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ABSTRACT
When customers develop applications that use multiple programmable cores on the AM57x device, they
require a clear understanding of roles and configurations of multiple software (SW) components such as
IPC, CMEM, CMA, Linux™, and SYS/BIOS on slave cores to arrive at correct configuration for their
application. This application report describes memory utilization schemes by A15, DSP, and IPU, how they
are related, and what must happen in the process of adapting Processor SDK configuration to a custom
one.
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1 Abbreviations
The following list provides abbreviations and their meanings used in this document.
• Processor SDK – Processor software development kit (SDK). In this document, Processor SDK always

refers to Processor SDK Linux, not Processor SDK RTOS.
• IPU – Image processing unit (dual-core ARM® Cortex®-M4 subsystem on AM57x devices)
• DSP – Digital signal processor (C66 DSP core on AM57x devices)
• CMA – Linux framework allows setting up a machine-specific configuration for physically-contiguous

memory management.
• CMEM – Linux utility provides an application programming interface (API) and library for managing one

or more blocks of physically contiguous memory.
• IPC – Inter-processor communication
• DTS – Device tree source of Linux

2 Introduction
The AM57x family of system-on-chip (SoC) devices provides high processing performance through the
maximum flexibility of a fully-integrated mixed processor solution with up to two ARM Cortex-A15 cores,
up to two TI C66x DSP cores, and two ARM Cortex-M4 cores.

Processor SDK is a SW development kit developed by TI that has tools and components to enable SW
development on a SoC and collection of examples aimed at demonstrating SoC capabilities as well as
serving as a starting point for application development. While Processor SDK provides a basic memory
configuration for typical user cases, customers may need to update the memory configuration to align with
their hardware system and applications.

This application report provides the details of memory use by multicore applications running on the AM57x
SoC family of devices when the Cortex-A15 is running Linux, describes tools and frameworks used for
memory management, and guides through changes required to adapt Processor SDK memory map for
custom design. The code snippets referred in this document are based on Processor SDK 3.0.0.4 and IPC
3_43_01_03. The hardware platform is AM572x IDK.

3 Key Components

3.1 IPC 3.0
IPC 3.x is an evolution of the IPC product in the TI Processor SDK that abstracts the lower layer of
processor fabric connection and offers a set of modules and APIs to facilitate inter-process
communication. IPC 3.0 supports both Linux to SYS/BIOS and SYS/BIOS-to-SYS/BIOS communication.
This application report focuses on the Linux to SYS/BIOS IPC including A15 to DSP as well as A15 to
IPU. Detailed descriptions of IPC 3.0, user guide, examples, and training materials can be found at the
IPC 3.x wiki.

3.2 CMA
CMA is a Linux tool allowing for static allocation of big physically contiguous memory blocks. In
Processors SDK it is used to allocate static memory regions that are accessible from Linux, as well as
DSP and IPU cores. CMA memory pools are used to store DSP and IPU application code (loaded by the
Linux during SoC initialization) as well as IPC buffers. A detailed description can be found at the following
location: A deep dive into CMA.

3.3 CMEM
CMEM is a kernel module developed by TI that allows for dynamic creation and management of one or
more blocks of contiguous memory for exchanging data buffers between Linux running on A15 and
SYS/BIOS running on DSP or IPU. CMEM enables users to avoid memory fragmentation and ensures
large physically contiguous memory blocks are available by using pool-based configuration of CMEM.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC60
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In the Processor SDK for the AM57x family, CMEM allocates buffers for data that the A15 sends to the
DSP or IPU for processing. A detailed description of CMEM can be found at the CMEM Overview wiki
page.

3.4 SYS/BIOS
SYS/BIOS is a RTOS kernel developed by TI that runs on DSP and IPU cores on an AM57x device.
SYS/BIOS can also run on the A15, but this scheme is outside of the scope of this document. For details,
refer to Processor SDK RTOS documentation.

In this application scenario, the A15 runs Linux. SYS/BIOS includes the RTOS kernel and memory
management facilities, and is used to configure and run the DSP and IPU application code. A detailed
description of SYS/BIOS can be found at the Welcome to SYS/BIOS wiki page.

4 AM57x Memory Map Configuration
Processor SDK provides default memory map designed to accommodate memory installed on TI EVMs
and run all examples and demonstrations. In customers’ designs this memory map has to be adapted to
the needs of each particular application. This section presents the default PSDK memory map and lists
the required changes. This memory map for the use case of A15 running Linux is captured in the Linux
device tree for the particular platform.

Table 1 shows the default PSDK memory map.

Table 1. Default PSDK Memory Map

Memory Section Physical Address
A15 Linux Kernel 0x80000000

IPU2 CMA 0x95800000
DSP1 CMA 0x99000000
IPU1 CMA 0x9D000000
DSP2 CMA 0x9F000000

CMEM 0xA0000000

4.1 Change Memory Map From Default Processor SDK to Accommodate Installed
Memory
The AM572x IDK has 2GB DDR3L memory. The memory configuration is defined in the following Linux
device tree: am572x-idk.dts at board-support/linux-4.4.12+gitAUTOINC+3639bea54a-
g3639bea54a/arch/arm/boot/dts/.

In the following code snippet, the first 0x80000000 is the DDR memory starting address. The second
0x80000000 is the size of the DDR memory.
memory {

device_type = "memory";
reg = <0x0 0x80000000 0x0 0x80000000>;

};

For example, if a system has only 512MB of memory, the memory node in DTS must be updated to:
memory {

device_type = "memory";
reg = <0x0 0x80000000 0x0 0x20000000>;

};

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC60
http://processors.wiki.ti.com/index.php/CMEM_Overview
http://processors.wiki.ti.com/index.php/Category:SYSBIOS
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4.2 Change CMA Pool Size and Location
The CMA pools are defined in the following Linux device tree: am572x-idk.dts.
reserved-memory {

#address-cells = <2>;
#size-cells = <2>;
ranges;

ipu2_cma_pool: ipu2_cma@95800000 {
compatible = "shared-dma-pool";
reg = <0x0 0x95800000 0x0 0x3800000>;
reusable;
status = "okay";

};

dsp1_cma_pool: dsp1_cma@99000000 {
compatible = "shared-dma-pool";

reg = <0x0 0x99000000 0x0 0x4000000>;
reusable;
status = "okay";

};

ipu1_cma_pool: ipu1_cma@9d000000 {
compatible = "shared-dma-pool";
reg = <0x0 0x9d000000 0x0 0x2000000>;
reusable;
status = "okay";

};

dsp2_cma_pool: dsp2_cma@9f000000 {
compatible = "shared-dma-pool";
reg = <0x0 0x9f000000 0x0 0x800000>;
reusable;
status = "okay";

};
};

The four CMA pools in the previous code snippet are dedicated for IPU2, DSP1, IPU1, and DSP2,
respectively. The reg entry defines the CMA pool starting address and size. For example, ref = <0x0
0x95800000 0x0 0x3800000>; means the allocated CMA pool starts from 0x95800000 and has a size of
0x3800000 bytes. These are physical addresses in the DDR3 memory.

Modify the entries to accommodate the code, data, and heap memory requirements of custom DSP or IPU
applications.

http://www.ti.com
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4.3 Change CMEM Configuration and Allocation
The CMEM block is configured in the following Linux device tree: am57xx-evm-cmem.dtsi at am572x-
idk.dts at board-support/linux-4.4.12+gitAUTOINC+3639bea54a-g3639bea54a/arch/arm/boot/dts/.
/ {

reserved-memory {
#address-cells = <2>;
#size-cells = <2>;
ranges;

cmem_block_mem_0: cmem_block_mem@a0000000 { reg = <0x0 0xa0000000 0x0 0x0c000000>;
no-map;
status = "okay";

};

cmem_block_mem_1_ocmc3: cmem_block_mem@40500000 {
reg = <0x0 0x40500000 0x0 0x100000>;
no-map;
status = "okay";

};
};

cmem {
compatible = "ti,cmem";
#address-cells = <1>;
#size-cells = <0>;

#pool-size-cells = <2>;

status = "okay";

cmem_block_0: cmem_block@0 { reg = <0>; memory-region = <&cmem_block_mem_0>; cmem-
buf-pools = <1 0x0 0x0c000000>;

};

cmem_block_1: cmem_block@1 {
reg = <1>;
memory-region = <&cmem_block_mem_1_ocmc3>;
};

};
};

Two CMEM blocks are defined in Processor SDK. CMEM block 0 is allocated from DDR memory starting
from 0xa0000000 with a size of 0x0c000000 bytes (configured in reg = <0x0 0xa0000000 0x0
0x0c000000>;). Entry cmem-buf-pools = <1 0x0 0x0c000000> specifies that one buffer with the size
0x0c000000 is allocated from CMEM block 0.

CMEM block 1 is allocated from OCMC memory, starting from 0x40500000 with a size of 0x0100000
bytes. Users can add more CMEM blocks or modify the CMEM block size as needed (see the following
code snippet).
cmem_block_mem_2: cmem_block_mem@d0000000 {

reg = <0x0 0xd0000000 0x0 0x0c000000>;
no-map;
status = "okay";

};

cmem_block_2: cmem_block@2 {
reg = <0>;
memory-region = <&cmem_block_mem_2>;
cmem-buf-pools = <1 0x0 0x0c000000>;

};

http://www.ti.com
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4.4 Change IPU and DSP Resource Table to Define Memory Use by Firmware
The resource table is a Linux construct that informs the Linux kernel remoteproc driver about the available
resources of the remote processor, and typically refers to memory and local peripheral registers. When a
remote processor image is loaded, the remoteproc driver will parse the system resources defined in the
resource table, which is linked into the remote processor image. Also, the remoteproc allocates rpmsg
vring buffers, trace buffers, and configures MMUs according to the resource table. DSP and IPU images
need to be built with appropriate resource table to match the partitioned memory from the Linux device
tree.

The DSP and IPU resource table for the AM57x is distributed in the Processor SDK RTOS package, and
is located in the IPC_<version> directory. For example, at the IPC_3_43_01_03 directory.
• packages/ti/ipc/remoteproc/rsc_table_vayu_dsp.h
• packages/ti/ipc/remoteproc/rsc_table_vayu_ipu.h

To use a customized resource table, users must modify the SYS/BIOS configuration file for DSP or IPU to
set the Resource.customTable parameter to true. For example, in IPC messageQ example the SYS/BIOS
configuration file resides under Ipc_xx_xx_xx/examples/DRA7XX_linux_elf/ex02_messageq/dsp1.
/* Override the default resource table with my own */
var Resource = xdc.useModule('ti.ipc.remoteproc.Resource');
Resource.customTable = true;

When Resource.customTable is set to true, the IPC will no longer generate a default table and the user
will be able to supply their own table to the DSP or IPU codebase by using a specially-named C structure
(ti_ipc_remoteproc_ResourceTable).

To add a new entry (such as physical or virtual memory translation of CMEM DDR memory) to the
resource table:
1. Specify the CMEM physical address, desired virtual address, and size.

#define DSP_CMEM_IOBUFS 0x88000000
#define PHYS_CMEM_IOBUFS 0xA0000000
#define DSP_CMEM_IOBUFS_SIZE (SZ_1M * 16)

Two-level memory address translation is supported in the remoteproc framework (IOMMU driver) on
the AM572x device. The supported page sizes are 4K, 64K (L2-entries), 1M and 16M (L1-entries). Use
the largest page size possible to avoid page cache misses if the DSP firmware accesses different
regions that cannot be cached within the 32-entry translation lookaside buffer (TLB).

NOTE: Typically, the IPC application puts text, data, and heap sections in the CMA pool with entry
TYPE_CARVOUT. Ensure the total size of these sections with the entry TYPE_CARVEOUT
in the resource table is less than the CMA pool defined in the Linux device tree. For
example, DSP_MEM_TEXT_SIZE in the following code snippet must be less than the size of
cmem_block_mem_0.
{

TYPE_CARVEOUT,
DSP_MEM_TEXT, 0,
DSP_MEM_TEXT_SIZE, 0, 0, "DSP_MEM_TEXT",

},

http://www.ti.com
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The following dma_alloc_coherent error will occur if the size of TYPE_CARVEOUT entry is larger than
size of cmem_block_mem_0: [ 596.342604] omap-rproc 40800000.dsp: dma_alloc_coherent err:
134217728.

2. Increase the size of offset[X] array in struct my_resource_table {}.
3. Add a new struct fw_rsc_devmem devmemY entry in struct my_resource_table.
4. Increase the number of entries in ti_ipc_remoteproc_ResourceTable.
5. Add the actual entry in ti_ipc_remoteproc_ResourceTable.
{

TYPE_DEVMEM,
DSP_CMEM_IOBUFS, PHYS_CMEM_IOBUFS,
DSP_CMEM_IOBUFS_SIZE, 0, 0, "DSP_CMEM_IOBUFS",

},

Refer to the IPC Resource customTable wiki page for customized resource table details.

4.4.1 UniCache on Dual Core Cortex®-M4 Subsystems
The dual core Cortex-M4 (IPU) subsystem incorporates UniCache memory with attribute MMU (AMMU)
allowing for efficient memory use. SYS/BIOS supports AMMU configuration and usage through the
configuration script. For more information on UniCache and AMMU, refer to AM572x Sitara ™ Processors
Silicon Revision 2.0 and
ipc_3_43_01_03/examples/DRA7XX_linux_elf/ex02_messageq/ipu1/IpuAmmu.cfg as an example.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC60
http://processors.wiki.ti.com/index.php/IPC_Resource_customTable
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4.5 Change IPU and DSP SYS/BIOS Configuration to Reflect Resource Table Changes
All ELF section placements are placed in memory allocated from the remoteproc CMA pool and are
mapped to the virtual address as specified in the TYPE_CARVEOUT entries.

The following code snippet is for the DSP core, but the same principle apply to the IPU as well. The virtual
addresses and sizes of these sections are defined in resource table:
#define DSP_MEM_TEXT 0x95000000 #define DSP_MEM_DATA 0x95100000 #define
DSP_MEM_HEAP 0x95200000 #define DSP_MEM_TEXT_SIZE SZ_1M #define
DSP_MEM_DATA_SIZE SZ_1M #define DSP_MEM_HEAP_SIZE (SZ_1M * 3)

{
TYPE_CARVEOUT,

DSP_MEM_TEXT, 0,
DSP_MEM_TEXT_SIZE, 0, 0, "DSP_MEM_TEXT",

},

{
TYPE_CARVEOUT,
DSP_MEM_DATA, 0,
DSP_MEM_DATA_SIZE, 0, 0, "DSP_MEM_DATA",

},

{
TYPE_CARVEOUT,
DSP_MEM_HEAP, 0,
DSP_MEM_HEAP_SIZE, 0, 0, "DSP_MEM_HEAP",

},

Reference the following code snippet and reflect the changes in the SYS/BIOS build configuration file
(config.bld at ipc_3_43_01_03/examples/DRA7XX_linux_elf/ex02_messageq/shared/).
var evmDRA7XX_ExtMemMapDsp = {

EXT_CODE: {
name: "EXT_CODE",
base: 0x95000000, len: 0x00100000,
space: "code",
access: "RWX"

},
EXT_DATA: {

name: "EXT_DATA",
base: 0x95100000, len: 0x00100000,
space: "data",
access: "RW"

},
EXT_HEAP: {

name: "EXT_HEAP",
base: 0x95200000, len: 0x00300000,
space: "data",
access: "RW"

},

The SYS/BIOS configuration file should be updated accordingly if there are any changes of the virtual
address and size of these sections in the resource table.

http://www.ti.com
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Appendix A
SPRAC60–November 2016

CMEM API Usage

A.1 CMEM Buffer Initialization
The following code snippet of the CMEM buffer initialization shows CMEM API usage.
#include <ti/cmem.h>

typedef struct bufmgrDesc_s {
UInt32 physAddr; /* physical address */
UInt32 *userAddr; /* Host user space Virtual address */
UInt32 length; /* Length of host buffer */

} bufmgrDesc_t;

CMEM_AllocParams alloc_params;
bufmgrDesc_t cmem_buf_desc;

Void initCmemBufs()
{

CMEM_AllocParams alloc_params;
int i;

printf("--->App_Create: CMEM_allocPhys and map\n");
alloc_params.flags = CMEM_NONCACHED; alloc_params.type = CMEM_POOL;

alloc_params.alignment = 0; if(CMEM_init() != 0)
printf("--->App_Create: ERROR: CMEM_init()\n");

cmem_buf_desc.physAddr = CMEM_allocPhys(256, &alloc_params);
if(cmem_buf_desc.physAddr == 0 )

printf("--->App_Create: ERROR: CMEM_allocPhys()\n");
else

printf("--->App_Create: cmem_buf_desc.physAddr = 0x%x\n", cmem_buf_desc.physAddr);

cmem_buf_desc.length = 256;

cmem_buf_desc.userAddr = CMEM_map((UInt32)cmem_buf_desc.physAddr, cmem_buf_desc.length);
if(cmem_buf_desc.userAddr == NULL)

printf("--->App_Create: ERROR: CMEM_map()\n");
}

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC60
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A.2 Buffer Address to DSP
The following code is a snippet of sending the buffer address to the DSP.
/* allocate message */

msg = (App_Msg *)MessageQ_alloc(Module.heapId, Module.msgSize);
if (msg == NULL) {

status = -1;
goto leave;

}

/* set the return address in the message header */
MessageQ_setReplyQueue(Module.hostQue, (MessageQ_Msg)msg);

/* fill in message payload */
msg->cmd = App_CMD_NOP;
msg->physAddr = cmem_buf_desc.physAddr;

/* send message */
MessageQ_put(Module.slaveQue, (MessageQ_Msg)msg);

A.3 DSP Receiving Buffer Address
The following code snippet shows the DSP receiving the physical address and accessing the buffer.
/* wait for inbound message */

status = MessageQ_get(Module.slaveQue, (MessageQ_Msg *)&msg,
MessageQ_FOREVER);

if (status < 0) {
goto leave;

}

Log_print1(Diags_INFO, "Server_exec: physAddr=0x%x", msg->physAddr);
ret = Resource_physToVirt(msg->physAddr, &va);
if(ret == Resource_S_SUCCESS) {

for (i=0; i<4; i++)
Log_print1(Diags_INFO, "Server_exec: *VA=0x%x", *((UInt32 *)va + i));

}

http://www.ti.com
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