TIXU_MX6Y

Content

<table>
<thead>
<tr>
<th>Page No</th>
<th>Sheet Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>COVER PAGE</td>
</tr>
<tr>
<td>02</td>
<td>BLOCK DIAGRAM</td>
</tr>
<tr>
<td>03</td>
<td>DC JACK_MAIN POWER IN</td>
</tr>
<tr>
<td>04</td>
<td>PMIC TPS6521815</td>
</tr>
<tr>
<td>05</td>
<td>LOAD SWITCH & COINCELL</td>
</tr>
<tr>
<td>06</td>
<td>IMX POWER</td>
</tr>
<tr>
<td>07</td>
<td>IMX-DDR3L</td>
</tr>
<tr>
<td>08</td>
<td>IMX-LCD, ENET, eMMC, SDIO</td>
</tr>
<tr>
<td>09</td>
<td>IMX - CSI, USB, ADC, GPIO</td>
</tr>
<tr>
<td>10</td>
<td>IMX CONTROL</td>
</tr>
<tr>
<td>11</td>
<td>eMMC</td>
</tr>
<tr>
<td>12</td>
<td>NOR FLASH & SD CARD</td>
</tr>
<tr>
<td>13</td>
<td>ETHERNET PHY</td>
</tr>
<tr>
<td>14</td>
<td>USB HUB</td>
</tr>
<tr>
<td>15</td>
<td>USB_OTG_HOST</td>
</tr>
<tr>
<td>16</td>
<td>USB_CONNECTORS</td>
</tr>
<tr>
<td>17</td>
<td>USB-UART_USB2ANY_JTAG</td>
</tr>
<tr>
<td>18</td>
<td>CURRENT SENSE</td>
</tr>
<tr>
<td>19</td>
<td>LCD</td>
</tr>
<tr>
<td>20</td>
<td>BOOT SWITCH, LED AND GPIO</td>
</tr>
<tr>
<td>21</td>
<td>MISCELLANEOUS</td>
</tr>
</tbody>
</table>

Revision Notes

A1-01
1) Made R13=200E, R14=300E to avoid loading of DCDC6 feedback.
2) Made R221 NM, R248 M to make uSDHC1 as default boot source.
3) Made R77 NM, So that SD connector can control SD_CD# state.
4) Made R233 NM, since the PGODC_BU voltage is of 1V8 and PU is 3V.
5) Made R250 NM, R219 M to select 4 bit bus width boot.
6) Made R231 NM, R235 M to disable powercycle during boot.
7) Made R571 NM to disable extender mode in ethernet PHY.
8) Made R773 NM, R779 NM to avoid the distortion of RMII reference clock.
9) Made R771 NM to make PMIC_PWR_EN High always.

A1-02
1) R771 Mounted

A1-03
1) Mounted R190, R191, R261 with 0E; Made R192, R193, R262 NM for LCD Rework.

A1-04
1) Mounted R773, R779 with 510E for avoiding the dip in reference clock voltage.
2) Mounted R872, R873 with 49.9E and R208, R204 with 47K for clearing push button deglitch.

A2
A2 Release

TIDA-050043

Title: COVER_PAGE

Pub No: 581-016161

Rev: A2

Asy No: 701-00380

Sheet: 1 of 21
Note: Over-voltage protection is designed to withstand up to +20V.
LOAD SWITCH & COINCELL

VDD_PERI_3V3 SWITCH (LS5)

Make the status of GPIO1 low before the power up.

LOAD SWITCH & COINCELL

5V LOAD SWITCH (LS4)

Please mount all 3 res together in case of using this option.

COIN CELL

SD CARD VOLTAGE SELECTION SWITCH

Remove DCDC6 connection to VDD_SNVS_IN if we use this option.
Place 22 uF cap and one of the 0.22uF caps next to the ball G9. Place others within 50 mils of via. Do not connect any loads to VDDARM_CAP.

Diode Is recommended in i.MX6ULL Hardware userguide.

LDO_ARM_SOC
LDO_2P5
LDO_1P1
LDO_SNVS
Place R738 & 739 in tripad

IMX-LCD, ENET, eMMC, SDIO

Place R773 & 779 close to processor (Parallel termination)

3V3 and 1.8V options are given since there is a small confusion in datasheet
Mount 2.2M res close to XTALI pin.
Pull up Resistors on SD2_DATA, SD2_CMD lines are for avoiding bus floating.

Layout note: Decoupling capacitor should connect close to power and ground.

U15 intended to use in HS200 mode. For that VCCQ need to maintain as 1V8.
The minimum low pulse needed for RESET# is 1us.

RESET need to assert during 3v3 rise up time to meet max Rise time limit on 3v3 rail.

I2C ADDR=0x2C

The min low pulse needed for RESET# is 1us.
LCD IO & CORE POWER SWITCHES

- Place FB3 & FB4 in tripad
- Place FB5 & FB6 in tripad

VDD_LCD = 2V8 for the part NHD-2.8-240320AF-CSX
VDD_LCD = 3V3 for the part NHD-2.4-240320CF-CSXV#-F

VDDIO for LCD = 1V8.3V3 option is given only because of mismatch in datasheet. Please refer to data sheet to mount FB6.

NM

TOUCH CONTROLLER

- TSC2046
- VDD_PERI_3V3

Current Design is for the part NHD-2.4-240320CF-CSXV#-F (No touch)
BOOT CONFIGURATION

NOTE: To select boot device as eMMC along with the DIP switch change mount R221 with 10K and no mount R248.
MISCELLANEOUS

MOUNTING HOLES

GLOBAL FIDUCIALS

GND TEST POINT

LOCAL FIDUCIALS

LCD MOUNTING HOLES
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2020, Texas Instruments Incorporated