

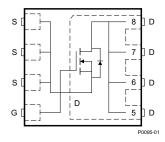
CSD17308Q3

SLPS262C -FEBRUARY 2010-REVISED DECEMBER 2019

CSD17308Q3 30-V N-Channel NexFET™ Power MOSFETs

Features

- Optimized for 5-V gate drive
- Ultra-low Q_a and Q_{ad}
- Low thermal resistance
- Avalanche rated
- Lead-free terminal plating
- RoHS compliant
- Halogen free
- VSON 3.3 mm × 3.3 mm plastic package


Applications

- Notebook point of load
- Point-of-load synchronous buck in networking, telecom, and computing systems

3 Description

This 30-V, 8.2-m Ω , 3.3 mm × 3.3 mm VSON NexFET™ power MOSFET is designed to minimize losses in power conversion applications optimized for 5-V gate drive applications.

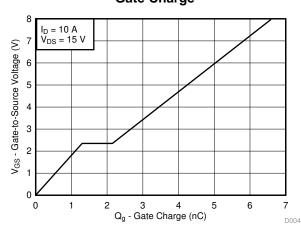
R_{DS(on)} vs V_{GS} 30 $R_{DS(on)}$ - On-State Resistance $(m\Omega)$ 25 20 15 10 0 0 10 V_{GS} - Gate-to-Source Voltage (V) D007

Product Summary

T _A = 25°C		VALUE	UNIT			
V_{DS}	Drain-to-source voltage 30					
Q_g	Gate charge total (4.5 V)	3.9				
Q_{gd}	Gate charge gate-to-drain	0.8	nC			
		V _{GS} = 3 V 12.				
R _{DS(on)}	Drain-to-source on-resistance	V _{GS} = 4.5 V	9.4	mΩ		
		V _{GS} = 8 V 8.2				
$V_{GS(th)}$	Threshold voltage	1.3	V			

Device Information⁽¹⁾

DEVICE	QTY	MEDIA	PACKAGE	SHIP
CSD17308Q3	2500	13-Inch Reel	SON 3.30 mm × 3.30 mm Plastic Package	Tape and Reel


(1) For all available packages, see the orderable addendum at the end of the data sheet.

Absolute Maximum Ratings

T _A = 2	25°C unless otherwise stated	VALUE	UNIT	
V_{DS}	Drain-to-source voltage	30	V	
V_{GS}	Gate-to-source voltage	+10 / -8	٧	
	Continuous drain current (package limited)	50		
I _D	Continuous drain current, T _C = 25°C	44	Α	
	Continuous drain current ⁽¹⁾	14		
I _{DM}	Pulsed drain current, T _A = 25°C ⁽²⁾	167	Α	
1	Power dissipation ⁽¹⁾	2.7	W	
P_D	Power dissipation, T _C = 25°C	28	VV	
T _{J,} T _{stg}	Operating junction and storage temperature	-55 to 150	°C	
E _{AS}	Avalanche energy, single pulse I _D = 36 A, L = 0.1 mH, R _G = 25 Ω	65	mJ	

- (1) Typical $R_{\theta JA} = 46^{\circ} \text{C/W}$ when mounted on a 1-in² (6.45-cm²), 2-oz (0.071-mm) thick Cu pad on a 0.06-in (1.52-mm) thick FR4 PCB.
- (2) Max $R_{\theta JC} = 4.5^{\circ}C/W$, pulse duration $\leq 100 \mu s$, duty cycle \leq

Gate Charge

Table of C	ontents
------------	---------

2 Applications 1 6.2 Trademarks 6.3 Electrostatic Discharge Caution 6.4 Glossary 6.4 Glossary 7 Mechanical, Packaging, and Orderable Information 7.1 Q3 Package Dimensions 7.1 Q3 Package Dimensions 7.2 Recommended PCB Pattern 7.3 Recommended Stencil Opening 7.4 Q3 Tape and Reel Information 7.5 Package Dimensions 7.5 Package Di	
--	--

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

CI	hanges from Revision B (October 2015) to Revision C	Page							
•	Changed V _{GS(th)} MAX specification in the <i>Electrical Characteristics</i> table, From 1.8 V : To 1.6 V								
CI	hanges from Revision A (February 2010) to Revision B	Page							
•	Added part number to title	1							
•	Added Package Limited Continuous Drain Current	1							
•	Added line for Power Dissipation, T _C = 25°C in <i>Absolute Maximum Ratings</i> table	1							
•	Updated pulsed current conditions	1							
•	Updated Figure 1 to show R _{eJC} curves								
•	Added 4.5 V curve in Figure 8								
•	Updated Figure 10								
•	Added the Device and Documentation Support section	8							
<u>•</u>	Updated the Mechanical, Packaging, and Orderable Information section	9							
CI	hanges from Original (February 2010) to Revision A	Page							
•	Deleted the Package Marking Information section	11							

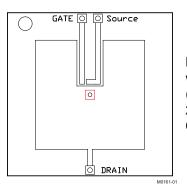
5 Specifications

5.1 Electrical Characteristics

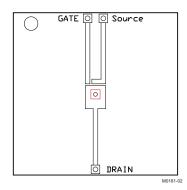
 $T_{\Delta} = 25^{\circ}C$ unless otherwise stated

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
STATIC	CHARACTERISTICS					
BV _{DSS}	Drain-to-source voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	30			V
I _{DSS}	Drain-to-source leakage current	V _{GS} = 0 V, V _{DS} = 24 V			1	μΑ
I _{GSS}	Gate-to-source leakage current	$V_{DS} = 0 \text{ V}, V_{GS} = +10 / -8 \text{ V}$			100	nA
V _{GS(th)}	Gate-to-source threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	0.9	1.3	1.6	V
		$V_{GS} = 3 \text{ V}, I_{D} = 10 \text{ A}$		12.5	16.5	
R _{DS(on)}	Drain-to-source on-resistance	$V_{GS} = 4.5 \text{ V}, I_D = 10 \text{ A}$		9.4	11.8	mΩ
		$V_{GS} = 8 \text{ V}, I_D = 10 \text{ A}$		8.2	10.3	
9 _{fs}	Transconductance	V _{DS} = 15 V, I _D = 10 A		37		S
DYNAMI	C CHARACTERISTICS					
C _{ISS}	Input capacitance			540	700	pF
Coss	Output capacitance	$V_{GS} = 0 \text{ V}, V_{DS} = 15 \text{ V}, f = 1 \text{ MHz}$		280	365	pF
C _{RSS}	Reverse transfer capacitance			27	35	pF
R _g	Series gate resistance			0.9	1.8	Ω
Qg	Gate charge total (4.5 V)			3.9	5.1	nC
Q_{gd}	Gate charge gate-to-drain	V _{DS} = 15 V, I _D = 10 A		0.8		nC
Q _{gs}	Gate charge gate-to-source	V _{DS} = 15 V, I _D = 10 A		1.3		nC
Q _{g(th)}	Gate charge at V _{th}			0.7		nC
Q _{OSS}	Output charge	V _{DS} = 13 V, V _{GS} = 0 V		7.4		nC
t _{d(on)}	Turnon delay time			4.5		ns
t _r	Rise time	V _{DS} = 15 V, V _{GS} = 4.5 V, I _D = 10 A,		5.7		ns
t _{d(off)}	Turnoff delay time	$R_G = 2 \Omega$		9.9		ns
t _f	Fall time			2.3		ns
DIODE C	HARACTERISTICS				*	
V _{SD}	Diode forward voltage	I _{DS} = 10 A, V _{GS} = 0 V		0.85	1	V
Q _{rr}	Reverse recovery charge	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		9.3		nC
t _{rr}	Reverse recovery time	$V_{DD} = 13 \text{ V}, I_F = 10 \text{ A}, \text{ di/dt} = 300 \text{ A/}\mu\text{s}$		14.3		ns

5.2 Thermal Information


 $T_A = 25$ °C unless otherwise stated

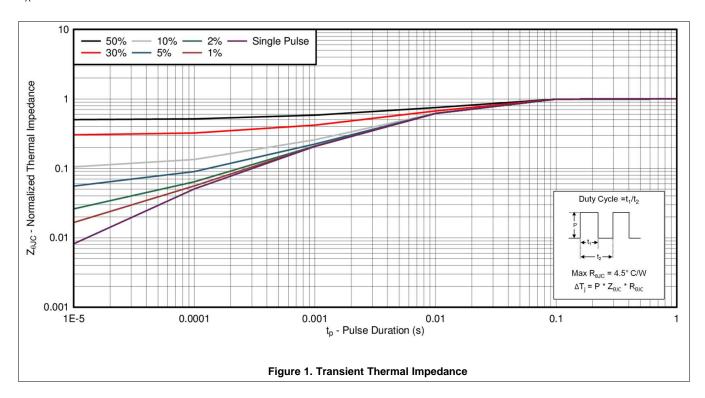
	THERMAL METRIC	MIN	TYP	MAX	UNIT
$R_{\theta JC}$	Junction-to-case thermal resistance ⁽¹⁾			4.5	°C/W
$R_{\theta JA}$	Junction-to-ambient thermal resistance ⁽¹⁾⁽²⁾			58	°C/W

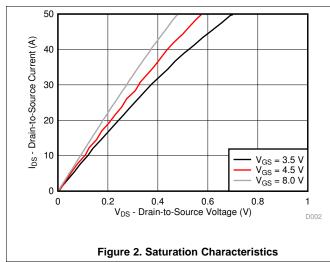

 $R_{\theta JC}$ is determined with the device mounted on a 1-in² (6.45-cm²), 2-oz (0.071-mm) thick Cu pad on a 1.5-in x 1.5-in (3.81-cm x 3.81-cm), 0.06-in (1.52-mm) thick FR4 PCB. $R_{\theta JC}$ is specified by design, whereas $R_{\theta JA}$ is determined by the user's board design. Device mounted on FR4 material with 1-in² (6.45-cm²), 2-oz (0.071-mm) thick Cu.

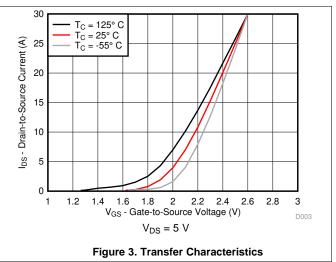
Copyright © 2010-2019, Texas Instruments Incorporated

Max $R_{\theta JA} = 58^{\circ} C/W$ when mounted on 1 in² (6.45 cm²) of 2-oz (0.071-mm) thick Cu.

Max $R_{\theta JA} = 165^{\circ} C/W$ when mounted on a minimum pad area of 2-oz (0.071-mm) thick) Cu.

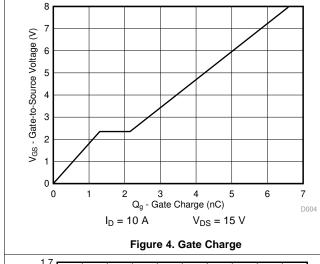

Submit Documentation Feedback

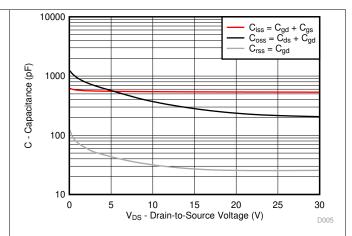

Copyright © 2010–2019, Texas Instruments Incorporated



5.3 Typical MOSFET Characteristics

 $T_A = 25$ °C unless otherwise stated




Copyright © 2010–2019, Texas Instruments Incorporated

Typical MOSFET Characteristics (continued)

 $T_A = 25$ °C unless otherwise stated

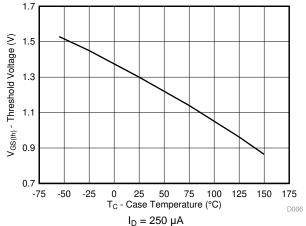


Figure 5. Capacitance

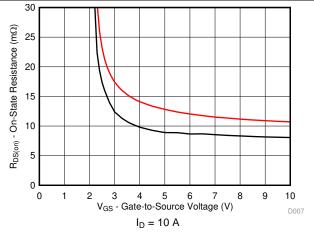


Figure 6. Threshold Voltage vs Temperature

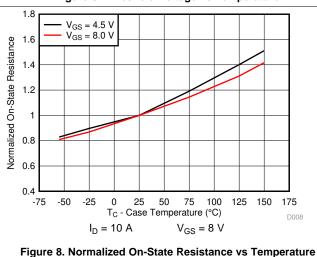


Figure 7. On-State Resistance vs Gate-to-Source Voltage

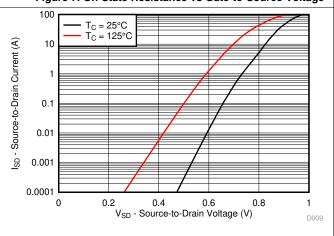
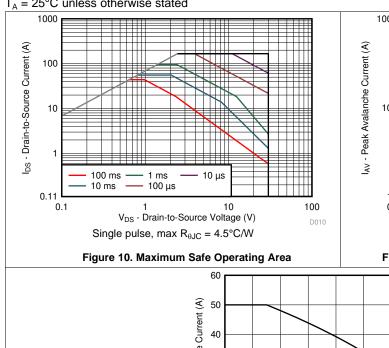


Figure 9. Typical Diode Forward Voltage


Submit Documentation Feedback

Copyright © 2010–2019, Texas Instruments Incorporated

Typical MOSFET Characteristics (continued)

 $T_A = 25$ °C unless otherwise stated

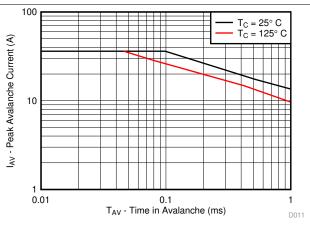


Figure 11. Single Pulse Unclamped Inductive Switching

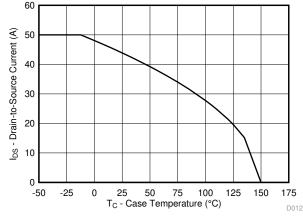


Figure 12. Maximum Drain Current vs Temperature

Copyright © 2010-2019, Texas Instruments Incorporated

6 Device and Documentation Support

6.1 Support Resources

TI E2ETM support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

6.2 Trademarks

NexFET, E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

6.3 Electrostatic Discharge Caution

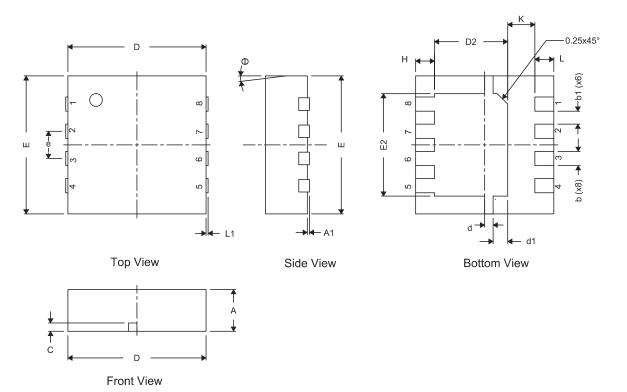
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

6.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

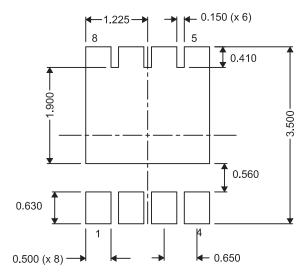
Submit Documentation Feedback


Copyright © 2010–2019, Texas Instruments Incorporated

7 Mechanical, Packaging, and Orderable Information

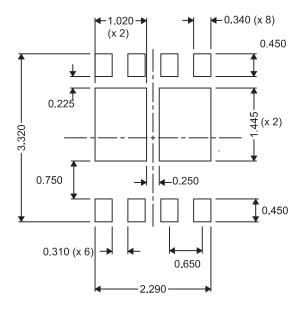
The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

7.1 Q3 Package Dimensions



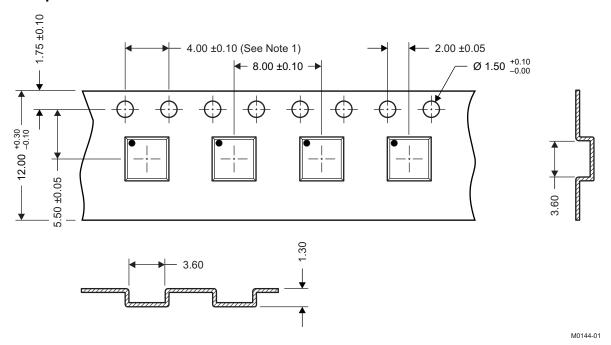
DIM	M	LLIMETERS		INCHES					
DIN	MIN	NOM	MAX	MIN	NOM	MAX			
Α	0.950	1.000	1.100	0.037	0.039	0.043			
A1	0.000	0.000	0.050	0.000	0.000	0.002			
b	0.280	0.340	0.400	0.011	0.013	0.016			
b1		0.310 NOM			0.012 NOM				
С	0.150	0.200	0.250	0.006	0.008	0.010			
D	3.200	3.300	3.400	0.126	0.130	0.134			
D2	1.650	1.750	1.800	0.065	0.069	0.071			
d	0.150	0.200	0.250	0.006	0.008	0.010			
d1	0.300	0.350	0.400	0.012	0.014	0.016			
E	3.200	3.300	3.400	0.126	0.130	0.134			
E2	2.350	2.450	2.550	0.093	0.096	0.100			
е		0.650 TYP			0.026 TYP				
Н	0.35	0.450	0.550	0.014	0.018	0.022			
K		0.650 TYP			0.026 TYP				
L	0.35	0.450	0.550	0.014	0.018	0.022			
L1	0	_	0	0	_	0			
θ	0 —		0	0	_	0			

Copyright © 2010–2019, Texas Instruments Incorporated



7.2 Recommended PCB Pattern

For recommended circuit layout for PCB designs, see application note SLPA005 – Reducing Ringing Through PCB Layout Techniques.


7.3 Recommended Stencil Opening

All dimensions are in mm, unless otherwise specified.

7.4 Q3 Tape and Reel Information

Notes:

- 1. 10 sprocket hole pitch cumulative tolerance ±0.2
- 2. Camber not to exceed 1 mm in 100 mm, noncumulative over 250 mm
- 3. Material: black static dissipative polystyrene
- 4. All dimensions are in mm (unless otherwise specified).
- 5. Thickness: 0.30 ±0.05 mm
- 6. MSL1 260°C (IR and Convection) PbF-Reflow Compatible

Copyright © 2010–2019, Texas Instruments Incorporated

PACKAGE OPTION ADDENDUM

10-Dec-2020

PACKAGING INFORMATION

www.ti.com

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
CSD17308Q3	ACTIVE	VSON-CLIP	DQG	8	2500	RoHS-Exempt & Green	SN	Level-1-260C-UNLIM	-55 to 150	CSD17308	Samples
CSD17308Q3T	ACTIVE	VSON-CLIP	DQG	8	250	RoHS-Exempt & Green	SN	Level-1-260C-UNLIM	-55 to 150	CSD17308	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

10-Dec-2020

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such Tl products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for Tl products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated