
Application Note
Optimized Trigonometric Functions on TI Arm Cores

Sahin Okur and Eyal Cohen

ABSTRACT

Trigonometric functions are commonly used in real-time control applications, particularly within the inner loops
of control algorithms, where speed and accuracy is essential. The performance of trigonometric functions is a
key careabout for designers of these systems as it can have a significant impact on the overall performance
of the system. Until recently, trignometric functions based on lookup tables were considered faster than the
polynomial-based methods; however, with the inclusion of floating-point units (FPUs) and faster clock speeds,
polynomial-based approximations have gained favor. TI has developed C functions of the most commonly used
trigonometric functions using these polynomial-based methods and has optimized them for TI's Arm®-based
microcontrollers (MCUs) and microprocessors (MPUs). This application note surveys the trigonometric functions
that are available today and shares the optimization techniques used in these functions, as well as the results of
our optimization efforts.

The TI-optimized trigonometric functions presented in this document can be found in MCU+ SDK v8.5 and later.

Table of Contents
1 Introduction...2
2 Trigonometric Optimizations... 2

2.1 Lookup Table-Based Approximation.. 2
2.2 Polynomial Approximation..2

3 Trig Library Benchmarks... 7
3.1 C Math.h Library...7
3.2 Arm “Fast Math Functions” in CMSIS...7
3.3 TI Arm Trig Library... 8
3.4 Table of Results..8

4 Optimizations.. 9
4.1 Branch Prediction...9
4.2 Floating-Point Single-Precision Instructions...10
4.3 Memory Placement...11
4.4 Compiler... 11

Revision History...12

List of Figures
Figure 2-1. Plot of Sine and Cosine Over the Range.. 3
Figure 2-2. Mapping of the Unit Circle for sin(x) for 0 ≤ x ≤ 2π ... 4
Figure 2-3. Plot of Sine and Cosine Over the Range.. 4
Figure 2-4. Plot of arctan2(y,x)...6
Figure 4-1. Condition Code Suffixes and Related Flags..9
Figure 4-2. Floating-Point Single-Precision Instructions..10
Figure 4-3. Memory Placement..11

List of Tables
Table 2-1. Sine...5
Table 2-2. Cosine...5
Table 2-3. Coefficients for the Arctangent ...7
Table 3-1. Table of Results - Arm Cortex®-R5F... 8

www.ti.com Table of Contents

SPRAD27A – JULY 2022 – REVISED AUGUST 2022
Submit Document Feedback

Optimized Trigonometric Functions on TI Arm Cores 1

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD27
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD27A&partnum=

Trademarks
Arm® and Cortex® are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
All trademarks are the property of their respective owners.

1 Introduction
Trigonometric functions are commonly used in real-time control applications, particularly within the inner loops
of control algorithms, where speed and accuracy is essential. The performance of trigonometric functions is a
key careabout for designers of these systems as it can have a significant impact on the overall performance
of the system. Until recently, trignometric functions based on lookup tables were considered faster than the
polynomial-based methods; however, with the inclusion of floating-point units (FPUs) and faster CPU clock
speeds, polynomial-based approximations are gaining favor.

2 Trigonometric Optimizations
The most commonly used trigonometric functions are sine, cosine, arcsine, arccosine, arctangent, and atan2.
Trigonometric optimization techniques for these functions fall into two categories:

• Lookup table-based approximations
• Polynomial approximations

These techniques are described in the following sections and the polynomial-based optimization techniques
used by the TI Arm® Trigonometric Library are discussed.

2.1 Lookup Table-Based Approximation
Up until recently, lookup table-based approximations were considered faster than polynomial-based
approximations. Lookup table-based approximations pre-compute N values of the target function and then index
them into the table to select the two closest points and perform an interpolation between them. When using
lookup table-based approximations, the accuracy can be adjusted by changing either the size of the lookup or
the order of the interpolation function. However, this comes with the tradeoff of more memory usage and longer
function times. This is the technique used by the Fast Math Functions in the Arm CMSIS Library where they use
a table size of 512 entries to cover 0-2PI and then do a linear interpolation between the closest values.

2.2 Polynomial Approximation
With the inclusion of floating-point co-processors and faster clock speeds, the polynomial-based methods are
now quite fast and have the added benefit of not requiring any table storage. The TI Arm Trig Library uses this
method.

The first step in using polynomial approximations is to reduce the range of the input. The bigger the range
needed to approximate, the higher order polynomial needed to achieve a specified level of accuracy, which
means more computations and slower function performance.

The second step is to compute the approximation for the reduced range and then finally restore the range
depending on which quadrant the input was originally in by using trigonometric identities.

There are a number of methods of finding the best polynomials to achieve the lowest error with the fewest terms,
but the most commonly used is the minimax approximation algorithm and one version in particular: the Remez
algorithm. The Remez algorithm is used to find a polynomial with the least maximum error. This polynomial is
called a minimax polynomial. The minimax polynomial is what is used in our optimized trigonometric functions as
it is ideal for control applications where worst-case performance is a key care-about.

Note
To generate the coefficients for the minimax polynomials, the Sollya software tool is used: https://
www.sollya.org/.

Trademarks www.ti.com

2 Optimized Trigonometric Functions on TI Arm Cores SPRAD27A – JULY 2022 – REVISED AUGUST 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.sollya.org/
https://www.sollya.org/
https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD27
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD27A&partnum=

2.2.1 Optimizing Sine and Cosine

This section shows how the above techniques are applied to optimize the computations for a Sin + Cos function.
Sin + Cos functions are commonly used in the transforms for control algorithms where both sin and cos are
needed at the same time.

The first step in using polynomial approximations is to range reduce the input so that the segment of the function
that needs to be modeled is smaller. The most common range reduction for sin/cos computation is to reduce the
input to the range.

− π2 ≤ x ≤ π2 (1)

Then, compute the approximation in this region and then adjust the sign depending on which quadrant the angle
was in originally. Using the Chebyshev polynomials and the fact that sin(x) is an odd function and cos(x) is an
even function, you will see the following:

sin x ≈ C1X+ C3X3+ C5X5+ … (2)

cos x ≈ C0+ C2X2+ C4X4+ … (3)

Figure 2-1. Plot of Sine and Cosine Over the Range

If you assume that the input to the functions are limited to 0:2π , you need to map the input value to the range − π2 ≤ x ≤ π2 before implementing the approximation. This can be done with a couple simple comparisons:

if x > 3π2 , then x = x− 2π (4)

else if π2 < x < 3π2 , then x = π− x, and cos x = − approx cos x (5)

A further range reduction technique can be used to limit the input to − π4 ≤ x ≤ π4 using the trigonometric
identities:

sin π2 − θ = cos θ (6)

cos π2 − θ = sin θ (7)

www.ti.com Trigonometric Optimizations

SPRAD27A – JULY 2022 – REVISED AUGUST 2022
Submit Document Feedback

Optimized Trigonometric Functions on TI Arm Cores 3

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD27
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD27A&partnum=

Which yields the following mapping for sin(x) and a similar one for cos(x):

Figure 2-2. Mapping of the Unit Circle for sin(x) for 0 ≤ x ≤ 2π
Since you only have to model the sine cosine from − π4 ≤ x ≤ π4 , you need fewer coefficients to achieve higher
accuracy.

Figure 2-3. Plot of Sine and Cosine Over the Range

Trigonometric Optimizations www.ti.com

4 Optimized Trigonometric Functions on TI Arm Cores SPRAD27A – JULY 2022 – REVISED AUGUST 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD27
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD27A&partnum=

2.2.1.1 Sine Cosine Polynomials From Sollya

Table 2-1 and Table 2-2 show the coefficients for the sine and cosine approximation obtained from the Sollya
program. The table shows the error expected given the range reduction and order of the polynomial. If you are
trying to achieve full single precision floating-point accuracy, then you need to get to ~1e-7.

Table 2-1. Sine

Range
Number of

Terms Absolute Error Polynomial
−π/2 : π/2 3 1.00E-04 x * (0.999891757965087890625 + x2

* (-0.165960013866424560546875 + x2 *
7.602870464324951171875e-3))

(8)

−π/2 : π/2 4 6.00E-07 x * (0.999996483325958251953125 + x2

* (-0.166647970676422119140625 + x^2
* (8.306086063385009765625e-3 + x2 *
(-1.83582305908203125e-4))))

(9)

−π/2 : π/2 5 6.00E-09 x * (1 + x2 * (-0.1666665971279144287109375
+ x2 * (8.333069272339344024658203125e-3 + x2

* (-1.98097783140838146209716796875e-4 + x2 *
2.6061034077429212629795074462890625e-6))))

(10)

−π/4 : π/4 2 1.50E-04 x * (0.99903142452239990234375 + x2 *
(-0.16034401953220367431640625))

(11)

−π/4 : π/4 3 5.60E-07 x * (0.9999949932098388671875 + x2

* (-0.166601598262786865234375 + x2 *
8.12153331935405731201171875e-3))

(12)

−π/4 : π/4 4 1.80E-09 x * (1 + x2 * (-0.166666507720947265625 +
x2 * (8.331983350217342376708984375e-3 + x2 *
(-1.94961365195922553539276123046875e-4))))

(13)

−π/4 : π/4 5 6.00E-11 x * (1 + x2 * (-0.16666667163372039794921875
+ x2 * (8.33337195217609405517578125e-3 + x2

* (-1.98499110410921275615692138671875e-4 + x2 *
2.800547008519060909748077392578125e-6))))

(14)

Table 2-2. Cosine

Range
Number of

Terms Absolute Error Polynomial
−π/2 : π/2 3 6.00E-04 0.9994032382965087890625 + x2 *

(-0.495580852031707763671875 + x2 *
3.679168224334716796875e-2)

(15)

−π/2 : π/2 4 6.70E-06 0.99999332427978515625 + x2 *
(-0.4999125301837921142578125 + x2 *
(4.1487820446491241455078125e-2 + x2 *
(-1.27122621051967144012451171875e-3)))

(16)

−π/2 : π/2 5 6.00E-08 0.999999940395355224609375 + x2 *
(-0.499998986721038818359375 + x2 *
(4.1663490235805511474609375e-2 + x2 *
(-1.385320327244699001312255859375e-3 + x2 *
2.31450176215730607509613037109375e-5)))

(17)

www.ti.com Trigonometric Optimizations

SPRAD27A – JULY 2022 – REVISED AUGUST 2022
Submit Document Feedback

Optimized Trigonometric Functions on TI Arm Cores 5

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD27
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD27A&partnum=

Table 2-2. Cosine (continued)

Range
Number of

Terms Absolute Error Polynomial
−π/4 : π/4 3 1.00E-05 0.999990046024322509765625 + x2 *

(-0.4997082054615020751953125 + x2 *
4.03986163437366485595703125e-2)

(18)

−π/4 : π/4 4 3.30E-08 1 + x2 * (-0.49999892711639404296875 + x2

* (4.16561998426914215087890625e-2 + x2 *
(-1.35968066751956939697265625e-3)))

(19)

−π/4 : π/4 5 1.00E-10 1 + x2 * (-0.5 + x2 * (4.16666455566883087158203125e-2
+ x2 * (-1.388731296174228191375732421875e-3 + x2 *
2.4432971258647739887237548828125e-5)))

(20)

2.2.2 Optimizing Arctangent and Arctangent2

The arctangent function, and in particular, the arctangent2 function is a critical function in control applications.
For example, in motor control, there may be sensors used to get the x and y position of a motor. Then,
the application needs to translate that into an angular value. A standard arctan function would be called as
arctan(y/x), but this loses the quadrant information as Q1 and Q3 are both positive and Q2 and Q4 are both
negative. The arctan2 function accepts both the x and the y input to return a value in the full −π to π range
versus the arctan function that returns values only in Q1 or Q4, −π/2 to π/2.

Figure 2-4. Plot of arctan2(y,x)

As the input to arctan(z) can be any number from −∞to ∞, use trig identities to reduce the range and get an
approximation function that is relatively low complexity.

Start with:

• arctan(x) = π/2- arctan(1/x) (1a)
• arctan(x)=−arctan(x) (2a)

These identities allow you to restrict the approximation range to abs(x) <=1.

Trigonometric Optimizations www.ti.com

6 Optimized Trigonometric Functions on TI Arm Cores SPRAD27A – JULY 2022 – REVISED AUGUST 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD27
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD27A&partnum=

The next step is to find a simple polynomial that approximates arctan in the range 0-1, or -1 to 1. Using sollya,
try some different polynomial lengths to get the approximation error. This is shown in Table 2-3. You can see that
the error is not falling that fast as a function of the number of terms in the polynomial, so even at 6 terms you are
still at 3.4e-6 in the range (-1,1). Also note that arctan is an odd function where all the terms are odd powers.

2.2.2.1 Arctangent Polynomials

Table 2-3 shows the coefficients for the arctangent approximation obtained from the Sollya program. The table
shows the error expected given the range reduction and order of the polynomial.

Table 2-3. Coefficients for the Arctangent
Range Terms Abs err Polynomial
-1 : 1 4 8.00E-05 x * (0.99921381473541259765625 + x2

* (-0.321175038814544677734375 + x2

* (0.146264731884002685546875 + x2 *
(-3.8986742496490478515625e-2))))

(21)

-1 : 1 5 2.30E-05 x * (0.999970018863677978515625 + x2

* (-0.3317006528377532958984375 + x2

* (0.1852150261402130126953125 + x2 *
(-9.1925732791423797607421875e-2 + x2 *
2.386303804814815521240234375e-2))))

(22)

-1 : 1 6 3.40E-06 x * (0.999995648860931396484375 + x2

* (-0.3329949676990509033203125 + x2 *
(0.19563795626163482666015625 + x2 *
(-0.121243648231029510498046875 + x2 *
(5.7481847703456878662109375e-2 + x2 *
(-1.3482107780873775482177734375e-2))))))

(23)

tan(pi/12) 3 2.00E-07 x * (0.999994814395904541015625 + x2

* (-0.3327477872371673583984375 + x2 *
0.18327605724334716796875))

(24)

tan(pi/12) 4 3.00E-09 x * (0.999999940395355224609375 + x2

* (-0.333319008350372314453125 + x2 *
(0.19920165836811065673828125 + x2 *
(-0.12685041129589080810546875))))

(25)

tan(pi/12) 5 8.70E-11 x * (1 + x2 * (-0.333333194255828857421875
+ x2 * (0.19998063147068023681640625 + x2

* (-0.14202083647251129150390625 + x2 *
9.6703059971332550048828125e-2))))

(26)

3 Trig Library Benchmarks

3.1 C Math.h Library
Math.h includes the standard functions for single-precision floating-point sinf(), cosf(), atanf(), and atan2f(), as
well as the double-precision sin(), cos(), atan(), atan2(). These functions use polynomial-based approximation
methods and provide high accuracy with no input limitations, but at the cost of more cycles. These functions are
benchmarked and the results are shared at the end of this section.

3.2 Arm “Fast Math Functions” in CMSIS
Arm provides a library titled FastMathFunctions that contains single-precision floating-point sin() and cos()
functions. These functions use lookup table-based methods to approximate the functions with lookup tables
of size 2 KB. Arm also provides a sincos function that computes both the sin() and cos() simultaneously in
ControllerFunctions as well. These functions were benchmarked and the results are shared at the end of this
section.

www.ti.com Trigonometric Optimizations

SPRAD27A – JULY 2022 – REVISED AUGUST 2022
Submit Document Feedback

Optimized Trigonometric Functions on TI Arm Cores 7

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD27
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD27A&partnum=

3.3 TI Arm Trig Library
The TI Arm Trig library provides the single-precision floating-point functions ti_arm_sin(), ti_arm_cos(),
ti_arm_sincos(), ti_arm_asin(), ti_arm_acos(), ti_arm_atan(), and ti_arm_atan2(). These functions use
polynomial approximation-based methods.

This library can be found in MCU+ SDK.

3.4 Table of Results
Hardware

AM243x LaunchPad

Software

• TI Arm Clang Compiler v2.0.0.STS
• MCU+ SDK for AM243x v8.2.0.31

Table 3-1. Table of Results - Arm Cortex®-R5F

Trig Function Library C Function
Input Range

[Rad] Max Error Max Cycles Avg Cycles
Approximation
Type

Sine C <Math.h> sinf() Any 0.0000000296 179 150 Polynomial

CMSIS arm_sin_f32() Any 0.0000181917 48 48 Lookup table (2
KB)

TI Arm Trig ti_arm_sin() 0:2π 0.0000007225 29 29 Polynomial

Cosine C <Math.h> cosf() Any 0.0000000297 179 150 Polynomial

CMSIS arm_cos_f32() Any 0.0000183477 50 50 Lookup table

TI Arm Trig ti_arm_cos() 0:2π 0.0000002863 37 37 Polynomial

Sine + Cosine C <Math.h> NA - - - - -

CMSIS arm_sin_cos_f3
2()

Any 0.0000006100 83 83 Lookup table

TI Arm Trig ti_arm_sincos() 0:2π 0.0000001925 54 54 Polynomial

Arcsine C <Math.h> asinf() Any 0.0000000590 213 132 Polynomial

CMSIS NA - - - - -

TI Arm Trig ti_arm_asin() Any 0.0000003428 59 59 Polynomial

Arccosine C <Math.h> acosf() Any 0.0000001792 128 87 Polynomial

CMSIS NA - - - - -

TI Arm Trig ti_arm_acos() Any 0.0000004295 64 64 Polynomial

Arctangent C <Math.h> atanf() Any 0.0000001748 128 87 Polynomial

CMSIS NA - - - - -

TI Arm Trig ti_arm_atan Any 0.0000001748 64 64 Polynomial

Arctangent2 C <Math.h> atan2f() Any 0.0000002021 222 148 Polynomial

CMSIS NA - - - - -

TI Arm Trig ti_arm_atan2 Any 0.0000002957 59 49 Polynomial

Trig Library Benchmarks www.ti.com

8 Optimized Trigonometric Functions on TI Arm Cores SPRAD27A – JULY 2022 – REVISED AUGUST 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD27
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD27A&partnum=

4 Optimizations

4.1 Branch Prediction
Using branches in functions creates unpredictability in the exact cycle count as the branch predictor may
not predict correctly and any missed predictions cost approximately 8 cycles/miss. Arm provides conditional
instructions that can be used in place of branch statements, ensuring that the functions always execute in the
same number of cycles. Figure 4-1 shows that the conditional codes that can be appended to instructions.

Figure 4-1. Condition Code Suffixes and Related Flags

The main reason for creating the .asm versions of the trigonometric functions was to remove branches inserted
by the compiler and replace with conditional instructions instead. This had the effect of reducing the max cycles
due to incorrect branch predictions. This reduction was enabled by replacing branch instructions with conditional
operations. The delta between the max and the average could not be completely removed as the algorithm
contains some divide instructions in the range reduction code which are conditionally implemented depending on
the input values.

Note
The TI Arm Clang compiler performs these assembly optimizations automatically when compiler
optimization is enabled, therefore these assembly versions have been replaced with their C-equivalent
starting with MCU+ SDK v8.5.

www.ti.com Optimizations

SPRAD27A – JULY 2022 – REVISED AUGUST 2022
Submit Document Feedback

Optimized Trigonometric Functions on TI Arm Cores 9

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD27
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD27A&partnum=

4.2 Floating-Point Single-Precision Instructions
Time-expensive instructions were avoided during implementation that would cause a longer execution time of
the trigonometric functions (such as square root and deviation). Figure 4-2 shows floating-point single-precision
data processing instructions cycle timing behavior of the FPU.

Figure 4-2. Floating-Point Single-Precision Instructions

Optimizations www.ti.com

10 Optimized Trigonometric Functions on TI Arm Cores SPRAD27A – JULY 2022 – REVISED AUGUST 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD27
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD27A&partnum=

4.3 Memory Placement
The purpose of the Tightly-Coupled Memory (TCM) is to provide low-latency memory that the processor can use
without the unpredictability that is a feature of caches. The main use of TCM is to store performance critical data
and code. Interrupt handlers, data for real-time tasks and OS control structures are a common example. There
are two external TCMs that can be configured to only store instructions, only data, or a mixture of the two (TCMA
and TCMB). In our library, the polynomial coefficients were placed in TCMB, and the functions themselves in
TCMA.

Figure 4-3. Memory Placement

Enabling a TCM to include both instructions and data provides more flexibility from a system perspective, but
might limit performance compared with optimizing a TCM to solely store instructions or data. The TCMB is
accessible via two ports. This indicates that the TCM has been implemented as two separate banks of RAM so
that the two banks can be accessed simultaneously.

4.4 Compiler
The compiler optimization to be -O3 was configured so that the compiler minimizes some attributes of the
executable program. To understand what optimizations are performed on this level, see the Optimization Options
section in the TI Arm Clang Compiler Tools User’s Guide.

In order to place different parts in different memory sections, use the attribute syntax (which is described in the
Attribute Syntax section of the TI Arm Clang Compiler Tools User’s Guide.

Here is an example from the implementation of placing coefficients in TCMB:

www.ti.com Optimizations

SPRAD27A – JULY 2022 – REVISED AUGUST 2022
Submit Document Feedback

Optimized Trigonometric Functions on TI Arm Cores 11

Copyright © 2022 Texas Instruments Incorporated

https://software-dl.ti.com/codegen/docs/tiarmclang/compiler_tools_user_guide/compiler_manual/using_compiler/compiler_options/optimization_options.html
https://software-dl.ti.com/codegen/docs/tiarmclang/compiler_tools_user_guide/compiler_manual/c_cpp_language_implementation/attributes/attribute_syntax.html
https://software-dl.ti.com/codegen/docs/tiarmclang/compiler_tools_user_guide/compiler_manual/using_compiler/compiler_options/optimization_options.html
https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD27
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD27A&partnum=

Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision * (July 2022) to Revision A (August 2022) Page
• Updated Section 1.. 2
• Updated Section 2.. 2
• Updated Section 3.4... 8
• Updated Section 4.1... 9

Revision History www.ti.com

12 Optimized Trigonometric Functions on TI Arm Cores SPRAD27A – JULY 2022 – REVISED AUGUST 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD27
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD27A&partnum=

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

https://www.ti.com/legal/termsofsale.html
https://www.ti.com

	Table of Contents
	Trademarks
	1 Introduction
	2 Trigonometric Optimizations
	2.1 Lookup Table-Based Approximation
	2.2 Polynomial Approximation
	2.2.1 Optimizing Sine and Cosine
	2.2.1.1 Sine Cosine Polynomials From Sollya

	2.2.2 Optimizing Arctangent and Arctangent2
	2.2.2.1 Arctangent Polynomials

	3 Trig Library Benchmarks
	3.1 C Math.h Library
	3.2 Arm “Fast Math Functions” in CMSIS
	3.3 TI Arm Trig Library
	3.4 Table of Results

	4 Optimizations
	4.1 Branch Prediction
	4.2 Floating-Point Single-Precision Instructions
	4.3 Memory Placement
	4.4 Compiler

	Revision History

