LAUNCHXL2-570LC43 / LAUNCHXL2-RM57L
337 ZWT LAUNCHPAD XL2

POWER/USB JACKS
SHEET 17

VOLTAGE REGULATOR
SHEET 11
+5V
+3.3V
+1.2V

XDS110 DEBUG PROBE
SHEETS 15, 16

SENSOR & SWITCHES
SHEET 10

HERCULES TMS570LC4357/RM57L843 MCU
SHEETS 2, 3, 4, 5, 6

BOOSTER PACK IOS (1ST SET)
SHEET 7
BOOSTER PACK IOS (SECOND SET)
SHEET 8

USER LEDS
SHEET 10

DP83630 PRECISION PHYTER
SHEET 12

RJ-45 + MAGNETICS
SHEET 12

PROTO BOARD HEADERS
SHEET 9

MEZZANINE HEADERS
SHEETS 13, 14

BOOSTER PACK SITE #1

BOOTER PACK SITE #2

VOLTAGE REGULATOR
SHEET 11

ADDITIONAL PERIPHERAL IO

EMIF
RTP/DMM
ETM
JTAG
+ PERIPHERALS

GIO

MDI
LEDS

N2HET (time sync)

MDIO

MII (or RMII)

JTAG

GIO

JTAG

ETM

RTP/DMM

BOOSTER PACK IOS (1ST SET)
SHEET 7

BOOSTER PACK IOS (SECOND SET)
SHEET 8

USER LEDS
SHEET 10

DP83630 PRECISION PHYTER
SHEET 12

RJ-45 + MAGNETICS
SHEET 12

PROTO BOARD HEADERS
SHEET 9

MEZZANINE HEADERS
SHEETS 13, 14

VOLTAGE REGULATOR
SHEET 11

ADDITIONAL PERIPHERAL IO

EMIF
RTP/DMM
ETM
JTAG
+ PERIPHERALS

GIO

MDI
LEDS

N2HET (time sync)

MDIO

MII (or RMII)

JTAG

GIO

JTAG

ETM

RTP/DMM

BOOSTER PACK IOS (1ST SET)
SHEET 7

BOOSTER PACK IOS (SECOND SET)
SHEET 8

USER LEDS
SHEET 10

DP83630 PRECISION PHYTER
SHEET 12

RJ-45 + MAGNETICS
SHEET 12

PROTO BOARD HEADERS
SHEET 9

MEZZANINE HEADERS
SHEETS 13, 14
CAUTION:
BEFORE POPULATING R4, REMOVE R3!
U1E
RMS7L843_TMS5570LC4357_ZWT_337

TITLE: LAUNCHXL2_570LC43_RM57L
Document Number: LAUNCHXL2-570LC43 / LAUNCHXL2-RM57L
REV: A1
Date: 5/19/2015 7:09 PM Sheet: 6/17
NOTES:

JP2 & JP3 are normally shorted on the PCB - the footprint consists of an (unpopulated) 2 pin SMT header and a solder-bridging structure. Most users can leave these jumpers as-is.

Certain booster packs may require that the position is opened - these are booster packs that would otherwise supply power to the launchpad through these pins. Providing +3V3 to the launchpad is a problem because there would be a conflict with the launchpad's on-board LM26420 regulator. Providing +5V to the launchpad through the booster pack could be ok, but the barrel jack is preferred as it is protected with a PTC. Also be careful to avoid back powering the USB connection if you do this.

In some cases you may find the need to make/break the connections JP2,JP3 frequently. If you do, then you can remove the solder bridge and mount a 2 pin SMT header on the footprint location which can then be opened/closed by using a Jumper or Shunt.

Headers/Receptacles may be ordered from http://launchpad.mlelectronics.com/
NOTES:

JP4 & JP5 are normally shorted on the PCB - the footprint consists of an (unpopulated) 2 pin SMT header and a solder-bridging structure. Most users can leave these jumpers as-is.

Certain booster packs may require that the position is opened - these are booster packs that would otherwise supply power to the launchpad through these pins. Providing +3V3 to the launchpad is a problem because there would be a conflict with the launchpad's on-board LM26420 regulator. Providing +5V to the launchpad through the booster pack could be ok, but the barrel jack is preferred as it is protected with a PTC. Also be careful to avoid back powering the USB connection if you do this.

In some cases you may find the need to make/break the connections JP4, JP5 frequently. If you do, then you can remove the solder bridge and mount a 2 pin SMT header on the footprint location which can then be opened/closed by using a Jumper or Shunt.

Headers/Receptacles may be ordered from http://launchpad.mlelectronics.com/
TRIM POT. FOR ANALOG INPUT
(REPLACES TEMP SENSOR)
HERCULES POWER

POWER INDICATOR LED

+5V
PHYS ADDRESS

PHYADDR[4:0] = 00001b

MCU & PHY Pulls Match

PHYAD0 (COL) = PU

PHYAD1 (RXDD) = PD

PHYAD2 (RXD2) = PD

PHYAD3 (RXD3) = PD

TITLE: LAUNCHXL2-570LC43_RM57L

Document Number: LAUNCHXL2-570LC43 / LAUNCHXL2-RM57L

REV: A1

Date: 5/19/2015 7:09 PM

Sheet: 12/17
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated