered signal plus additional noise, is transformed into 64-bit
double-precision floating-point format, and passed through a notch filter. The center frequency of
the notch filter exactly equals the frequency of the generated sine. Its quality factor is set to
1000, which means the stop band spreads around 1/1000th of the center frequency. In order to
deal with the latency of the notch filter, at least four frames of 32768 samples are generated
before the output noise is measured. Both the notch filter and the computation of its coefficient
are performed in double precision format.

The RMS level of the remaining signal at the output of the notch filter corresponds to the total
harmonic distortion plus noise (THD+N) of the system, at the sine frequency. This latter is then
swept logarithmically across the frequency axis to obtain the spectrum of the THD+N.

The SNR is calculated according to the following formula:

SNR(dB) � 20.log� 2�

2
	� 20.log (|H(z)|) � (THD � N)(dB)

The first term represents the RMS level of the sine. The second term corresponds to the
amplification brought by the filter; the sum of these two terms equals the level of the signal (sine)
at the output of the filter. The third is the THD+N measurement, i.e., the level of noise.

SPRA867

12 Parametric Equalization on TMS320C6000 DSP

Figure D–1 in Appendix D shows the output of the test bench when no processing is performed,
and when an all-pass filter is used. Both curves overlay exactly as expected. A 144 dB SNR is
observed, which corresponds to the 24-bit quantization representing the ADC.

2.3.2.2 Results

Figure D–2, Figure D–3, Figure D–4, and Figure D–5 in Appendix D represents the SNR curves
for each type of filter. A set of five frequencies logarithmically spread across the audio spectrum
is tested: 100Hz, 300Hz, 1kHz, 3kHz and 10 kHz, using positive and negative gains (when
applicable). The quality factor of the filter is set to typical values: Q=1 for shelving and
band-pass filters, and Q=4 for peaking filters.

Results show that as the mid-point/center/cut-off frequency of the filter decreases, the SNR
decreases as well. Actually, as the frequency decreases, the coefficients tend towards specific
values (0.5, 1, 1.5 or 2), while increasing the amount of feedback in the biquad structure. Hence,
the feedback error increases similarly due to the lack of accuracy of the coefficients.
Improvements of the SNR could be obtained by using feedback error correction mechanisms [2].

3 DSP/BIOS Integration

This section describes how the multiband stereo equalizer routine is embedded in a DSP/BIOS
object-oriented application, providing real-time kernel services, as well as real-time analysis
tools and controls.

3.1 Frame Size and System Latency

System latency is a concern in most professional audio applications. In order to minimize it,
single sample processing is widely used, impacting the whole application performance by
increasing the overhead, induced by non-processing routines such as interrupt service routines
(ISR).

Today, the best high-end professional audio systems feature a few milliseconds of latency (2 to 5
milliseconds). Converters represent a huge portion of this number, especially analog to digital
converters (ADC). In order to reach high precision (24 bits) they use sigma-delta techniques,
which are based on over-sampling and finite impulse response (FIR) decimation filtering. Those
filters typically have latency between 10 and 50 output samples. This number is doubled for a
codec chip (integrated ADC and DAC), which represents a total between 400 microseconds and
2.1 milliseconds at 48 kHz (20 and 100 samples, respectively).

The most recent digital signal processors, such as the TMS320C6000 family, perform better in
block-based processing, thanks to both increased parallelism and pipeline capabilities. Any
block-based process has an implicit latency of twice the size of the block. First, the system must
wait for a complete block to be received; second, because of the real-time constraint, the
processing routine must complete before the next block is available. Applied to audio domain, it
means a 32 or 64 samples block is still reasonable to consider. This is why a block size of 32
samples was used in the multiband equalizer demo presented in this document, which
represents 1.3 milliseconds of latency.

Furthermore, block-based processing leaves more headroom for the system to include
background processing. The next sections will show how to use TI tools and foundation software
to improve both the overall quality and the features of the system.

SPRA867

13 Parametric Equalization on TMS320C6000 DSP

3.2 DSP/BIOS-Based Software Architecture

DSP/BIOS is a free of charge, real-time scalable kernel available across all TI platforms. It
includes a task scheduler (TSK module), a hardware-interrupt service routine dispatcher
(HWI module), and a software-interrupt module (SWI), as well as inter-process communication
modules such as semaphores and queues.

In the multiband equalizer demo (Figure 5), the enhanced direct memory access (EDMA)
engine, available in all TMS320C6000 DSPs, is in charge of buffering the incoming audio
samples. The HWI module is responsible for servicing the interrupt request sent by the EDMA
engine every frame, and posts a software-interrupt to signal to the main processing routine that
a new buffer is ready.

Beside this main processing chain, two tasks are running in the background. The first one deals
with the communication between target and host machines. The second one is in charge of
computing and providing the processing routine with new filter coefficients, whenever the user
makes changes to the parameters from the GUI on the host.

In order to avoid data access conflicts, two sets of coefficients are created. One is reserved to
the process function, while the design function writes to the second. At each frame, the process
function checks a flag indicating the availability of new coefficients, and swaps the pointers if
required. These operations represents only a few cycles in the process function, while
background processing allows real-time calculation of the coefficients.

Channel Object
� Channel

parameters
� Effects chained

list
� Update function

(TSK)
� Process function

(SWI)
� I/O buffers

Host

RTDX control
Config:
� gain
� frequency
� Q
� filter type

RTDX control
� config update

Hardware

� ISR (HWI)

� Codec
(McBSP/EDMA)

Samples

Effect object

� Effect config
� Design function
� Process function
� Handle1
� Handle 2

TSK

Multi-band EQ
object (1)

� Num biquads
� Coefficients
� Filter history

Multi-band EQ
object (2)

� Num biquads
� Coefficients
� Filter history

Figure 5. Multiband Equalizer Demo Software Architecture

SPRA867

14 Parametric Equalization on TMS320C6000 DSP

4 Multiband Equalizer Demo

4.1 Getting Started

This section describes the steps required to set up the demo. A TMS320C6711 DSK is required,
and optionally, a TLV320AIC23 daughter board (24 bits/96 kHz codec). Instructions are provided
to run the demo on both hardware setups.

4.1.1 Hardware Setup

If only the DSK is used, you only need to connect the DSK correctly to the host computer by
connecting an audio source to the microphone connector, and a pair of speakers to the
headphone connector.

If the daughterboard is used, the jumper JP1 must be inserted on the DSK. This jumper is not
present on a standard DSK; you will need to solder it yourself. It is located between the DSK
daughterboard connectors, and the on-board codec microphone/headphone connector. Plug the
daughter card on the DSK connectors. Connect an audio source to the “line-in” RCA connectors,
and a pair of amplified speakers to the “line-out” RCA connectors (refer to the daughterboard
documentation). If the headphone/microphone connectors of the AIC23 are to be used, steps
are provided in section 4.1.2 to enable them in the software.

4.1.2 Software Setup

It is assumed the zip file was extracted to drive c:\. If different, just replace it with the path used.

1. Register the graph control OCX.

The host application uses a custom graph control OCX to plot the response curve of the
filter. This Visual Basic� control needs to be registered in the windows registry. Two
windows batch files are provided; click on the one corresponding to your operating system
(Windows9X or NT/2000). Those files are located in the directory:

C:\MultiEqDemo\bin

2. Run the target application.
a. Project configuration

Under Code Composer Studio, open the multi-eq project:

C:\MultiEqDemo\projects\MultiEq.pjt
Once the project opened, right-click on it in Code Composer Studio project window, and
select “Options”. This opens the options dialog box. Select the “compiler” tab, and in the
“category” list-box, select “preprocessor”.
By default, the project is set up for AIC23. A symbol “_AIC23_” shall be defined in the
“Defined symbols” text box. If the AIC23 is not used, remove this symbol. Click OK to
validate the change.

b. AIC23 configuration
The AIC23 configuration uses default values defined in the file:
C:\MultiEqDemo\drivers\aic23_hal.h

These default values can be changed using the hardware abstraction layer (HAL)
defined in this file. Refer to the AIC23 documentation for this purpose.

SPRA867

15 Parametric Equalization on TMS320C6000 DSP

c. Frame size setting

The frame size can be modified through the “FRAME_SIZE” compile constant located in
the file:

C:\MultiEqDemo\project\Multieq\codec.h

d. Rebuild the target application

Rebuild the application by clicking “Rebuild all” from the “Project” menu in Code
Composer Studio.

e. Load the target application

From the “File” menu in Code Composer Studio, select “Load Program”. The program file
is located in:

C:\MultiEqDemo\project\MultiEq\Debug\MultiEq.out

This should load the program file to the target.

f. Enable RTDX

In order for the host and target to communicate through RTDX, it must be enabled. This
is done implicitly when starting the CPU load graph, or the message LOG window. Any or
both of them can be found in the “DSP/BIOS” menu in Code Composer Studio.

g. Run the target application

From the “Debug” menu in Code Composer Studio, select “Run”.

3. Start the host application.

The executable file for the host application is:

C:\MultiEqDemo\bin\MultiEqHost.exe

The demo traces the target behavior through the LOG window. When the host application is
started, the first step is the verification of the host/target communication. A loop-back test is
performed to check all the RTDX channels in use. Then, the host application inquires the
target for the channel parameters (sample rate, stereo processing…), and the equalizer
effect is dynamically created, using default parameters. Once all these steps are achieved,
the user interface is launched.

4.2 Host Application

Figure 6 shows the graphic user interface of the host application. It allows setting the number of
bands of the equalizer, enabling and disabling the effect, and setting parameters for each band.

SPRA867

16 Parametric Equalization on TMS320C6000 DSP

Figure 6. Host Application Graphic User Interface

Whenever changes are made, press the “EQ update” button to send the new parameters to the
target. The frequency response is computed on the target in the background, and sent back to
the host for display (linear scaling).

On the AIC23 running at 48 kHz, up to 192 bands can be used. The CPU load is then around
97%. When updating the settings for such a number of bands, it may take some time for the
target to answer to the host, due to the little headroom left to the background functions by
processing. At that time, a dialog box may pop-up asking for “Retry” or “Cancel.” Click on Retry
to recover the host to target communication. Click on Cancel to terminate the host application; in
this case, the DSK needs to be reset before restarting it.

At any time, if the host application is terminated properly by clicking the “Close” button, it can be
restarted without any other action on the target.

5 References
1. The Equivalence of Various Methods of Computing Biquad Coefficients for Audio Parametric

Equalizers, Robert Bristow-Johnson (electronic document)
http://www.harmony-central.com/Effects/Articles/EQ_Coefficients/EQ-Coefficients.pdf
http://www.harmony-central.com/Computer/Programming/Audio-EQ-Cookbook.txt

2. The Implementation of Recursive Digital Filters for High-Fidelity Audio, Jon Dattorro, Journal
of the Audio Engineering Society, Vol. 36, No. 11, November 1988

3. TMS320C6000 Optimizing C Compiler User’s Guide (SPRU187)
4. TMS320 C621x /C671x Two-Level Internal Memory Reference Guide (SPRU609)

SPRA867

17 Parametric Equalization on TMS320C6000 DSP

Appendix A Biquad Coefficients Computation
This appendix details the results of the calculation of biquad filter coefficients from its analog
description.

The bilinear transform consists in substituting the Laplace variable (s) in the analog transfer
function H(s), in order to obtain an equivalent digital transfer function H(z).

s �
1

tan�w2	
�

1 � z�1

1 � z�1

This formula includes frequency pre-warping. Trigonometric identities are used to simplify the
equations.

Parameters:

Fs is the sample rate.

Fc is the center (peak) or midpoint (shelf) frequency.

g is the gain.

Q is the quality factor (peak) or slope (shelf).

Intermediate variables:

A � 10
g

40, w � 2� �
Fc

Fs
, sin � sin(w), cos � cos(w), � �

sin
2.Q

, � �
2.A�

Q

Then the coefficients for the 5 types of filter are:

Low-shelf filter:

b0 � A.
(A � 1) � (A � 1). cos� �. sin�

b1 � 2A.[(A � 1) � (A � 1). cos]

b2 � A.
(A � 1) � (A � 1). cos� �. sin�

a0 � (A � 1) � (A � 1). cos� �. sin

a1 � � 2.[(A � 1) � (A � 1). cos]

a2 � (A � 1) � (A � 1). cos� �. sin

High-shelf filter:

b0 � A.
(A � 1) � (A � 1). cos� �. sin�

b1 � � 2.A.[(A � 1) � (A � 1). cos]

b2 � A.
(A � 1) � (A � 1). cos� �. sin�

a0 � (A � 1) � (A � 1). cos� �. sin

a1 � 2.[(A � 1) � (A � 1). cos]

a2 � (A � 1) � (A � 1). cos� �. sin

Peaking filter:

b0 � 1 � �.A

b1 � � 2. cos

b2 � 1 � �.A

a0 � 1 �
�
A

a1 � � 2. cos

a2 � 1 �
�
A

Low-pass filter:

b0 � 1 �
cos
2

b1 � 1 � cos

b2 � 1 �
cos
2

a0 � 1 � �

a1 � � 2. cos

a2 � 1 � �

SPRA867

18 Parametric Equalization on TMS320C6000 DSP

High-pass filter:

b0 � 1 �
cos
2

b1 � � (1 � cos)

b2 � 1 �
cos
2

a0 � 1 � �

a1 � � 2. cos

a2 � 1 � �

SPRA867

19 Parametric Equalization on TMS320C6000 DSP

Appendix B Optimization: Compiler Feedbacks

B.1 Single Sample Cascaded Biquad Routine

;*––*
;* SOFTWARE PIPELINE INFORMATION
;*
;* Loop source line : 32
;* Loop opening brace source line : 32
;* Loop closing brace source line : 59
;* Known Minimum Trip Count : 2
;* Known Max Trip Count Factor : 1
;* Loop Carried Dependency Bound(^) : 4
;* Unpartitioned Resource Bound : 3
;* Partitioned Resource Bound(*) : 3
;* Resource Partition:
;* A–side B–side
;* .L units 2 2
;* .S units 1 0
;* .D units 3* 2
;* .M units 2 2
;* .X cross paths 2 3*
;* .T address paths 2 3*
;* Long read paths 1 1
;* Long write paths 1 2
;* Logical ops (.LS) 0 0 (.L or .S unit)
;* Addition ops (.LSD) 0 1 (.L or .S or .D unit)
;* Bound(.L .S .LS) 2 1
;* Bound(.L .S .D .LS .LSD) 2 2
;*
;* Searching for software pipeline schedule at ...
;* ii = 4 Schedule found with 6 iterations in parallel
;* done
;*
;* Epilog not removed
;* Collapsed epilog stages : 0
;*
;* Prolog not removed
;* Collapsed prolog stages : 0
;*
;* Minimum required memory pad : 0 bytes
;*
;* For further improvement on this loop, try option –mh64
;*
;* Minimum safe trip count : 6
;*––*

Notice the minimum safe trip count is 6, which means this software pipelined loop can only run
at least 6 cascaded biquads. Compiler generates an alternate code, less optimized, that is used
whenever the loop count is less than 6. This extra code can be removed by adding a #pragma
compiler directive, assessing that the loop count will always be at least 6. Then it is the user’s
responsibility to fulfill this requirement when calling the function.

SPRA867

20 Parametric Equalization on TMS320C6000 DSP

B.2 Block Cascaded Biquad Routine

;*––*
;* SOFTWARE PIPELINE INFORMATION
;*
;* Loop source line : 147
;* Loop opening brace source line : 148
;* Loop closing brace source line : 171
;* Known Minimum Trip Count : 1
;* Known Max Trip Count Factor : 1
;* Loop Carried Dependency Bound(^) : 6
;* Unpartitioned Resource Bound : 5
;* Partitioned Resource Bound(*) : 6
;* Resource Partition:
;* A–side B–side
;* .L units 2 3
;* .S units 0 1
;* .D units 4 5
;* .M units 4 1
;* .X cross paths 1 3
;* .T address paths 4 3
;* Long read paths 1 2
;* Long write paths 2 1
;* Logical ops (.LS) 0 0 (.L or .S unit)
;* Addition ops (.LSD) 5 9 (.L or .S or .D unit)
;* Bound(.L .S .LS) 1 2
;* Bound(.L .S .D .LS .LSD) 4 6*
;*
;* Searching for software pipeline schedule at ...
;* ii = 6 Did not find schedule
;* ii = 7 Schedule found with 4 iterations in parallel
;* done
;*
;* Epilog not entirely removed
;* Collapsed epilog stages : 1
;*
;* Prolog not entirely removed
;* Collapsed prolog stages : 1
;*
;* Minimum required memory pad : 0 bytes
;*
;* Minimum safe trip count : 2
;*––*

The loop carried dependency has increased versus (a), due to conditionally updating input and
output values. But Epilog and Prolog have one stage removed, and the minimum safe trip count
is only 2.

SPRA867

21 Parametric Equalization on TMS320C6000 DSP

B.3 Stereo Block Cascaded Biquad Routine

;*––*
;* SOFTWARE PIPELINE INFORMATION
;*
;* Loop source line : 203
;* Loop opening brace source line : 204
;* Loop closing brace source line : 241
;* Known Minimum Trip Count : 4
;* Known Maximum Trip Count : 4
;* Known Max Trip Count Factor : 4
;* Loop Carried Dependency Bound(^) : 8
;* Unpartitioned Resource Bound : 8
;* Partitioned Resource Bound(*) : 8
;* Resource Partition:
;* A–side B–side
;* .L units 5 4
;* .S units 1 3
;* .D units 7 5
;* .M units 5 5
;* .X cross paths 4 7
;* .T address paths 6 6
;* Long read paths 3 3
;* Long write paths 2 2
;* Logical ops (.LS) 0 2 (.L or .S unit)
;* Addition ops (.LSD) 11 7 (.L or .S or .D unit)
;* Bound(.L .S .LS) 3 5
;* Bound(.L .S .D .LS .LSD) 8* 7
;*
;* Searching for software pipeline schedule at ...
;* ii = 8 Did not find schedule
;* ii = 9 Cannot allocate machine registers
;* Regs Live Always : 4/6 (A/B–side)
;* Max Regs Live : 19/17
;* Max Cond Regs Live : 2/1
;* ii = 9 Did not find schedule
;* ii = 10 Register is live too long
;* ii = 11 Register is live too long
;* ii = 12 Schedule found with 3 iterations in parallel
;* done
;*
;* Epilog not entirely removed
;* Collapsed epilog stages : 1
;*
;* Prolog not entirely removed
;* Collapsed prolog stages : 1
;*
;* Minimum required memory pad : 0 bytes
;*
;* Minimum safe trip count : 1
;*––*

NOTE: This compiler feedback was manually modified to fit into the page.

This is the stereo version of (b). The iteration interval is less than twice as much as in the
previous example (7*2 = 14 versus 12). From a resource partitioning and dependency
standpoint, we can see that the iteration interval could ideally be optimized further down to 8
cycles, which is only 1 cycle more than the mono version while performing twice as much.

SPRA867

22 Parametric Equalization on TMS320C6000 DSP

Appendix C Filters Frequency Responses
This appendix shows frequency responses of all types of filters, with various settings.
Mid-point/center/cut-off frequency is set to 1 kHz for all filters.

Figure C–1. Low-Shelf Filters Frequency Responses

Figure C–2. High-Shelf Filters Frequency Responses

SPRA867

23 Parametric Equalization on TMS320C6000 DSP

Figure C–3. Peaking Filters Frequency Responses

Figure C–4. Band-Pass Filters Frequency Responses

SPRA867

24 Parametric Equalization on TMS320C6000 DSP

Appendix D Signal to Noise Ratio (SNR) Curves

Figure D–1. SNR Without Processing

Two curves are plot on this graph: the first one was obtained by bypassing the filter in the
system, i.e., the notch filter applies directly on the generated sine; the second one was obtained
by using all-pass coefficients (in fact, a low-shelf filter with gain set to 0 dB). The noise is
exclusively caused by the 24-bit quantization. The SNR equals 144 dB, and the two curves
overlay exactly, as expected.

SPRA867

25 Parametric Equalization on TMS320C6000 DSP

fmid = 10 kHz

fmid = 3 kHz

fmid = 1 kHz

fmid = 300 Hz

fmid = 100 Hz

Figure D–2. SNR for Low-Shelf Filters

SPRA867

26 Parametric Equalization on TMS320C6000 DSP

fmid = 10 kHz

fmid = 3 kHz

fmid = 1 kHz

fmid = 300 Hz

fmid = 100 Hz

Figure D–3. SNR for High-Shelf Filters

SPRA867

27 Parametric Equalization on TMS320C6000 DSP

fcen = 10 kHz

fcen = 3 kHz

fcen = 1 kHz

fcen = 300 Hz

fcen = 100 Hz

Figure D–4. SNR for Peaking Filters

SPRA867

28 Parametric Equalization on TMS320C6000 DSP

fcut = 10 kHz

fcut = 3 kHz

fcut = 1 kHz

fcut = 300 Hz

fcut = 100 Hz

Figure D–5. SNR for Band-Pass Filters

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third–party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright 2003, Texas Instruments Incorporated

