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ABSTRACT
This application report describes the benefits of cryptographic acceleration and provides performance and
energy consumption measurements of on-chip cryptographic accelerators integrated in the SimpleLink
CC13x2/CC26x2 family of wireless microcontrollers (MCUs). It also benchmarks these measurements
against Arm® Cortex®-M4F software-based implementations of cryptographic operations. This document
also describes device power management and TI driver concepts to consider for enabling efficient usage
of SimpleLink cryptographic drivers.
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1 Abbreviations and Acronyms

AES Advanced Encryption Standard
CBC Cipher Block Chaining
CCM Counter with CBC-MAC
CPU Central Processing Unit
CSPRNG Cryptographically Secure Pseudo-Random Number Generator
CTR Counter Mode of Operation
DRBG Deterministic Random Bit Generator
ECB Electronic Code Book
ECC Elliptic Curve Cryptography
ECDH Elliptic Curve Diffie-Helfman
ECDSA Elliptic Curve Digital Signature Algorithm
ECJPAKE Elliptic Curve Password Authenticated Key Exchange by Juggling
GCM Gallois Counter Mode
HW Hardware
HWI Hardware Interrupt
ISR Interrupt Service Routine
LFSR Linear Feedback Shift Register
MAC Message Authentication Code
MCU Microcontroller Unit
MIPS Millions of Instructions Per Second
NIST National Institute of Standards and Technology
OS Operating System
PKA Public Key Accelerator
PRNG Pseudo-Random Number Generator
RAM Random Access Memory
SHA Secure Hash Algorithm
SPI Serial Peripheral Interface
SRAM Static Random Access Memory
SW Software
SWI Software Interrupt
TLS Transport Layer Security
TRNG True Random Number Generator
UART Universal Asynchronous Receiver/Transmitter
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2 Introduction
Security in network connected systems has become increasingly critical. There is increased motivation for
compromising network connected products over closed systems due to factors such as: a larger attack
surface through remote and local access and the potential for successful attacks to leverage
compromising nodes in the field into impacting large groups of persons or organizations in a significant
way. Recent product exploits have demonstrated that security in network connected ecosystems is only as
strong as the weakest link; thus, pushing for increased security, not just in gateways and servers but also
in the end nodes, for strengthening the security of the entire system.

Security solutions are implemented across network components to mitigate security risks. Cryptography is
a foundational component used in these security solutions that aid in protection of security assets (code,
data, or keys) from adversaries. Cryptography is used to provide secrecy and integrity for data and
enables both authentication and anonymity to entities involved in communication. Modern cryptography is
heavily based on mathematical theory and computer science practice and can impact the performance
and energy consumption of resource-constrained embedded systems. Resource-constrained embedded
systems typically refer to microcontrollers with limited hardware resources like CPU MIPS (millions of
instructions per second) or memory. They are often powered from batteries and have specific battery-life
requirements to meet.

The following sections discuss the benefits of cryptographic acceleration, followed by basic concepts of
device power management and TI drivers for SimpleLink™ MCUs in the context of using cryptographic
APIs for the development of security-focused applications. Next, the document covers benchmarking
results for various cryptographic accelerators integrated in the SimpleLink CC13x2/CC26x2 family of
wireless microcontrollers (MCUs). The benchmarking results show cryptographic performance and energy
consumption using on-chip cryptographic accelerators compared to an Arm® Cortex®-M4F software-based
implementation. In this benchmarking effort, we have used Arm mbed TLS software cryptographic
functions to compare performance with on-chip cryptographic accelerators.

3 Benefits of Cryptographic Acceleration in Embedded Security Solutions
Cryptographic acceleration offers many benefits including:
• Increased performance: On embedded systems with limited CPU performance, cryptographic

accelerators can speed up the crypto operations. This improves throughput and eases latency
requirements in the application.

• Concurrency: It lets applications offload the processing of cryptographic operations from the CPU to
the accelerator so the CPU can focus on other operational tasks. This can improve CPU availability for
other tasks.

• Reduced energy consumption: It reduces the energy consumption of cryptographic operations
compared to software implementations of the cryptographic operations. That is, the overall power and
time needed for the crypto operations are less compared to a software implementation. For embedded
applications that are battery powered, this can help extend battery life.

Here are some examples of security solutions in resource-constrained embedded systems that benefit
from cryptographic acceleration:
1. Reduce latency and optimize energy for implementing networking security

a. Commissioning devices into a network with security credentials typically prescribes asymmetric
cryptography operations (for example, Bluetooth® Low Energy Secure Connections pairing or
Thread network commissioning) to mitigate risks of eavesdropping and man-in-the-middle attacks
during the commissioning process. The handshakes use asymmetric cryptography based key
exchanges and, as a result, are often computationally intensive. It is not uncommon for these
asymmetric cryptography operations to be on the order of hundreds of milliseconds to seconds if
implemented in software alone. By using hardware cryptographic accelerators, the overall
handshake can be sped up by a factor of 10x and greater. This enables a more responsive user
experience for end-users commissioning devices onto network.

b. The data communicated over the network is typically encrypted at different network protocol layers
(for example, MAC or link layer, network layer, session layer, application layer) and requires
encryption and decryption of these messages at corresponding layers. Cryptographic accelerators
not only help meeting critical latency requirements (for example, packet ACK turnaround times
within the MAC layer) but can also optimize the overall energy consumed for cryptographic
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operations implementing networking security. This improves energy efficiency and can extend the
battery life of applications depending on network data traffic to and from device.

2. Speed up secure boot operation to reduce overall device boot time
a. Secure boot is a fundamental security task performed upon device boot to validate if the firmware

to be executed by the device is valid. This involves computing the hash of the new firmware image
and using this hash to verify the firmware image’s signature (stored along with the firmware image)
with the root of trust secure boot authentication key stored on-chip.

b. Using asymmetric cryptography for firmware image authentication only requires storing the public
key for signature verification and is therefore a preferred method for secure boot operations. See
Reference [1] for secure boot in SimpleLink CC13x2/CC26x2 Wireless MCUs. Using symmetric
key based firmware image authentication on the other hand requires storing the symmetric key
used for signing the image on the device. If the symmetric key is not properly secured, arbitrary
signed images can be used to execute invalid SW images on the device. If the same symmetric
key is used in multiple devices, compromising one device may be leveraged into compromising all
devices using this key.

c. The time required to compute the hash is dependent on the size of the firmware image to be
verified and the throughput of the hash algorithm implementation. Hardware acceleration of the
hash algorithm can help shorten the duration (esp. for larger image sizes). In MIPS constrained
microcontrollers, asymmetric signature verification is typically on the order of hundreds of
milliseconds to multiple seconds with software-based implementations. Cryptographic accelerators
can speed up this operation in embedded microcontrollers. In applications, where the boot up time
is critical, cryptographic accelerators are beneficial to reduce the overall boot time.

3. Reduce application downtime during secure firmware updates
a. During device firmware update, regular application operation is halted to perform image verification

and programming of a new firmware image. This results in application downtime. Many
applications have restrictions on application downtime; that is, the maximum acceptable period of
time the application may be down during firmware updates. A device firmware update is comprised
of new image verification, followed by programming the new image into the device’s non-volatile
memory. This order may be reversed depending on whether the new firmware image received is
stored on-chip or off-chip. Depending on the image size of the new firmware image to be updated
and flash programming time (comprised of flash erase and write times – see the device-specific
data sheet for flash timing), the image verification step could contribute significantly towards the
overall application downtime. Cryptographic acceleration can help reduce the application downtime
during firmware updates and also optimize overall energy consumed during firmware updates.

b. Secure firmware updates require validating the new firmware image before programming and/or
executing the new image on the device. Similar to secure boot, this involves computing the hash of
the new firmware image to verify the firmware image signature (sent along with the new firmware
image) using the root of trust firmware update authentication key stored on-chip. Asymmetric
cryptography for firmware image authentication is preferred over combined asymmetric/symmetric
cryptography schemes when only image integrity and authenticity are required as this only requires
storing the public key on-chip for signature verification.

c. As discussed in 2(c), cryptographic accelerators can speed up image verification operation
involving hash computation and signature verification. This enables reducing the overall application
downtime during firmware updates.

4 TI Drivers for SimpleLink MCUs
To efficiently use the SimpleLink crypto drivers, a basic understanding of power management on the
SimpleLink CC13x2/CC26x2 devices is needed. The following sections provide an introduction to power
management and driver concepts that affect it.

4.1 Power Management Overview
Power management on the SimpleLink CC13x2/CC26x2 devices is intended to be transparent to the
application. The device peripheral drivers notify the power driver of the resources they require when they
need them without the application directly interacting with the power driver. However, it can be useful to
understand what type of events trigger transitions between active, idle, and standby power modes
Reference [14] as well as at what time peripherals are powered on.
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While the CPU is executing code, the device is in active mode [14]. It consumes 2.9 mA at 3.3 V if no
peripherals are powered [2]. When there is no hardware interrupt (HWI) or software interrupt (SWI)
running and the operating system has no tasks ready to run, the power driver automatically transitions the
device power mode from active mode into either idle or standby. If a peripheral is performing an operation
in the background, the driver requests that the power driver does not transition into standby. The power
driver instead transitions the device into an idle power state [14] and turns off the CPU power domain. In
idle state, the device consumes 590 µA plus any additional current required by the peripheral running in
the background [2]. The device returns to active mode when the peripheral’s interrupt wakes the CPU to
execute the interrupt service routine (ISR).

In general, all of the peripherals that a driver depends on are powered by the driver when opening a driver
instance. Some drivers, such as the SPI or UART, map a physical peripheral to each driver instance and
assume that when a driver instance is opened, it has exclusive access to that hardware. Other drivers,
such as the crypto drivers, share physical peripherals between multiple open instances and between
different types of drivers. Mutual exclusion is handled internally in the driver implementations.

Opening a driver instance takes a small amount of time. The default recommendation is to open a driver
instance, use it to perform an operation, and then close it again. This usage pattern minimizes the amount
of time the peripheral remains powered. It may make more sense to keep the driver instance open if the
application uses it multiple times between standby periods. The same is true if the application has
stringent latency requirements for transitioning between power modes (for example, transitioning from idle
or standby to active mode).

4.2 Return Behavior
The drivers on the SimpleLink CC13x2/CC26x2 devices support three types of return behavior: blocking,
polling, and callback.
• Blocking return behavior involves the driver pending on a semaphore until the hardware completes

the operation. The running task blocks until an asynchronous event such as an HWI or SWI posts the
semaphore when the operation is complete. Blocking return behavior is synchronous from a caller
perspective.

• Polling return behavior involves continuously polling a hardware or software flag until the operation
completes. The device remains in active power state and does not enter idle power state. Polling
return behavior is synchronous from a caller perspective.

• Callback return behavior involves the initial function call triggering the operation and then returning.
When the operation completes, an application provided callback function is called. Callback return
behavior is asynchronous from a caller perspective.

There are restrictions on the context an application is permitted to make a call depending on the return
behavior configured. Table 1 lists the permitted calling contexts by configured return behavior.

Table 1. Restrictions on Calling Context by Return
Behavior

Task SWI HWI
Blocking Allowed Not allowed Not Allowed
Polling Allowed Allowed Allowed
Callback Allowed Allowed Allowed

The choice of return behavior is influenced by the application design. If your application makes crypto calls
from an asynchronous state machine in interrupt context or an event driven task, you should choose
polling for short operations and callback for long ones. If your application makes crypto calls from a
synchronous task, you should choose polling for short operations and blocking for long operations.
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4.2.1 Runtime Overhead
We use overhead to describe the CPU cycles spent over the course of an operation on anything that is
not directly related to configuring the hardware or returning to the original calling context.

Polling return behavior has the least overhead. This is because its implementations are the closest to
bare-metal we can provide. Apart from acquiring the mutex protecting the hardware from concurrent
access, there are no OS calls and interrupts are avoided when hardware flags are available. How this
affects power and call duration depends on how computationally expensive the operation is.

Callback return behavior has more inherent overhead. It requires the handling of an asynchronous event.
That means that at least one context switch is required to handle the asynchronous event.

Blocking return behavior is effectively a specialized case of callback return behavior in terms of overhead.
It will always post a semaphore and unblock a pending Task when the asynchronous event triggers.

If the power driver puts the device into idle when using callback or blocking return behavior, that comes
with the associated overhead of going into and coming out of idle.

Table 2. Relative Runtime Overhead of Different Return
Behaviors

Return Behavior Overhead
Polling Low

Callback Medium-High
Blocking High

4.3 Efficient Power Management
Blocking and callback return behavior allow the power driver to opportunistically put the device into the
idle state when the CPU is not needed. While the hardware peripheral performs the operation in the
background, the power driver turn off the CPU power domain while it waits for the peripheral to trigger an
interrupt upon completion of the operation.

Though polling return behavior offers the least overhead, it provides no integrated power management to
place the CPU in idle state when not in use. Because the CPU is in active mode continuously polling a
flag to signal the operation’s completion, there is no opportunity for the power driver to put the device into
a lower power state. Because polling return behavior should only be used for short operations, the lack of
power management is not a concern. The overhead of using callback or blocking return behavior
outweighs any power savings derived from spending time in idle power mode for short operations.

5 CC13x2/CC26x2 Crypto Peripherals
There are multiple crypto accelerators on the CC13x2/CC26x2 devices: the AES and hash accelerator, the
public key accelerator (PKA) engine, and the true random number generator (TRNG).

5.1 AES and Hash Crypto Accelerator
The AES and hash crypto accelerator is responsible for AES (see Reference [3]) and SHA-2 (see
Reference [4]) functionality. It supports numerous AES block cipher modes of operation and all SHA-2
output digest sizes. It also has its own integrated DMA that can concurrently stream in input and out
output. As a result, the drivers generally set up the crypto accelerator, start it, and then wait for the
accelerator to complete the entire operation without further intervention.

The time required to process an additional block of input data is relatively small compared to the overhead
of setting up the accelerator. It is therefore beneficial from an energy consumption perspective to perform
fewer longer operations rather than multiple shorter ones when using drivers based on the AES and hash
crypto accelerator.

Because of the trade-off between marginal energy cost per input block and setup overhead, there is a
message length where an AES or SHA2 operation consumes less total energy using blocking return
behavior than polling return behavior despite having a longer duration.
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Table 3. Recommended Return Behavior Based on
Payload Length

Driver
Polling

Recommended
Interval
(bytes)

Blocking or Callback
Recommended

Interval
(bytes)

AES ECB < 1350 ≥ 1350
AES CBC < 1350 ≥ 1350
AES CTR < 1350 ≥ 1350
AES CCM < 675 ≥ 675
AES GCM < 1475 ≥ 1475
AES CTR DRBG < 1350 ≥ 1350
SHA-224 < 4650 ≥ 4650
SHA-256 < 4650 ≥ 4650
SHA-384 < 7100 ≥ 7100
SHA-512 < 7100 ≥ 7100

See Appendix: Plots of Blocking vs Polling Performance for further benchmarking data of the
cryptographic accelerators in Table 3 when using drivers with polling vs. blocking return behavior.

5.2 Public Key Accelerator
The public key accelerator (PKA) provides access to large number math operations and several dedicated
elliptic curve cryptography (ECC) (see Reference [5]) primitives. It also contains 2k bytes of dedicated
SRAM to manage intermediate results and is used as workspace for the PKA itself. The PKA based
drivers listed below manage all required PKA RAM accesses themselves.

Unlike the AES and hash crypto accelerator, there are no true fire-and-forget operations when using the
PKA engine. Every ECC driver requires multiple PKA operations to perform any driver operation. This is
abstracted away from the application by the drivers.

PKA operations vary highly in their duration. A simple 128-bit addition might take a few microseconds
while a Short-Weierstrass scalar point multiplication takes 113 ms. The computational cost of ECC driver
operations is dominated by scalar point multiplications and point additions as they are the most
computationally expensive operations by several orders of magnitude and are executed in every ECC
driver call. With such operation durations, the overhead costs are only marginal. Blocking and callback
return behaviors perform well with ECC operations compared to polling return behavior. Polling return
behavior is implemented for portability between devices within the SimpleLink ecosystem and for
completeness.

Table 4. Drivers Using the PKA Engine

Driver Recommended Return Behavior
ECDH Blocking or Callback

ECDSA Blocking or Callback
ECJPAKE Blocking or Callback

5.2.1 ECDH Power Management Driver Example
When combined, the peripheral driver and power driver opportunistically put the device into the lowest
power state it can be in at any point during an operation. Figure 1 shows a simplified example of how the
ECDH and power driver interact when generating a public key. The device starts in active mode after
booting and no peripherals are turned on yet.
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Figure 1. Simplified Power Transition Diagram for ECC Public Key Generation

1. The application opens an ECDH driver instance configured with blocking return behavior by calling
ECDH_open(). The driver turns on the PKA peripheral.

2. The application calls ECDH_genPublicKey(). The driver sets up the PKA and appends an internal
semaphore.

3. The power driver puts the device into the idle power mode because the CPU is not currently busy but
the PKA is active.

4. The PKA triggers an interrupt that wakes up the CPU, and the power driver brings the device into
active power mode. The semaphore the thread is pending on is posted, and ECDH_genPublicKey()
returns.

5. The application calls ECDH_close(). The ECDH driver turns off the PKA peripheral.
6. The device has nothing else to do, and the power driver transitions the device into standby.

The concepts in Figure 1 also transfer to the other SimpleLink crypto drivers.

5.3 TRNG
The true random number generator (TRNG) in the SimpleLink CC13x2/CC26x2 devices uses 24 free
running oscillators (FRO) that are repeatedly sampled and collated in a linear feedback shift register
(LFSR). After a sufficient number of samples have been collected and merged into the LFSR, the entropy
can be read out from the registers and the TRNG begins collecting more samples. At minimum, the TRNG
generates 64 bits of random output. The entropy content of these 64 bits depends on the amount of
samples gathered from the FROs. The default number of samples the driver requires before reading out
entropy from the TRNG is 240000. This works out to 5 ms at the highest FRO sampling rate and is
enough to generate 64 bits of entropy.

The most commonly requested random number sizes will be 128 bits and 256 bits to generate symmetric
or asymmetric keying material. These operations will take the TRNG driver 10 ms and 20 ms respectively.
The CPU is not needed while the TRNG samples the FROs in the background. The sampling of the FROs
takes up the vast majority of the overall duration. This makes blocking or callback return behavior
attractive to save power or enable the CPU to perform other operations in the interim.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA667


Benchmarks www.ti.com

10 SWRA667–January 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

Cryptographic Performance and Energy Efficiency on SimpleLink™
CC13x2/CC26x2 Wireless MCUs

Newer TRNG driver implementations feature an entropy pool that contains pre-generated entropy. When
the application requests a number of random bytes, the driver will first deplete its entropy pool before
using the TRNG hardware for a specific request. If there was enough entropy in the pool to fulfil the
request, the driver returns immediately regardless of return behavior and refills the entropy pool in the
background. The choice of return behavior is consequently only relevant during periods of high TRNG
driver activity when the entropy pool is depleted.

For benchmark purposes, we always assume that the entropy pool is empty when a
TRNG_generateEntropy() call is made. The use of the entropy pool only allows us to move the entropy
generation to earlier in time. This reduces latency and allows for increased parallelism between entropy
generation and operations that consume entropy. That parallelism can reduce the amount of time the
device spends in active or idle compared to standby and thus reduces power consumption.

Table 5. Drivers Using the TRNG

Driver Recommended Return Behavior
TRNG Blocking or Callback

6 Benchmarks
To showcase the power and speed benefit of using the hardware accelerated drivers in comparison to a
software based implementation, we have run several benchmarks. The metrics of interest are:
• Crypto operation duration
• Energy consumption
• Relative runtime performance and energy efficiency versus a software implementation

To compute these metrics, we collected the following data points for each benchmark:
• Duration HW: The duration of the operation when using hardware accelerators through the crypto

drivers.
• Duration SW mbed TLS: The duration of the operation when using mbed TLS. mbed TLS is a widely

adopted open source software crypto package that is optimized for embedded applications. This
provides a reference for the durations of operations on an equivalent device without hardware
accelerators.

• Average Current HW: The average current consumed during the operation. Because the device is
turning on and off accelerators and entering idle dynamically, the current consumption is not constant.
Therefore, the average current consumption during this operation duration is considered.

• Average Current SW mbed TLS: The average current consumed during a software-only run of a
benchmark.

The comparison metrics Duration Improvement and Energy Efficiency Improvement both describe the
relative performance increase obtained by using the hardware accelerated drivers compared to the pure
software implementation. They are computed by dividing the mbed TLS duration or energy used by the
equivalent accelerated driver value.

(1)

(2)

The larger the number, the more efficient it is to use the drivers.

All benchmarks were run on a SimpleLink multi-standard CC26x2R wireless MCU LaunchPad™
development kit (LAUNCHXL-CC26X2R1) running at 48 MHz and powered with 3.3 V. The benchmark
project was compiled with SimpleLink CC13x2-CC26x2 SDK version 3.20.00.68. The mbed TLS library
was built with mbed TLS version 2.7.9. The project and mbed TLS library were compiled with the TI ARM
C/C++ 18.12.1.LTS compiler using -O3 optimization settings. Current measurements were taken using an
Agilent N6705B Power Analyzer. Time measurements were made with a Saleae Logic 8 measuring GPIO
signals. Results are comparable between the CC26x2 and CC13x2 device families.
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6.1 AES and Hash Crypto Accelerator Based Drivers

6.1.1 AES CBC
The AES CBC (see Reference [6]) benchmark consists of encrypting messages of varying sizes. The
duration of an AES CBC operation is affected by the key length and input length. We used the default key
length of 128 bits and input lengths of 64, 8k, and 16k bytes.

Table 6. AES CBC Benchmark Results

Payload Length
(bytes)

Duration HW
(ms)

Duration SW
mbed TLS (ms)

Duration
Improvement

Average
Current HW

(mA)

Average
Current SW

mbed TLS (mA)

Energy
Efficiency

Improvement
64 0.028 0.122 4.4 3.84 3.10 3.5

8000 0.640 14.7 23.0 2.87 3.10 30.7
16000 1.171 29.3 25.0 2.76 3.10 34.6

6.1.2 AES CCM
The AES CCM (see Reference [7]) benchmark consists of encrypting and authenticating messages of
varying sizes and authenticating additional authenticated data (AAD) of a constant size. The duration of an
AES CCM operation is governed by the key size, input length, and AAD length. We used a key length of
128 bits, a fixed AAD length of 32 bytes, and input lengths of 64, 8k, and 16k bytes. We chose a constant
AAD length because the AAD usually contains metadata that does not scale in length with the message
length.

Table 7. AES CCM Benchmark Results

Payload Length
(bytes)

Duration HW
(ms)

Duration SW
mbed TLS (ms)

Duration
Improvement

Average
Current HW

(mA)

Average
Current SW

mbed TLS (mA)

Energy
Efficiency

Improvement
64 0.041 0.435 10.5 3.90 3.10 8.3

8000 1.198 32.4 27.0 2.00 3.10 41.9
16000 2.294 64.7 28.2 1.94 3.10 45.1

6.1.3 AES GCM
The AES GCM (see Reference [8]) benchmark consists of encrypting and authenticating messages of
varying sizes and authenticating additional authenticated data (AAD) of a constant size. The duration of an
AES GCM operation is governed by the key size, input length, and AAD length. We used a key length of
128 bits, a fixed AAD length of 32 bytes, and input lengths of 64, 8k, and 16k bytes. We chose a constant
AAD length because the AAD usually contains metadata that does not scale in length with the message
length.

Table 8. AES GCM Benchmark Results

Payload Length
(bytes)

Duration HW
(ms)

Duration SW
mbed TLS (ms)

Duration
Improvement

Average
Current HW

(mA)

Average
Current SW

mbed TLS (mA)

Energy
Efficiency

Improvement
64 0.036 0.533 14.8 3.94 3.10 11.6

8000 0.646 36.8 56.9 2.00 3.10 88.2
16000 1.174 73.3 62.4 1.94 3.10 99.8
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6.1.4 AES CTR DRBG
AES CTR DRBG (see Reference [9]) is a deterministic random bit generator using the AES block cipher
algorithm in counter mode. The AES CTR DRBG benchmark consists of three operations: initializing the
internal state, reseeding the internal state, and producing a number of bytes of cryptographically random
output. The most important of these operations is the byte generation as it is run far more frequently
compared to initializing and reseeding an AES CTR DRBG instance.

The duration of these operations is governed by the key size and output length. We used a key length of
256 bits and an output length of 32 bytes. Unlike all the other AES benchmarks, we used a 256-bit AES
key length to ensure that the AES CTR DRBG instance has a security strength of 256 bits. This is
required to efficiently use the AES CTR DRBG output as a private key.

Initial seed entropy generation is not considered by the benchmark.

Table 9. AES CTR DRBG Benchmark Results

Operation Duration HW
(ms)

Duration SW
mbed TLS (ms)

Duration
Improvement

Average
Current HW

(mA)

Average
Current SW

mbed TLS (mA)

Energy
Efficiency

Improvement
Initialize 0.066 2.041 30.9 3.98 3.10 24.1
Reseed 0.047 1.019 21.7 3.38 3.10 19.9

Generate bytes (32) 0.072 0.227 3.2 3.63 3.10 2.7

6.1.5 SHA-224
SHA-224 (see Reference [4]) is one of the SHA-2 hash algorithms and has a hash digest size of 224 bits.
The SHA-224 benchmark consists of hashing a variable length message in one go. The duration of a
SHA-224 hashing operation is affected only by the input length. We used input lengths of 64, 8k, and 16k
bytes.

Table 10. SHA-224 Benchmark Results

Payload Length
(bytes)

Duration HW
(ms)

Duration SW
mbed TLS (ms)

Duration
Improvement

Average
Current HW

(mA)

Average
Current SW

mbed TLS (mA)

Energy
Efficiency

Improvement
64 0.024 0.179 7.4 3.80 3.10 6.0

8000 0.258 10.4 40.2 2.87 3.10 43.4
16000 0.385 20.6 53.5 2.76 3.10 54.0

6.1.6 SHA-256
SHA-256 (see Reference [4]) is one of the SHA-2 hashing algorithms and has a hash digest size of 256
bits. The SHA-256 benchmark consists of hashing a variable length message in one go. The duration of a
SHA-256 hashing operation is affected only by the input length. We used input lengths of 64, 8k, and 16k
bytes.

Table 11. SHA-256 Benchmark Results

Payload Length
(bytes)

Duration HW
(ms)

Duration SW
mbed TLS (ms)

Duration
Improvement

Average
Current HW

(mA)

Average
Current SW

mbed TLS (mA)

Energy
Efficiency

Improvement
64 0.023 0.173 7.6 3.80 3.10 6.2

8000 0.261 10.4 39.6 3.00 3.10 40.9
16000 0.429 20.6 48.0 2.76 3.10 54.0
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6.1.7 SHA-384
SHA-384 (see Reference [4]) is one of the SHA-2 hashing algorithms and has a hash digest size of 384
bits. The SHA-384 benchmark consists of hashing a variable length message in one go. The duration of a
SHA-384 hashing operation is affected only by the input length. We used input lengths of 64, 8k, and 16k
bytes.

Table 12. SHA-384 Benchmark Results

Payload Length
(bytes)

Duration HW
(ms)

Duration SW
mbed TLS (ms)

Duration
Improvement

Average
Current HW

(mA)

Average
Current SW

mbed TLS (mA)

Energy
Efficiency

Improvement
64 0.022 0.45 20.7 3.74 3.10 17.1

8000 0.200 26.9 134.3 3.51 3.10 118.6
16000 0.306 53.8 175.9 3.38 3.10 161.3

6.1.8 SHA-512
SHA-512 (see Reference [4]) is one of the SHA-2 hashing algorithms and has a hash digest size of 512
bits. The SHA-512 benchmark consists of hashing a variable length message in one go. The duration of a
SHA-512 hashing operation is affected only by the input length. We used input lengths of 64, 8k, and 16k
bytes.

Table 13. SHA-512 Benchmark Results

Payload Length
(bytes)

Duration HW
(ms)

Duration SW
mbed TLS (ms)

Duration
Improvement

Average
Current HW

(mA)

Average
Current SW

mbed TLS (mA)

Energy
Efficiency

Improvement
64 0.022 0.44 31.8 3.63 3.10 17.1

8000 0.200 26.9 213.1 3.56 3.10 116.7
16000 0.301 53.8 284.3 3.37 3.10 164.5

6.2 PKA Engine Based Drivers

6.2.1 ECDH
Elliptic Curve Diffie Hellman (ECDH) (see Reference [5] and Reference [10]) is used to establish a shared
secret over an insecure channel. The ECDH benchmark consists of two operations: generating a public
key from a private key and computing a shared secret. Private key generation is not considered by the
benchmark. Both operations are dominated by the cost of an ECC scalar multiplication. Their differences
lie in which public and private key is used and what type of parameter and curve validation is run.

The variable that affects performance for ECDH operations is the choice of elliptic curve. We have chosen
to benchmark the NIST-P256 [10] and Curve25519 [11] curves.

Table 14. ECDH Benchmark Results

Operation Curve Duration
HW (ms)

Duration
SW

mbed TLS
(ms)

Duration
Improveme

nt

Average
Current HW

(mA)

Average
Current SW
mbed TLS

(mA)

Energy
Efficiency

Improvement

Generate Public Key NIST-P256 114.0 231 2.0 1.68 3.10 3.7
Compute Shared Secret NIST-P256 114.3 668 5.8 1.69 3.10 10.7
Generate Public Key Curve25519 54.9 585 10.6 1.68 3.10 19.6
Compute Shared Secret Curve25519 54.9 620 11.3 1.68 3.10 20.8
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6.2.2 ECDSA
Elliptic Curve Digital Signature Algorithm (ECDSA) (see Reference [12]) is used to asymmetrically sign
and verify messages. The ECDSA benchmark consists of two operations: signing a hash of a message
and verifying a hash of a message. Both operations are dominated by the cost of ECC scalar
multiplications.

The benchmarks were run using the NIST-P256 curve. The ECDSA driver only supports Short-
Weierstrass curves as Montgomery curve point addition is not available to implement ECDSA on
Curve25519.

Generating the per-message secret number used to sign the message is not considered by the
benchmark.

Table 15. ECDSA Benchmark Results

Operation Duration HW
(ms)

Duration SW
mbed TLS (ms)

Duration
Improvement

Average
Current HW

(mA)

Average
Current SW

mbed TLS (mA)

Energy
Efficiency

Improvement
Sign 115.7 269 2.3 1.68 3.10 4.3
Verify 230.7 943 4.1 1.67 3.10 7.5

6.2.3 ECJPAKE
ECJPAKE is the elliptic curve cryptography (ECC) (see Reference [13]) variant of the Password
Authenticated Key Exchange by Juggling (J-PAKE) algorithm. The ECJPAKE benchmark consists of only
one operation: running the entire key exchange. ECJPAKE is always used in its entirety and with a
specific sequence of sub-operations. The benchmark therefore runs both the client and server sides of the
ECJPAKE algorithm on the same device. The resulting time is then divided in half.

The benchmarks were run using the NIST-P256 curve. Private key and private v generation before round
one of the exchange is not considered by the benchmark.

Table 16. ECJPAKE Benchmark Results

Duration HW (ms) Duration SW
mbed TLS (ms)

Duration
Improvement

Average Current
HW (mA)

Average Current
SW mbed TLS

(mA)
Energy Efficiency

Improvement

1012.5 12485 12.3 1.67 3.10 22.9

6.3 TRNG Based Drivers

6.3.1 TRNG
The only factor influencing the duration of a TRNG operation is the amount of output bytes requested and
the number of cycles the TRNG hardware is asked to sample the 24 free-running oscillators for before
processing the result. The default setting is approximately 5 ms per 64 bits of output.

We requested 16 and 32 bytes to simulate generating the private key for a symmetric or asymmetric key.

On embedded platforms, sources of entropy usually require dedicated TRNG hardware. mbed TLS cannot
reasonably provide a purely software based module that supplies reliable entropy. We have thus omitted
the comparison between the TRNG drivers and mbed TLS for the TRNG benchmark.

Table 17. TRNG Benchmark Results

Length (bytes) Duration HW (ms) Average Current HW
(mA)

16 9.980 2.20
32 19.920 2.19
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7 Conclusion
Based on the benchmarks presented in this application report for the various cryptographic functions, with
and without using cryptographic accelerators, it is evident that the cryptographic accelerators integrated in
SimpleLink CC13x2/CC26x2 Wireless MCUs speed up cryptographic operations and enable energy-
efficient security solutions.

With security for network connected devices being critical, most systems are required to support security
solutions such as network communication security, secure boot, and secure firmware updates. Embedded
systems designers should review their application security requirements and associated cryptographic
functions to determine if cryptographic accelerators and their performance can help meet the latency and
energy consumption requirements in their systems.
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Appendix: Plots of Blocking vs Polling Performance

Figure 2. AES CBC Durations and Energy Consumption vs Message Length

Figure 3. AES CCM Durations and Energy Consumption vs Message Length
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Figure 4. AES GCM Durations and Energy Consumption vs Message Length

Figure 5. AES CTR DRBG Durations and Energy Consumption vs Message Length
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Figure 6. SHA-224 Durations and Energy Consumption vs Message Length

Figure 7. SHA-256 Durations and Energy Consumption vs Message Length
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Figure 8. SHA-384 Durations and Energy Consumption vs Message Length

Figure 9. SHA-512 Durations and Energy Consumption vs Message Length
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