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ABSTRACT
This application report presents information about how SRAM circuits fail and what can be done about it.
This discussion is targeted towards the electronic system developer or integrator interested in improving
the robustness of the system. The document is written from the perspective of research of failures in
semiconductor SRAM instances.
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1 Introduction and Scope
With today’s significant reliance on electronic control and management comes concern for the safety of
the electronic operation. One key point of concern is the operation of the SRAM in the system. This is
important and from some perspectives, the most important aspect of safety in the execution of electronics.
This is because:
• SRAM is a large component in the overall device, often the largest.

– Largest in area
– Largest in transistor count

• SRAM is very dense circuitry and therefore susceptible to disturb or subtle defects.
• SRAM operates in reduced voltage ranges vs normal circuit logic and therefore susceptible to

disturbances.

For these reasons, SRAM bit cell and array layouts are key components to any new integrated circuit
process development and qualification. It is where integrated circuit fabrication experts go to find drift and
variation in manufacturing. This is why SRAM Error Detection is important in safety related electronics. If
you would like to skip to the end, see Section 6.

The discussion includes:
• Section 2: An overview of SRAM bit array organization
• Section 3: A summary of SRAM failure mechanism including where each is of concern
• Section 4: Methods available for managing memory failures in the electronic system
• Appendix A: Specific to TMS320C2000 products

2 SRAM Bit Array
Information is stored into SRAM as words. The word length varies per the needs of the storage. 32-bit
words are used for this discussion. The bits of the word are stored in an array of bits. However, the
physical position of each individual bit is optimized to the specifics of the semiconductor process. The
array is a matrix with rows and columns. In Figure 2-1 below, there are N rows of 8 words each. If N = 256
that comes to 256x8x32 = 65,536 bits or 2048 words of SRAM.

Note how the bits of an individual word are not physically adjacent to each other, but rather all the bits of 1
D-input/Q-output are adjacent. The bits of an individual word are physically separated by 7 bits from other
words. This improves both the size of the physical array and the routing of the D/Q signals. We shall see
later how this improves the error detect-ability of multi-bit failure mechanisms.

The following shows values in three words as follows:
Word(0) = 1 … 0 1b Row0, Column0
Word(1) = 1 … 1 0b Row0, Column1
Word(7) = 1 … 0 0b Row3, Column7

Table 1. SRAM Bit Array
D0 D1 D31

Row Col

0 1 2 … 7 0 1 2 … 7 0 1 2 … 7 Column

N-1

…

5

4

3 0 0 1

2

1

0 1 0 0 1 1 1
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The physical organization of bit cells in an array may vary for many reasons, but this figure provides a
good example to discuss. This example shows a column multiplexor factor of 8, meaning there are 8 bits
on a row for each Q/D. On a memory read the row is selected and then the column address provides the
decode information for which specific bit will go out the Q. On a memory write the column decodes define
specifically which bits well be written to on the selected row. The sub-array (256x8) for each D/Q is called
a stick.

Larger memory arrays are often organized with even higher column mux factors.

3 Sources of SRAM Failures
This section summarizes a number of sources for SRAM failures from the perspective of a system
designer or integrator.

3.1 Manufacturing Defects
It is not the intention of this paper to go into details on defects generated during the manufacturing of a
semiconductor device. The SRAM, being such a prevalent, dense, and sensitive circuit, is handed with
significant attention in semiconductor device testing. The testing environment includes advanced and often
proprietary testing algorithms. The manufacturing test environment allows for testing with
voltage/temperature/frequency margining that is not possible in the end system. The semiconductor device
designs include special test modes to allow the manufacturing test to include even further margin testing.

3.1.1 Time Zero Fails
Due to the special algorithmic targeting and extensive margining in the production tests, Time-Zero defect
mechanisms are covered prior to device integration into the system. In a mature semiconductor process,
most of the defects (>98%) are caught with a normal March algorithm, for example March13n. In more
advanced process nodes (<65 nm), more advanced algorithms are necessary to get to this point.

3.1.2 Latent Fails
Latent manufacturing defects are material weakness in the semiconductor structure that might fail in the
system, but might be missed with the above mentioned algorithm and margin testing. This structural
weakness is targeted with manufacturing stress tests to force the failures prior to shipping the devices.

3.2 Circuit Drift With Usage
The performance of semiconductors will drift with time and eventually drift to the point of potential circuit
failure. The device data sheet defines the device life time. The device design is verified with margined
speed path analysis. The devices are tested with margin enough to operate correctly over the specified life
time. Performance drift in the SRAM is specifically targeted with margin testing and margin design best
practices.

3.3 Circuit Overstress
The data sheet clearly defines the voltage and temperature operation limits of the devices. The specified
life time is shortened if the device is subjected to stresses outside those defined in the data sheet.
Extreme stresses will damage the device. Sometimes the damage caused is an easily identifiable failure,
but sometimes the failure is subtle. Overvoltage or High Temperature stressing specifically affects SRAM
operation.

3.4 Soft Errors
In the context of this discussion soft errors refer to SRAM fails that are caused by an event external to the
SRAM array and do not damage the SRAM circuitry. They are temporary in that once a new value is
written to the affected word the error no longer exists. Two sources of this type failure are radioactive
particles penetrating the circuit and dynamic voltage noise at the time of a read or write of a word.

Soft errors become more common as the semiconductor geometries reduce. This is both because the bits
are closer together (creating a more target rich environment) and because the voltage levels are lower so
that the bit cell storage is less robust.

http://www.ti.com
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Soft errors only affect the system if the system reads the disturbed word before this word gets written.
Some SRAM contents are static in nature, for example code or tables. Other SRAM contents are dynamic,
such as incoming data and variables. Also many algorithms operating on data are resilient to single bit
errors especially if the errors are in the lower significant bits. So the fail rate due to soft errors is much
lower in dynamic data than in static usage of SRAM. In many systems, the code and tables are stored in
non-volatile memory like ROM or FLASH and the SRAM is primarily used for dynamic storage.

3.4.1 Radioactive Events
Radioactive events come from radioactive particles penetrating the semiconductor material and upsetting
the voltage in the bit cell latch. These events are rare under normal circumstances, but can be higher in a
radioactive medical environment and/or very high altitudes where there is less of an atmosphere to reduce
the particle counts.

Depending upon the angle of the penetration and the intensity of the particle, one or more bit values can
be flipped. This will happen in a straight line. If the straight line goes across rows then the multiple failing
bits are guaranteed to be in different words. This works for vertically oriented penetration or for diagonal.

If the penetration orientation is down the row, then it must go beyond the mux factor to create more than
one bit in the same word.

The smaller the geometries, the more bits can be disturbed by a particle penetration. At a 90 nm process
node a penetration of 5 cells is extremely rare. At 65 nm a penetration of 6 cells is extremely rare. Low
leakage process nodes are less susceptible to these events than high performance process nodes.

Radioactive particle penetration can, and occasionally does, physically damage SRAM cells. This is more
common in process nodes with more aggressive structural geometries.

3.4.2 Dynamic Voltage Events
Any electronic circuitry that involves switching will have dynamic voltage events, even on an integrated
circuit there are voltage events. For example, any time the main system clock switches, many other
transistors transition and there is some noise on the power plane. While the voltage events within the
semiconductor device are small, a marginal bit cell might be disturbed if it happens during a read or write
to the bit cell. However, the devices are tested with enough margins to screen out such bit cells so this is
not a concern at the system level. Voltage events that are large enough to disturb a margined bit cell
come from off chip or operating the devices out of data sheet specification. Even so, it will happen only to
the weaker bits (weaker due to normal and expected process variation). Therefore, single bit detection is
adequate to address such events.

Multi-bit read or write failures can happen due to a significant dynamic voltage event. This is indicative of
a voltage issue and best addressed with voltage monitoring rather than memory monitoring.

3.4.3 Summary of Error Sources
In summary, the primary concern for in-system SRAM errors is disturb failures due to soft events
discussed in Section 3.4.

Manufacturing defects are screened via methods only available in the manufacturing environment. In the
unlikely event of these defects getting through un-screened, the methods in Section 4 provide additional
coverage. The methods described in Section 4 also address failures due to normal circuitry drift that may
become a factor when systems go beyond the data sheet device life time or should there be minor
overstress.

4 Methods for Managing Memory Failures in Electronic Systems
This section presents a number of methods available for managing memory failures in electronic systems.
While specifically targeting SRAM, most of the information applies to other memories such as ROM and
FLASH. The description is from the perspective of a system designer or integrator, but considers the
previous discussions tied to integrated circuit devices.

http://www.ti.com
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Even within the realm of safety considerations there are different perspectives towards managing memory
failures.
• Safe State: Taking the system to a safe state when an error has been identified.
• System Availability: Continuing to run in some cases when an error has been identified.
• Fail Safe: System continues properly even when an error has been identified.

Each of these three perspectives adds cost to the system. Depending upon the requirements of the
market, the additional cost may be easily justified. Alternatively, these additional costs may be prohibitive
in other target markets.

4.1 Start-Up Testing
Testing the SRAM at start-up does not address the three above listed perspectives. However, there is
significant value added in testing the SRAM at start-up even if it is not possible to test while the system is
operational.

There is a proverb in the semiconductor industry that the second worst thing you can do to a system is
power it down, with the very worst thing being power up. This is because the voltage and current swings
during power up and power down of a system (or system component) cannot be fully managed. The
devices are designed to work with this, but should a destructive power event occur, it is more likely to
occur during power up/down. Therefore, testing the SRAM at power up addresses the most likely points
where the circuit will be damaged.

Additionally, SRAM is easier to test at start up because there is no context to save and restore because
the system context has not yet been loaded. SRAM testing by the embedded CPU takes a lot of CPU
cycles and is not as easily or as effectively done while sharing the CPU resources with the system
operation.

4.2 In-System Testing
In-system testing involves testing a targeted circuit while the system is in full operation. This involves
taking a time slice for the CPU’s attention to test a portion of the circuitry. This time slice must be small
enough to not affect the CPU’s system responsibility. In a real-time control system this can be restrictive.
With respect to the Safe State perspective, the complete range of the SRAM must be tested within each
safety interval.

In-system testing of SRAM involves:
• Context Save of the targeted SRAM
• Running a SRAM test algorithm over the SRAM
• Restoring the previous context of the SRAM

This has to be done before the system requires access to the SRAM under test. It is difficult to do this for
a full SRAM instance within a device. However, it is possible to do this on a small slice of SRAM at a time,
for example 16 or 32 words. As stated in Section 3.1.1, most defect related failures in-system can be
detected with a simple March algorithm (March13n or even March7). In newer process nodes (45 nm and
smaller), there is a need for more advanced algorithms to get the same coverage.

This method does not detect a failure on a system read of the SRAM, but can catch errors developing in
the memory before the system reads a failing location. The method is used in cases where the SRAM in
devices has no other detection methods available.

4.3 Parity Detection
Parity detection identifies single bit errors in a read access. The parity circuitry sets the parity bits when
the SRAM word location is written and verifies that there are no single bit errors in the word when it is
read back. This is done within the read/write cycles, so no CPU overhead his involved. Should the parity
circuitry identify an error, it generates a high priority interrupt to the CPU.

http://www.ti.com
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This detection mechanism is simple and relatively inexpensive to implement in semiconductor devices.
Parity addresses the Safe State perspective for Safety. As described earlier in Section 2 and Section 4.1
virtually all SRAM failures in-system are likely to be single bit per word failures. This applies to both
physical defect mechanisms as well as soft errors. Additional coverage can be provided by also protecting
the memory address bits with parity.

4.4 Error Detection and Correction (EDAC)
Error detection and correction (often referred to as ECC) goes beyond parity in that it corrects single bit
errors. The EDAC circuitry can also detect a 2-bit uncorrectable error. It is possible to implement 2-bit
correction, but per the discussions in Section 2 and Section 4.1, this does not provide a good return for
the added cost and timing overhead.

EDAC addresses the system availability perspective for safety since the system will continue to run
unabated in the presences of a single bit error.

However, EDAC:
• Adds significant cost to the memory portion of the device
• Slows down the CPU due to the added SRAM access time necessary to make corrections on the fly
• Requires more system power

For example consider the following:
• SRAM on a device is about 1/3 the cost
• EDAC cost adder to the SRAM is 30%
• EDAC requires the addition of a wait state to the memory access time
• The price of the device goes up ~40%

Not all the SRAM necessarily requires EDAC protection so this can vary with device designs. Likewise
there are ways to reduce access time to less than a wait state.

4.5 Redundancy
Redundancy is the most expensive option, but also provides the best path to a Fail Safe solution.
Redundancy can be implemented at varying degrees:
• Redundant logic on the device
• Multiple processors running in lock step
• Multiple processors with voting

This path rapidly expands in complexity and will not be further covered in this discussion.

http://www.ti.com
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5 Comparisons and Conclusions
Table 2 provides a summary of which detection mechanisms provide what protection level.

Table 2. Detection Mechanisms and Protection Levels

SRAM Coverage Start-Up In-System Parity EDaC Redundant
Single bit per word hard failures Y Y Y Y Y
In-system degradation single bit per word failures N Maybe Y Y Y
Soft errors N N Y Y Y
Multi-bit per word N N Maybe Y Y
Safe state N N Y Y Y
System availability N N N Y Y
Fail safe N N N N Y

1. In-system testing only catches this failure if the in-system tests check the failing word before the
system does. While this is likely, it is not guaranteed.

6 Summary
In closing, here are a couple more points of clarification.

Many newer chips in the newest semiconductor process nodes make more extensive use of EDAC in their
SRAMs than earlier devices in older process nodes. While this does provide better coverage than older
devices with parity or no automated detection in the memory, it may be due more to process requirements
than safety. The newer process nodes, with more aggressive structural geometries, are more susceptible
to both soft errors and process degradation and it is necessary to add EDAC to meet reasonable device
life times. This is not a concern for the newer devices so long as they include the EDAC. However, the
need for EDAC is greater in devices making use of these new processes.

A second point to consider is the available history for the process node. If the targeted market requires a
10 year life time, then from a safety perspective, it is advantageous to have greater than 10 years of
volume production in the process node that services markets while carefully monitoring field failures. This
is because the advancements in each new process bring with them new and unique problems.

7 References
TMS320F2837xD Dual-Core Delfino™ Microcontrollers Data Manual
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Appendix A
SPRACC0–November 2017

Specific to TMS320C2000 Technology

A.1 C2000 Memory Types Example
This appendix discusses what level of protection is available for the TMS320F2837xD Dual-Core Delfino
Microcontrollers. The purpose is to aid the reader in finding the proper information in the documentation
provided for a particular device. This is an example for one device.

A.1.1 TMS320F2837xD
The TMS320F2837xD memory type information can be found in the TMS320F2837xD Dual-Core
Delfino™ Microcontrollers Data Manual. The Detailed Description section of the data manual contains
information about the device. Section A.2 contains the information from the Memory Type section of the
data manual regarding which memories contain what level of protection. Subsequent sections detail each
memory type.

A.2 Memory Types
Table 3 provides more information about each memory type.

Table 3. Memory Types

Memory Type ECC-Capable Parity Security Hibernate
Retention

Access
Protection

M0, M1 Yes – – Yes –
D0, D1 Yes – Yes – Yes
LSx – Yes Yes – Yes
GSx – Yes – – Yes
CPU/CLA MSGRAM – Yes Yes – Yes
CPU1/CPU2 MSGRAM – Yes – – Yes
Boot ROM – – – N/A –
Secure ROM – – Yes N/A –
Flash Yes – Yes N/A N/A
User-configurable DCSM OTP Yes – Yes N/A N/A

A.2.1 Dedicated RAM (Mx and Dx RAM)
The CPU subsystem has four dedicated ECC-capable RAM blocks: M0, M1, D0, and D1. M0/M1
memories are small nonsecure blocks that are tightly coupled with the CPU (that is, only the CPU has
access to them). D0/D1 memories are secure blocks and also have the access-protection feature (CPU
write/CPU fetch protection).

A.2.2 Local Shared RAM (LSx RAM)
RAM blocks which are dedicated to each subsystem and are accessible to its CPU and CLA only, are
called local shared RAMs (LSx RAMs).

All LSx RAM blocks have parity. These memories are secure and have the access protection (CPU
write/CPU fetch) feature.
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By default, these memories are dedicated to the CPU only, and the user could choose to share these
memories with the CLA by configuring the MSEL_LSx bit field in the LSxMSEL registers appropriately.

Table 4 shows the master access for the LSx RAM.

Table 4. Master Access for LSx RAM
(With Assumption That all Other Access Protections are Disabled)

MSEL_LSx CLAPGM_LSx CPU Allowed Access CLA Allowed Access Comment

00 X All –
LSx memory is
configured as CPU
dedicated RAM.

01 0 All Data Read
Data Write

LSx memory is shared
between CPU and
CLA1.

01 1 Emulation Read
Emulation Write Fetch Only LSx memory is CLA1

program memory.

A.2.3 Global Shared RAM (GSx RAM)
RAM blocks which are accessible from both the CPU and DMA are called global shared RAMs (GSx
RAMs). Each shared RAM block can be owned by either CPU subsystem based on the configuration of
respective bits in the GSxMSEL register. Both the CPU and DMA have full read and write access to these
memories.

All GSx RAM blocks have parity.

When a GSx RAM block is owned by a CPU subsystem, the CPUx and CPUx.DMA will have full access to
that RAM block whereas the other CPUy and CPUy.DMA will only have read access (no fetch/write
access).

Table 5 shows the master access for the GSx RAM.

Table 5. Master Access for GSx RAM
(With Assumption That all Other Access Protections are Disabled)

GSxMSEL CPU Instruction
Fetch Read Write CPUx.DMA

Read
CPUx.DMA

Write

0
CPU1 Yes Yes Yes Yes Yes
CPU2 – Yes – Yes –

1
CPU1 – Yes – Yes –
CPU2 Yes Yes Yes Yes Yes

The GSx RAMs have access protection (CPU write/CPU fetch/DMA write).

A.2.4 CPU Message RAM (CPU MSGRAM)
These RAM blocks can be used to share data between CPU1 and CPU2. Since these RAMs are used for
interprocessor communication, they are also called IPC RAMs. The CPU MSGRAMs have CPU/DMA
read/write access from its own CPU subsystem, and CPU/DMA read only access from the other
subsystem.

This RAM has parity.

A.2.5 CLA Message RAM (CLA MSGRAM)
These RAM blocks can be used to share data between the CPU and CLA. The CLA has read and write
access to the "CLA to CPU MSGRAM." The CPU has read and write access to the "CPU to CLA
MSGRAM." The CPU and CLA both have read access to both MSGRAMs.

This RAM has parity.
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