### 1 Features

- 1-MSPS Throughput
- Small Package Size:
  - X2QFN-8 Package (1.5 mm × 1.5 mm)
- Unipolar Input Range: 0 V to AVDD
- Wide Operating Range:
  - AVDD: 1.65 V to 3.6 V
  - DVDD: 1.65 V to 3.6 V (Independent of AVDD)
  - Temperature Range: –40°C to +125°C
- Excellent Performance:
  - 14-Bit NMC DNL, ±2-LSB INL
  - 74.5-dB SINAD at 2 kHz
  - 72.5-dB SINAD at 200 kHz
- Low Power Consumption:
  - 1.5 mW at 1 MSPS With 3.3-V AVDD
  - 160 µW at 100 kSPS With 3.3-V AVDD
  - 40 µW at 100 kSPS With 1.8-V AVDD
- Integrated Offset Calibration
- SPI-Compatible Serial Interface: 24 MHz
- JESD8-7A Compliant Digital I/O

### 2 Applications

- Optical Encoders
- Sonar Receivers
- Fish Finders
- I-Q Demodulators
- Optical Line Cards and Modules
- Thermal Imaging Cameras
- Ultrasonic Flow Meters
- Handheld Radios

### 3 Description

The ADS7052 device belongs to a family of pin-to-pin compatible, high-speed, low-power, single-channel successive-approximation register (SAR) type analog-to-digital converters (ADCs). The device family includes multiple resolutions, throughputs, and analog input variants (see Table 1 for a list of devices).

The ADS7052 is a 14-bit, 1-MSPS SAR ADC that supports a single-ended input in the range of 0 V to AVDD, for AVDD in the range of 1.65 V to 3.6 V.

The internal offset calibration feature maintains excellent offset specifications over the entire AVDD and temperature operating range.

The device supports an SPI-compatible serial interface that is controlled by the CS and SCLK signals. The input signal is sampled with the CS falling edge and SCLK is used for both conversion and serial data output. The device supports a wide digital supply range (1.65 V to 3.6 V), enabling direct interfacing to a variety of host controllers. The ADS7052 complies with the JESD8-7A standard for a normal DVDD range (1.65 V to 1.95 V).

The ADS7052 is available in an 8-pin, small, X2QFN package and is specified over the extended industrial temperature range (–40°C to +125°C). The small form-factor and extremely-low power consumption make this device suitable for space-constrained and battery-powered applications that require high-speed, high-resolution data acquisition.

### Device Information

<table>
<thead>
<tr>
<th>PART NAME</th>
<th>PACKAGE</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADS7052</td>
<td>X2QFN (8)</td>
<td>1.50 mm × 1.50 mm</td>
</tr>
</tbody>
</table>

(1) For all available packages, see the orderable addendum at the end of the datasheet.

---

**Typical Application**

**Single ADC Circuit**

**Simultaneous Sampling Circuit**

---

An **IMPORTANT NOTICE** at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.
Table of Contents

1 Features ................................................................. 1
2 Applications ............................................................ 1
3 Description ............................................................. 1
4 Revision History ...................................................... 2
5 Pin Configuration and Functions ................................. 3
6 Specifications .......................................................... 4
   6.1 Absolute Maximum Ratings .................................. 4
   6.2 ESD Ratings .................................................... 4
   6.3 Recommended Operating Conditions ...................... 4
   6.4 Thermal Information .......................................... 4
   6.5 Electrical Characteristics .................................... 5
   6.6 Timing Requirements ........................................... 7
   6.7 Switching Characteristics ..................................... 7
   6.8 Typical Characteristics ....................................... 9
7 Parameter Measurement Information ........................ 14
   7.1 Digital Voltage Levels ........................................ 14
8 Detailed Description .................................................. 15
   8.1 Overview ....................................................... 15
   8.2 Functional Block Diagram .................................... 15
   8.3 Feature Description ............................................ 16
8.4 Device Functional Modes ...................................... 20
9 Application and Implementation ............................... 24
   9.1 Application Information ...................................... 24
   9.2 Typical Applications .......................................... 24
10 Power Supply Recommendations .............................. 31
   10.1 AVDD and DVDD Supply Recommendations ............. 31
   10.2 Optimizing Power Consumed by the Device ........... 31
11 Layout ................................................................. 32
   11.1 Layout Guidelines ............................................ 32
   11.2 Layout Example ............................................... 33
12 Device and Documentation Support .......................... 34
   12.1 Device Support ............................................... 34
   12.2 Documentation Support ..................................... 34
   12.3 Receiving Notification of Documentation Updates ...... 34
   12.4 Community Resources ....................................... 34
   12.5 Trademarks ................................................... 34
   12.6 Electrostatic Discharge Caution ........................... 35
   12.7 Glossary ....................................................... 35
13 Mechanical, Packaging, and Orderable Information .... 35

4 Revision History

<table>
<thead>
<tr>
<th>DATE</th>
<th>REVISION</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>December 2017</td>
<td>*</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>
5 Pin Configuration and Functions

RUG Package
8-Pin X2QFN
Top View

<table>
<thead>
<tr>
<th>PIN</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CS</td>
<td>Digital input Chip-select signal, active low</td>
</tr>
<tr>
<td>2</td>
<td>SDO</td>
<td>Digital output Serial data out</td>
</tr>
<tr>
<td>3</td>
<td>SCLK</td>
<td>Digital input Serial clock</td>
</tr>
<tr>
<td>4</td>
<td>DVDD</td>
<td>Supply Digital I/O supply voltage</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Supply Ground for power supply, all analog and digital signals</td>
</tr>
<tr>
<td>6</td>
<td>AVDD</td>
<td>Supply Analog power-supply input, also provides the reference</td>
</tr>
<tr>
<td></td>
<td></td>
<td>voltage to the ADC</td>
</tr>
<tr>
<td>7</td>
<td>AINP</td>
<td>Analog input Analog signal input, positive</td>
</tr>
<tr>
<td>8</td>
<td>AINM</td>
<td>Analog input Analog signal input, negative</td>
</tr>
</tbody>
</table>
6 Specifications

6.1 Absolute Maximum Ratings

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVDD to GND</td>
<td>–0.3</td>
<td>3.9</td>
<td>V</td>
</tr>
<tr>
<td>DVDD to GND</td>
<td>–0.3</td>
<td>3.9</td>
<td>V</td>
</tr>
<tr>
<td>AINP to GND</td>
<td>–0.3</td>
<td>AVDD + 0.3</td>
<td>V</td>
</tr>
<tr>
<td>AINM to GND</td>
<td>–0.3</td>
<td>0.3</td>
<td>V</td>
</tr>
<tr>
<td>Input current to any pin except supply pins</td>
<td>–10</td>
<td>10</td>
<td>mA</td>
</tr>
<tr>
<td>Digital input voltage to GND</td>
<td>–0.3</td>
<td>DVDD + 0.3</td>
<td>V</td>
</tr>
<tr>
<td>Storage temperature, T_{stg}</td>
<td>–60</td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

<table>
<thead>
<tr>
<th></th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{(ESD)} Electrostatic discharge</td>
<td>±2000</td>
<td>V</td>
</tr>
<tr>
<td>Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)</td>
<td>±2000</td>
<td>V</td>
</tr>
<tr>
<td>Charged device model (CDM), per JEDEC specification JESD22-C101(2)</td>
<td>±1000</td>
<td>V</td>
</tr>
</tbody>
</table>

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVDD Analog supply voltage range</td>
<td>1.65</td>
<td>3.3</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>DVDD Digital supply voltage range</td>
<td>1.65</td>
<td>1.8</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>T_{A} Operating free-air temperature</td>
<td>–40</td>
<td>25</td>
<td>125</td>
<td>°C</td>
</tr>
</tbody>
</table>

6.4 Thermal Information

<table>
<thead>
<tr>
<th>THERMAL METRIC(1)</th>
<th>ADS7052 RUG (X2QFN)</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{JUA} Junction-to-ambient thermal resistance</td>
<td>177.5</td>
<td>°C/W</td>
</tr>
<tr>
<td>R_{JUC(top)} Junction-to-case (top) thermal resistance</td>
<td>51.5</td>
<td>°C/W</td>
</tr>
<tr>
<td>R_{JUB} Junction-to-board thermal resistance</td>
<td>76.7</td>
<td>°C/W</td>
</tr>
<tr>
<td>ψ_{JT} Junction-to-top characterization parameter</td>
<td>1</td>
<td>°C/W</td>
</tr>
<tr>
<td>ψ_{JB} Junction-to-board characterization parameter</td>
<td>76.7</td>
<td>°C/W</td>
</tr>
<tr>
<td>R_{JUC(bot)} Junction-to-case (bottom) thermal resistance</td>
<td>N/A</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.
6.5 Electrical Characteristics

at AVDD = 3.3 V, DVDD = 1.65 V to 3.6 V, f_{sample} = 1 MSPS, and V_{AINM} = 0 V (unless otherwise noted); minimum and maximum values for TA = –40°C to +125°C; typical values at TA = 25°C

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ANALOG INPUT</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full-scale input voltage span</td>
<td></td>
<td>0</td>
<td>AVDD</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Absolute input voltage range AINP to GND</td>
<td></td>
<td>–0.1</td>
<td>AVDD + 0.1</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>AINM to GND</td>
<td></td>
<td>–0.1</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_s</td>
<td>Sampling capacitance</td>
<td>16</td>
<td>pF</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>SYSTEM PERFORMANCE</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td></td>
<td>14</td>
<td>Bits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMC</td>
<td>No missing codes</td>
<td>14</td>
<td>Bits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INL</td>
<td>Integral nonlinearity</td>
<td>–3.75</td>
<td>±2</td>
<td>3.75</td>
<td>LSB</td>
</tr>
<tr>
<td>DNL</td>
<td>Differential nonlinearity</td>
<td>–0.99</td>
<td>±0.5</td>
<td>1</td>
<td>LSB</td>
</tr>
<tr>
<td>E_{O}</td>
<td>Offset error</td>
<td></td>
<td>After calibration</td>
<td>–6</td>
<td>±1</td>
</tr>
<tr>
<td>dV_{OD}/dT</td>
<td>Offset error drift with temperature</td>
<td></td>
<td></td>
<td>1.75</td>
<td>ppm/°C</td>
</tr>
<tr>
<td>E_{G}</td>
<td>Gain error</td>
<td></td>
<td>Gain error drift with temperature</td>
<td>–0.1</td>
<td>±0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
<td>ppm/°C</td>
</tr>
<tr>
<td><strong>SAMPLING DYNAMICS</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{CONV}</td>
<td>Conversion time</td>
<td>18 x f_{SCLK}</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{AQC}</td>
<td>Acquisition time</td>
<td>230</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{SAMPLE}</td>
<td>Maximum throughput rate</td>
<td>24-MHz SCLK, AVDD = 1.65 V to 3.6 V</td>
<td>1</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>Aperture delay</td>
<td></td>
<td>3</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aperture jitter, RMS</td>
<td></td>
<td>12</td>
<td>ps</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>DYNAMIC CHARACTERISTICS</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNR</td>
<td>Signal-to-noise ratio</td>
<td>AVDD = 3.3 V, f_{IN} = 2 kHz</td>
<td>71.5</td>
<td>74.9</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AVDD = 2.5 V, f_{IN} = 2 kHz</td>
<td></td>
<td>73.7</td>
<td></td>
</tr>
<tr>
<td>THD</td>
<td>Total harmonic distortion</td>
<td>f_{IN} = 2 kHz</td>
<td>–92</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>f_{IN} = 100 kHz</td>
<td>–90</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>f_{IN} = 200 kHz</td>
<td>–87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SINAD</td>
<td>Signal-to-noise and distortion</td>
<td>f_{IN} = 2 kHz</td>
<td>71.5</td>
<td>74.8</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>f_{IN} = 100 kHz</td>
<td>74.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>f_{IN} = 200 kHz</td>
<td>74.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SFDR</td>
<td>Spurious-free dynamic range</td>
<td>f_{IN} = 2 kHz</td>
<td>89.8</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>f_{IN} = 100 kHz</td>
<td>91</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>f_{IN} = 200 kHz</td>
<td>87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BW_{3dB}</td>
<td>Full-power bandwidth</td>
<td>At –3 dB</td>
<td>200</td>
<td>MHz</td>
<td></td>
</tr>
</tbody>
</table>

(1) Ideal input span; does not include gain or offset error.
(2) See Figure 31, Figure 29, and Figure 30 for statistical distribution data for INL, offset error, and gain error.
(3) LSB means least significant bit.
(4) See the OFFCAL State section for details.
(5) All specifications expressed in decibels (dB) refer to the full-scale input (FSR) and are tested with an input signal 0.5 dB below full-scale, unless otherwise noted.
(6) Calculated on the first nine harmonics of the input frequency.
Electrical Characteristics (continued)

at AVDD = 3.3 V, DVDD = 1.65 V to 3.6 V, f_{sample} = 1 MSPS, and V_{AINM} = 0 V (unless otherwise noted); minimum and maximum values for T_A = –40°C to +125°C; typical values at T_A = 25°C

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>DIGITAL INPUT/OUTPUT (CMOS Logic Family)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{IH} (High-level input voltage)</td>
<td></td>
<td>0.65 DVDD</td>
<td>DVDD + 0.3</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{IL} (Low-level input voltage)</td>
<td></td>
<td>–0.3</td>
<td>0.35 DVDD</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{OH} (High-level output voltage)</td>
<td>At f_{source} = 500 µA</td>
<td>0.8 DVDD</td>
<td>DVDD</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>At f_{source} = 2 mA</td>
<td>DVDD – 0.45</td>
<td>DVDD</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{OL} (Low-level output voltage)</td>
<td>At f_{sink} = 500 µA</td>
<td>0</td>
<td>0.2 DVDD</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>At f_{sink} = 2 mA</td>
<td>0</td>
<td>0.45</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td><strong>POWER-SUPPLY REQUIREMENTS</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVDD (Analog supply voltage)</td>
<td></td>
<td>1.65</td>
<td>3</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>DVDD (Digital I/O supply voltage)</td>
<td></td>
<td>1.65</td>
<td>3</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>I_{AVDD} (Analog supply current)</td>
<td>AVDD = 3.3 V, f_{SAMPLE} = 1 MSPS</td>
<td>450</td>
<td>500</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AVDD = 3.3 V, f_{SAMPLE} = 100 kSPS</td>
<td>46</td>
<td>50</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AVDD = 3.3 V, f_{SAMPLE} = 10 kSPS</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AVDD = 1.8 V, f_{SAMPLE} = 1 MSPS</td>
<td>230</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Static current with CS and SCLK high</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{DVDD} (Digital supply current)</td>
<td>DVDD = 1.8 V, CSDO = 20 pF, output code = 2AAAh</td>
<td>250</td>
<td></td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DVDD = 1.8 V, static current with CS and SCLK high</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(7) Digital voltage levels comply with the JESD8-7A standard for DVDD from 1.65 V to 1.95 V; see the Parameter Measurement Information section for details.

(8) See the Estimating Digital Power Consumption section for details.
6.6 Timing Requirements

All specifications are at AVDD = 1.65 V to 3.6 V, DVDD = 1.65 V to 3.6 V, and CLOAD-SDO = 20 pF (unless otherwise noted); minimum and maximum values for TA = –40°C to +125°C; typical values at TA = 25°C.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>tCLK</td>
<td>Time period of SCLK</td>
<td>41.66</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tsu_CSCK</td>
<td>Setup time: CS falling edge to SCLK falling edge</td>
<td>7</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>th_CKCS</td>
<td>Hold time: SCLK rising edge to CS rising edge</td>
<td>8</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tph_CK</td>
<td>SCLK high time</td>
<td>0.45</td>
<td>0.55</td>
<td></td>
<td>tSCLK</td>
</tr>
<tr>
<td>tpl_CK</td>
<td>SCLK low time</td>
<td>0.45</td>
<td>0.55</td>
<td></td>
<td>tSCLK</td>
</tr>
<tr>
<td>tph_CS</td>
<td>CS high time</td>
<td>15</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

6.7 Switching Characteristics

All specifications are at AVDD = 1.65 V to 3.6 V, DVDD = 1.65 V to 3.6 V, and CLOAD-SDO = 20 pF (unless otherwise noted); minimum and maximum values for TA = –40°C to +125°C; typical values at TA = 25°C.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>tCYCLE(1)</td>
<td>Cycle time</td>
<td>1000</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tCONV</td>
<td>Conversion time</td>
<td>18 × tSCLK</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tsen_CSDO</td>
<td>Delay time: CS falling edge to data enable</td>
<td>6.5</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>td_CKDO</td>
<td>Delay time: SCLK rising edge to (next) data valid on SDO</td>
<td>10</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>th_CKDO</td>
<td>SCLK rising edge to current data invalid</td>
<td>2.5</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>td_CSDO</td>
<td>Delay time: CS rising edge to SDO going to tri-state</td>
<td>5.5</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

(1) tCYCLE = 1 / fSAMPLE.
Figure 1. Serial Transfer Frame

Figure 2. Timing Specifications
6.8 Typical Characteristics

at $T_A = 25^\circ C$, AVDD = 3.3 V, DVDD = 1.8 V, $f_{IN} = 2$ kHz, and $f_{sample} = 1$ MSPS (unless otherwise noted)

Figure 3. Typical FFT

Figure 4. Typical FFT

Figure 5. Typical FFT

Figure 6. SNR and SINAD vs Temperature

Figure 7. SNR and SINAD vs Input Frequency

Figure 8. SNR and SINAD vs Reference Voltage (AVDD)
Typical Characteristics (continued)

at $T_A = 25^\circ C$, AVDD = 3.3 V, DVDD = 1.8 V, $f_{IN} = 2$ kHz, and $f_{samp} = 1$ MSPS (unless otherwise noted)

Figure 9. THD vs Temperature

Figure 10. THD vs Input Frequency

Figure 11. THD vs Reference Voltage (AVDD)

Figure 12. SFDR vs Temperature

Figure 13. SFDR vs Input Frequency

Figure 14. SFDR vs Reference Voltage (AVDD)
Typical Characteristics (continued)

at $T_A = 25^\circ C$, AVDD = 3.3 V, DVDD = 1.8 V, $f_{IN} = 2$ kHz, and $f_{sample} = 1$ MSPS (unless otherwise noted)

![Figure 15. Typical DNL](image1.png)

![Figure 16. Typical INL](image2.png)

![Figure 17. DNL vs Temperature](image3.png)

![Figure 18. INL vs Temperature](image4.png)

![Figure 19. INL vs Temperature](image5.png)

![Figure 20. INL vs Reference Voltage](image6.png)
Typical Characteristics (continued)

at \( T_A = 25^\circ C \), AVDD = 3.3 V, DVDD = 1.8 V, \( f_{\text{IN}} = 2 \text{ kHz} \), and \( f_{\text{sample}} = 1 \text{ MSPS} \) (unless otherwise noted)

![Figure 21. DC Input Histogram](image1)

![Figure 22. Offset vs Temperature](image2)

![Figure 23. Offset vs Reference Voltage (AVDD)](image3)

![Figure 24. Gain Error vs Temperature](image4)

![Figure 25. AVDD Current vs Temperature](image5)

![Figure 26. AVDD Current vs Throughput](image6)
Typical Characteristics (continued)

at $T_A = 25^\circ C$, AVDD = 3.3 V, DVDD = 1.8 V, $f_{IN} = 2$ kHz, and $f_{sample} = 1$ MSPS (unless otherwise noted)

Figure 27. AVDD Current vs AVDD Voltage

Figure 28. Static AVDD Current vs Temperature

Figure 29. Typical Offset Error Distribution

Figure 30. Typical Gain Error Distribution

Figure 31. Typical INL Distribution
7 Parameter Measurement Information

7.1 Digital Voltage Levels

The device complies with the JESD8-7A standard for DVDD from 1.65 V to 1.95 V. Figure 32 shows voltage levels for the digital input and output pins.

Figure 32. Digital Voltage Levels as per the JESD8-7A Standard
8 Detailed Description

8.1 Overview

The ADS7052 device belongs to a family of pin-to-pin compatible, high-speed, low-power, single-channel successive-approximation register (SAR) type analog-to-digital converters (ADCs). The device family includes multiple resolutions, throughputs, and analog input variants (see Table 1 for a list of devices).

The ADS7052 is a 14-bit, 1-MSPS SAR ADC that supports a single-ended input in the range of 0 V to AVDD, for AVDD in the range of 1.65 V to 3.6 V (see the Analog Input section for details on the analog input pins).

The internal offset calibration feature (see the OFFCAL State section) maintains excellent offset specifications over the entire AVDD and temperature operating range.

The device supports an SPI-compatible serial interface that is controlled by the CS and SCLK signals. The input signal is sampled with the CS falling edge and SCLK is used for both, conversion and serial data output (see the Device Functional Modes section, Timing Requirements table, and Switching Characteristics table).

The device supports a wide digital supply range (1.65 V to 3.6 V), enabling direct interfacing to a variety of host controllers. The ADS7052 complies with the JESD8-7A standard (see the Digital Voltage Levels section) for a normal DVDD range (1.65 V to 1.95 V).

The ADS7052 is available in an 8-pin, small, X2QFN package (see the Mechanical, Packaging, and Orderable Information section for more details) and is specified over the extended industrial temperature range (–40°C to +125°C).

The small form-factor and extremely-low power consumption make this device suitable for space-constrained and battery-powered applications that require high-speed, high-resolution data acquisition (see the Application Information section).

8.2 Functional Block Diagram
8.3 Feature Description

8.3.1 Product Family

The devices listed in Table 1 are all part of the same pin-to-pin compatible, high-speed, low-power, single-channel SAR ADC family. This device family includes multiple different ADC resolutions, throughputs, and analog input types to allow for greater flexibility in the end system. Devices in the same package are pin-compatible to offer a scalable family of devices for varying levels of end-system performance. The ADCs with device numbers ending in -Q1 are also AEC-Q100 qualified for automotive applications.

Table 1. Device Family Comparison

<table>
<thead>
<tr>
<th>DEVICE NUMBER</th>
<th>RESOLUTION (Bits)</th>
<th>THROUGHPUT (MSPS)</th>
<th>INPUT TYPE</th>
<th>PACKAGES(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADS7040</td>
<td>8</td>
<td>1</td>
<td>Single-ended</td>
<td>X2QFN (8): 1.5 mm × 1.5 mm VSSOP (8): 2.0 mm × 3.1 mm</td>
</tr>
<tr>
<td>ADS7041</td>
<td>10</td>
<td>1</td>
<td>Single-ended</td>
<td>X2QFN (8): 1.5 mm × 1.5 mm VSSOP (8): 2.0 mm × 3.1 mm</td>
</tr>
<tr>
<td>ADS7042</td>
<td>12</td>
<td>1</td>
<td>Single-ended</td>
<td>X2QFN (8): 1.5 mm × 1.5 mm VSSOP (8): 2.0 mm × 3.1 mm</td>
</tr>
<tr>
<td>ADS7043</td>
<td>12</td>
<td>1</td>
<td>Pseudo-differential</td>
<td>X2QFN (8): 1.5 mm × 1.5 mm VSSOP (8): 2.0 mm × 3.1 mm</td>
</tr>
<tr>
<td>ADS7044</td>
<td>12</td>
<td>1</td>
<td>Fully-differential</td>
<td>X2QFN (8): 1.5 mm × 1.5 mm VSSOP (8): 2.0 mm × 3.1 mm</td>
</tr>
<tr>
<td>ADS7029-Q1</td>
<td>8</td>
<td>2</td>
<td>Single-ended</td>
<td>VSSOP (8): 2.0 mm × 3.1 mm</td>
</tr>
<tr>
<td>ADS7039-Q1</td>
<td>10</td>
<td>2</td>
<td>Single-ended</td>
<td>VSSOP (8): 2.0 mm × 3.1 mm</td>
</tr>
<tr>
<td>ADS7049-Q1</td>
<td>12</td>
<td>2</td>
<td>Single-ended</td>
<td>VSSOP (8): 2.0 mm × 3.1 mm</td>
</tr>
<tr>
<td>ADS7046</td>
<td>12</td>
<td>3</td>
<td>Single-ended</td>
<td>X2QFN (8): 1.5 mm × 1.5 mm</td>
</tr>
<tr>
<td>ADS7047</td>
<td>12</td>
<td>3</td>
<td>Fully-differential</td>
<td>X2QFN (8): 1.5 mm × 1.5 mm</td>
</tr>
<tr>
<td>ADS7052</td>
<td>14</td>
<td>1</td>
<td>Single-ended</td>
<td>X2QFN (8): 1.5 mm × 1.5 mm</td>
</tr>
<tr>
<td>ADS7054</td>
<td>14</td>
<td>1</td>
<td>Fully-differential</td>
<td>X2QFN (8): 1.5 mm × 1.5 mm</td>
</tr>
<tr>
<td>ADS7056</td>
<td>14</td>
<td>2.5</td>
<td>Single-ended</td>
<td>X2QFN (8): 1.5 mm × 1.5 mm</td>
</tr>
<tr>
<td>ADS7057</td>
<td>14</td>
<td>2.5</td>
<td>Fully-differential</td>
<td>X2QFN (8): 1.5 mm × 1.5 mm</td>
</tr>
</tbody>
</table>

(1) Devices listed in the same package are pin-compatible.
8.3.2 Analog Input

The device supports a unipolar, single-ended analog input signal. Figure 33 shows a small-signal equivalent circuit of the sample-and-hold circuit. The sampling switch is represented by a resistance ($R_{S1}$ and $R_{S2}$, typically 50 Ω) in series with an ideal switch (SW$_1$ and SW$_2$). The sampling capacitors, $C_{S1}$ and $C_{S2}$, are typically 16 pF.

![Equivalent Input Circuit for the Sampling Stage](image)

During the acquisition process, both positive and negative inputs are individually sampled on $C_{S1}$ and $C_{S2}$, respectively. During the conversion process, the device converts for the voltage difference between the two sampled values: $V_{AINP} - V_{AINM}$.

Each analog input pin has electrostatic discharge (ESD) protection diodes to AVDD and GND. Keep the analog inputs within the specified range to avoid turning the diodes on.

The full-scale analog input range (FSR) is 0 V to AVDD.
8.3.3 Reference

The device uses the analog supply voltage (AVDD) as the reference voltage for the analog to digital conversion. During the conversion process, the internal capacitors are switched to the AVDD pin as per the successive approximation algorithm. A voltage reference must be selected with low temperature drift, high output current drive and low output impedance. TI recommends a 3.3-µF ($C_{AVDD}$), low equivalent series resistance (ESR) ceramic capacitor between the AVDD and GND pins. This decoupling capacitor provides the instantaneous charge required by the internal circuit during the conversion process and maintains a stable dc voltage on the AVDD pin.

See the Power Supply Recommendations and Layout Example sections for component recommendations and layout guidelines.

![Reference for the Device](image)

Figure 34. Reference for the Device
8.3.4 ADC Transfer Function

The device supports a unipolar, single-ended analog input signal. The output is in straight binary format. Figure 35 and Table 2 show the ideal transfer characteristics for the device.

The least significant bit for the device is given by:

\[ 1 \text{ LSB} = \frac{V_{\text{REF}}}{2^N} \]

where:
- \( V_{\text{REF}} \) = Voltage applied between the AVDD and GND pins
- \( N = 14 \)

\[ (1) \]

Figure 35. Ideal Transfer Characteristics

Table 2. Transfer Characteristics

<table>
<thead>
<tr>
<th>INPUT VOLTAGE (AINP – AINM)</th>
<th>CODE</th>
<th>DESCRIPTION</th>
<th>IDEAL OUTPUT CODE (Hex)</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \leq ) 1 LSB</td>
<td>NFSC</td>
<td>Negative full-scale code</td>
<td>0000</td>
</tr>
<tr>
<td>1 LSB to 2 LSBs</td>
<td>NFSC + 1</td>
<td>—</td>
<td>0001</td>
</tr>
<tr>
<td>( V_{\text{REF}} / 2 ) to ( V_{\text{REF}} / 2 + 1 ) LSB</td>
<td>MC</td>
<td>Mid code</td>
<td>1FFF</td>
</tr>
<tr>
<td>( V_{\text{REF}} / 2 + 1 ) LSB to ( V_{\text{REF}} / 2 + 2 ) LSB</td>
<td>MC + 1</td>
<td>—</td>
<td>2000</td>
</tr>
<tr>
<td>( \geq V_{\text{REF}} – 1 ) LSB</td>
<td>PFSC</td>
<td>Positive full-scale code</td>
<td>3FFF</td>
</tr>
</tbody>
</table>
8.4 Device Functional Modes

The device supports a simple, SPI-compatible interface to the external host. On power-up, the device is in the ACQ state. The CS signal defines one conversion and serial data transfer frame. A frame starts with a CS falling edge and ends with a CS rising edge. The SDO pin is tri-stated when CS is high. With CS low, the clock provided on the SCLK pin is used for conversion and data transfer. Output data are available on the SDO pin.

As shown in Figure 36, the device supports three functional states: acquisition (ACQ), conversion (CNV), and offset calibration (OFFCAL). The device status depends on the CS and SCLK signals provided by the host controller.

![Figure 36. Functional State Diagram](image)

8.4.1 ACQ State

In the ACQ state, switches SW1 and SW2 connected to the analog input pins close and the device acquires the analog input signal on CS1 and CS2. The device enters ACQ state at power-up, at the end of every conversion, and after completing the offset calibration. A CS falling edge takes the device from the ACQ state to the CNV state.

The device consumes extremely low power from the AVDD and DVDD power supplies when in ACQ state.
Device Functional Modes (continued)

8.4.2 CNV State

In the CNV state, the device uses the external clock to convert the sampled analog input signal to an equivalent
digital code as per the transfer function illustrated in Figure 35. The conversion process requires a minimum of
18 SCLK falling edges to be provided within the frame. After the end of conversion process, the device
automatically moves from the CNV state to the ACQ state. For acquisition of the next sample, a minimum time of
$t_{ACQ}$ must be provided.

Figure 37 shows a detailed timing diagram for the serial interface. In the first serial transfer frame after power-up,
the device provides the first data as all zeros. In any frame, the clocks provided on the SCLK pin are also used to
transfer the output data for the previous conversion. A leading 0 is output on the SDO pin on the CS falling edge.
The most significant bit (MSB) of the output data is launched on the SDO pin on the rising edge after the first
SCLK falling edge. Subsequent output bits are launched on the subsequent rising edges provided on SCLK.
When all 14 output bits are shifted out, the device outputs 0's on the subsequent SCLK rising edges. The device
enters the ACQ state after 18 clocks and a minimum time of $t_{ACQ}$ must be provided for acquiring the next sample.
If the device is provided with less than 18 SCLK falling edges in the present serial transfer frame, the device
provides an invalid conversion result in the next serial transfer frame.

![Serial Interface Timing Diagram](image-url)
Device Functional Modes (continued)

8.4.3 OFFCAL State

In the offset calibration (OFFCAL) state, the sampling capacitors are disconnected from the analog input pins (AINP and AINM) and the device calibrates and corrects for any internal offset errors. The offset calibration is effective for all subsequent conversions until the device is powered off. An offset calibration cycle is recommended at power-up and whenever there is a significant change in the operating conditions for the device (such as in the AVDD voltage and operating temperature).

The host controller must provide a serial transfer frame as described in Figure 38 or in Figure 39 to enter the OFFCAL state.

8.4.3.1 Offset Calibration on Power-Up

On power-up, the host must provide 24 SCLKs in the first serial transfer to enter the OFFCAL state. The device provides 0's on SDO during offset calibration. For acquisition of the next sample, a minimum time of $t_{ACQ}$ must be provided.

If the host controller starts the offset calibration process but then pulls the CS pin high before providing 24 SCLKs, then the offset calibration process is aborted and the device enters the ACQ state. Figure 38 and Table 3 provide the timing for offset calibration on power-up.

![Figure 38. Timing for Offset Calibration on Power-Up](image)

### Table 3. Timing Specifications for Offset Calibration on Power-Up\(^{(1)}\)

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_{cycle}$</td>
<td>Cycle time for offset calibration on power-up</td>
<td>$24 \times f_{CLK} + t_{ACQ}$</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>$t_{ACQ}$</td>
<td>Acquisition time</td>
<td>230</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>$f_{SCLK}$</td>
<td>Frequency of SCLK</td>
<td>24</td>
<td>MHz</td>
<td></td>
</tr>
</tbody>
</table>

\(^{(1)}\) In addition to the timing specifications of Figure 38 and Table 3, the timing specifications described in Figure 2 and the Timing Requirements table are also applicable for offset calibration on power-up.
8.4.3.2 Offset Calibration During Normal Operation

During normal operation, the host must provide 64 SCLKs in the serial transfer frame to enter the OFFCAL state. The device provides the conversion result for the previous sample during the first 18 SCLKs and 0's on SDO for the rest of the SCLKs in the serial transfer frame. For acquisition of the next sample, a minimum time of \( t_{ACQ} \) must be provided.

If the host controller provides more than 18 SCLKs but pulls the CS high before providing 64 SCLKs, then the offset calibration process is aborted and the device enters the ACQ state. Figure 39 and Table 4 provide the timing for offset calibration during normal operation.

![Figure 39. Timing for Offset Calibration During Normal Operation](image)

Table 4. Timing Specifications for Offset Calibration During Normal Operation

<table>
<thead>
<tr>
<th>Specification</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>( t_{cycle} )</td>
<td>Cycle time for offset calibration on power-up</td>
<td>64 ( \times t_{CLK} ) + ( t_{ACQ} )</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>( t_{ACQ} )</td>
<td>Acquisition time</td>
<td>230</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>( f_{SCLK} )</td>
<td>Frequency of SCLK</td>
<td>24</td>
<td></td>
<td>MHz</td>
</tr>
</tbody>
</table>

(1) In addition to the timing specifications of Figure 39 and Table 4, the timing specifications described in Figure 2 and the Timing Requirements table are also applicable for offset calibration during normal operation.
9 Application and Implementation

NOTE
Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information
The two primary supporting circuits required to maximize the performance of a high-precision, successive approximation register (SAR) analog-to-digital converter (ADC) are the input driver and the reference driver circuits. This section details some general principles for designing the input driver circuit, reference driver circuit, and provides typical application circuits designed for the device.

9.2 Typical Applications

9.2.1 Single-Supply Data Acquisition With the ADS7052

9.2.1.1 Design Requirements
The goal of the circuit shown in Figure 40 is to design a single-supply data acquisition (DAQ) circuit based on the ADS7052 with SNR greater than 74 dB and THD less than –85 dB for input frequencies of 2 kHz at a throughput of 1 MSPS for applications such as low power data acquisition systems, sensor monitoring, and environmental sensing.
Typical Applications (continued)

9.2.1.2 Detailed Design Procedure

The input driver circuit for a high-precision ADC mainly consists of two parts: a driving amplifier and charge kickback filter. Careful design of the front-end circuit is critical to meet the linearity and noise performance of a high-precision ADC.

9.2.1.2.1 Low Distortion Charge Kickback Filter Design

Figure 41 shows the input circuit of a typical SAR ADC. During the acquisition phase, the SW switch closes and connects the sampling capacitor (C_{SH}) to the input driver circuit. This action introduces a transient on the input pins of the SAR ADC. An ideal amplifier with \(0\ \Omega\) of output impedance and infinite current drive can settle this transient in zero time. For a real amplifier with non-zero output impedance and finite drive strength, this switched capacitor load can create stability issues.

![Figure 41. Input Sample-and-Hold Circuit for a Typical SAR ADC](image)

\[
f_{3dB} = \frac{1}{2 \pi R_{FLT} C_{FLT}}
\]

For ac signals, the filter bandwidth must be kept low to band-limit the noise fed into the ADC input, thereby increasing the signal-to-noise ratio (SNR) of the system. Besides filtering the noise from the front-end drive circuitry, the RC filter also helps attenuate the sampling charge injection from the switched-capacitor input stage of the ADC. A filter capacitor, \(C_{FLT}\), is connected across the ADC inputs. This capacitor helps reduce the sampling charge injection and provides a charge bucket to quickly charge the internal sample-and-hold capacitors during the acquisition process. As a rule of thumb, the value of this capacitor is at least 20 times the specified value of the ADC sampling capacitance. For this device, the input sampling capacitance is equal to 16 pF. Thus, the value of \(C_{FLT}\) is greater than 320 pF. Select a COG- or NPO-type capacitor because these capacitor types have a high-Q, low-temperature coefficient, and stable electrical characteristics under varying voltages, frequency, and time.

Driving capacitive loads can degrade the phase margin of the input amplifiers, thus making the amplifier marginally unstable. To avoid amplifier stability issues, series isolation resistors (\(R_{FLT}\)) are used at the output of the amplifiers. A higher value of \(R_{FLT}\) is helpful from the amplifier stability perspective, but adds distortion as a result of interactions with the nonlinear input impedance of the ADC. Distortion increases with source impedance, input signal frequency, and input signal amplitude. Therefore, the selection of \(R_{FLT}\) requires balancing the stability and distortion of the design.
Typical Applications (continued)

9.2.1.2.2 Input Amplifier Selection

The input amplifier bandwidth is typically much higher than the cutoff frequency of the charge kickback filter. Thus, TI strongly recommends performing a SPICE simulation to confirm that the amplifier has more than 40° phase margin with the selected filter. Simulation is critical because even with high-bandwidth amplifiers, some amplifiers can require more bandwidth than others to drive similar filters. To learn more about the SAR ADC input driver design, see the TI Precision Labs training video series.

For the application circuit of Figure 40, the OPA836 is selected for its high bandwidth (205 MHz), low noise (4.6 nV/√Hz), high output drive capacity (45 mA), and fast settling response (22 ns for 0.1% settling).

9.2.1.2.3 Reference Circuit

The ADS70xx uses the analog supply voltage (AVDD) as the reference voltage for the analog to digital conversion. During the conversion process, the internal capacitors are switched to the level of the AVDD pin as per the successive approximation algorithm. A voltage reference must be selected with low temperature drift, high output current drive and low output impedance. For this application, the REF1933 was selected as the voltage reference and analog power supply for the ADC. The REF1933 has excellent temperature drift performance (25 ppm/°C), good initial accuracy (0.1%), high output drive capability (25 mA), and low quiescent current (360 µA). The REF1933 also provides a bias voltage output of half the reference voltage (VREF/2) which can be used as the common mode input for the amplifier.

TI recommends a 3.3-µF (C_{AVDD}), low equivalent series resistance (ESR) ceramic capacitor between the AVDD and GND pins. This decoupling capacitor provides the instantaneous charge required by the internal circuit during the conversion process and maintains a stable dc voltage on the AVDD pin.

9.2.1.3 Application Curve

Figure 42 provides the measurement result for the circuit described in Figure 40.

![SNR vs. Input Frequency Graph](image)

**Figure 42. Test Results for the ADS7052 and OPA836 for a 2-kHz Input**

SNR = 75.3 dB, THD = −90.1 dB, SINAD = 75 dB
Typical Applications (continued)

9.2.2 High Bandwidth (200 kHz) Data Acquisition With the ADS7052

![Diagram of High Bandwidth DAQ Circuit]

9.2.2.1 Design Requirements

Applications such as motor control feedback loops, motor encoders, global positioning systems (GPS), and optical modules need analog-to-digital converters that are interfaced to high-frequency sensors (200 kHz to 1 MHz). The goal of the circuit described in Figure 43 is to design a circuit based on the ADS7052 with SNR greater than 73 dB and THD less than –85 dB for input frequencies of 200 kHz at a throughput of 1 MSPS.

9.2.2.2 Detailed Design Procedure

To achieve a SINAD greater than 73 dB and THD less than –85 dB, the operational amplifier must have high bandwidth in order to settle the input signal within the acquisition time of the ADC. The operational amplifier must have low noise to keep the total system noise below 20% of the input-referred noise of the ADC. For the application circuit shown in Figure 43, the THS4031 is selected for its high bandwidth (275 MHz), low total harmonic distortion of –90 dB at 1 MHz, and ultra-low noise of 1.6 nV/√Hz. The THS4031 is powered up from dual power supply (VDD = 6 V and VSS = –6 V).

For this application, the REF1933 was selected as the voltage reference and analog power supply for the ADC. The REF1933 has excellent temperature drift performance (25 ppm/°C), good initial accuracy (0.1%), high output drive capability (25 mA), and low quiescent current (360 µA). The REF1933 also provides a bias voltage output of half the reference voltage (VREF / 2) that can be used as the common-mode input for the amplifier.

The SNR performance at higher input frequency is highly dependant on jitter on the sampling signal (CS). TI recommends selecting a clock source that has very low jitter (< 20-ps RMS).
Typical Applications (continued)

9.2.2.3 Application Curve

Figure 44 shows the FFT plot for the ADS7052 with a 200-kHz input frequency used for the circuit in Figure 43.

SNR = 74.2 dB, THD = –90.4 dB, SINAD = 74 dB

Figure 44. Test Results for the ADS7052 and THS4031 for a 200-kHz Input
Typical Applications (continued)

9.2.3 14-Bit, 10-kSPS DAQ Circuit Optimized for DC Sensor Measurements

In applications where the input is very slow moving and the overall system ENOB is not a critical parameter, a DAQ circuit can be designed without the input driver for the ADC. This type of a use case is of particular interest for applications in which the primary goal is to achieve the absolute lowest power possible. Typical applications that fall into this category are low-power sensor applications (such as temperature, pressure, humidity, gas, and chemical).

9.2.3.1 Design Requirements

For this design example, use the parameters listed in Table 5 as the input parameters.

<table>
<thead>
<tr>
<th>DESIGN PARAMETER</th>
<th>GOAL VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Throughput</td>
<td>10 kSPS</td>
</tr>
<tr>
<td>SNR at 100 Hz</td>
<td>74 dB</td>
</tr>
<tr>
<td>THD at 100 Hz</td>
<td>–85 dB</td>
</tr>
<tr>
<td>SINAD at 100 Hz</td>
<td>73 dB</td>
</tr>
<tr>
<td>ENOB</td>
<td>12 bits</td>
</tr>
<tr>
<td>Power</td>
<td>20 µW</td>
</tr>
</tbody>
</table>

9.2.3.2 Detailed Design Procedure

The ADS7052 can be directly interfaced with sensors at lower throughput without the need of an amplifier buffer, however, the output impedance of the sensor must be taken into account. The sensor must be capable of driving the switched capacitor load of a SAR ADC and settling the analog input signal within the acquisition time of the SAR ADC. Figure 45 shows the simplified circuit for a sensor as a voltage source with output impedance ($R_{\text{source}}$). As the output impedance of the sensor increases, the device requires more acquisition time to settle the input signal to the desired accuracy.

The acquisition time of a SAR ADC (such as the ADS7052) can be increased by reducing throughput in the following ways:

1. Reducing the SCLK frequency to reduce the throughput or
2. Keeping the SCLK fixed at the highest permissible value (that is, 24 MHz for the device) and increasing the CS high time
Table 6 lists the acquisition time for the above two cases for a throughput of 10 kSPS. Clearly, case 2 provides more acquisition time for the input signal to settle.

Table 6. Acquisition Time With Different SCLK Frequencies

<table>
<thead>
<tr>
<th>CASE</th>
<th>SCLK</th>
<th>t\text{cycle}</th>
<th>CONVERSION TIME (= 18 \times t_{SCLK})</th>
<th>ACQUISITION TIME (= t_{cycle} - t_{conv})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.24 MHz</td>
<td>100 \mu s</td>
<td>75 \mu s</td>
<td>25 \mu s</td>
</tr>
<tr>
<td>2</td>
<td>24 MHz</td>
<td>100 \mu s</td>
<td>0.75 \mu s</td>
<td>99.25 \mu s</td>
</tr>
</tbody>
</table>

9.2.3.3 Application Curve

Figure 46 provides the results for ENOB achieved from the ADS7052 for case 2 at different throughputs with different values of sensor output impedance.

Table 7 shows the results and performance summary for this 14-bit, 10-kSPS DAQ circuit application with a sensor output impedance of 22 kΩ.

Table 7. Results and Performance Summary for a 14-Bit, 10-kSPS DAQ Circuit for DC Sensor Measurements

<table>
<thead>
<tr>
<th>DESIGN PARAMETER</th>
<th>GOAL VALUE</th>
<th>ACHIEVED RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Throughput</td>
<td>10 kSPS</td>
<td>10 kSPS</td>
</tr>
<tr>
<td>SNR at 100 Hz</td>
<td>74 dB</td>
<td>75 dB</td>
</tr>
<tr>
<td>THD at 100 Hz</td>
<td>–85 dB</td>
<td>–89 dB</td>
</tr>
<tr>
<td>SINAD at 100 Hz</td>
<td>73 dB</td>
<td>74.3 dB</td>
</tr>
<tr>
<td>ENOB</td>
<td>12 bits</td>
<td>12.05 bits</td>
</tr>
<tr>
<td>Power</td>
<td>20 \mu W</td>
<td>17 \mu W</td>
</tr>
</tbody>
</table>
10 Power Supply Recommendations

10.1 AVDD and DVDD Supply Recommendations

The device has two separate power supplies: AVDD and DVDD.

AVDD powers the analog blocks and is also used as the reference voltage for the analog-to-digital conversion. Use a low-noise, low-dropout regulator (LDO) or a discrete reference to supply AVDD (see the Reference and Application Information sections). Always set the AVDD supply to be greater than or equal to the maximum input signal to avoid code saturation. Decouple the AVDD pin to the GND pin with a 3.3-µF ceramic decoupling capacitor.

DVDD is used for the interface circuits. Decouple the DVDD pin to the GND pin with a 1-µF ceramic decoupling capacitor. Figure 47 shows the decoupling recommendations.

10.2 Optimizing Power Consumed by the Device

In order to best optimize the power consumed by the device, use the following design considerations:

- Keep the analog supply voltage (AVDD) in the specified operating range and equal to the maximum analog input voltage.
- Keep the digital supply voltage (DVDD) in the specified operating range and at the lowest value supported by the host controller.
- Reduce the load capacitance on the SDO output.
- Run the device at the optimum throughput. Power consumption reduces proportionally with the throughput.

10.2.1 Estimating Digital Power Consumption

The current consumption from the DVDD supply depends on the DVDD voltage, the load capacitance on the SDO pin (\(C_{\text{LOAD-SDO}}\)), and the output code, and can be calculated as:

\[I_{\text{DVDD}} = C_{\text{LOAD-SDO}} \times V \times f\]

where:

- \(C_{\text{LOAD-SDO}}\) = Load capacitance on the SDO pin
- \(V\) = DVDD supply voltage
- \(f\) = Frequency of transitions on the SDO output

(2)

The number of transitions on the SDO output depends on the output code, and thus changes with the analog input. The maximum value of \(f\) occurs when data output on the SDO change on every SCLK (that is, for output codes of \(\text{2AAAh}\) or \(\text{1555h}\)). With an output code of \(\text{2AAAh}\) or \(\text{1555h}\), \(f = 7\) MHz and when \(C_{\text{LOAD-SDO}} = 20\) pF and \(DVDD = 1.8\) V, \(I_{\text{DVDD}} = 250\) µA.
11 Layout

11.1 Layout Guidelines

Figure 48 shows a typical connection diagram for the ADS7052.

Figure 48. Typical Connection Diagram

Figure 49 depicts a board layout example for the device for the typical connection diagram in Figure 48. The key considerations for layout are:

- Use a solid ground plane underneath the device and partition the PCB into analog and digital sections.
- Avoid crossing digital lines with the analog signal path and keep the analog input signals and the reference input signals away from noise sources.
- The power sources to the device must be clean and well-bypassed. Use $C_{AVDD}$ decoupling capacitors in close proximity to the analog (AVDD) power-supply pin.
- Use a $C_{DVDD}$ decoupling capacitor close to the digital (DVDD) power-supply pin.
- Avoid placing vias between the AVDD and DVDD pins and the bypass capacitors.
- Connect the ground pin to the ground plane using a short, low-impedance path.
- Place the charge kickback filter components close to the device.

Among ceramic surface-mount capacitors, COG (NPO) ceramic capacitors are recommended because these components provide the most stable electrical properties over voltage, frequency, and temperature changes.
11.2 Layout Example

![Diagram showing layout example with labels for AVDD, DVDD, GND, CS, SCLK, SDO, AINP, AVDD Plane, and CFLT, DLTT, and RFLT paths.]

Figure 49. Example Layout
12 Device and Documentation Support

12.1 Device Support

12.1.1 Development Support

*TI Precision Labs Training Video Series*

12.2 Documentation Support

12.2.1 Related Documentation

For related documentation see the following:

Input Driver Amplifier (Single-Ended Inputs):
- **OPA836** Very-Low-Power, Rail-to-Rail Out, Negative-Rail In, Voltage-Feedback Operational Amplifiers
- **THS403x** 100-MHz Low-Noise High-Speed Amplifiers
- **OPA8365** 50-MHz, Zero-Crossover, Low-Distortion, High CMRR, RRI/O, Single-Supply Operational Amplifier

Input Driver Amplifier (Fully-Differential Inputs):
- **THS4551** Low-Noise, Precision, 150-MHz, Fully Differential Amplifier
- **OPA836** Very-Low-Power, Rail-to-Rail Out, Negative-Rail In, Voltage-Feedback Operational Amplifiers

Reference Driver:
- **REF19xx** Low-Drift, Low-Power, Dual-Output, $V_{REF}$ and $V_{REF}/2$ Voltage References
- **REF61xx** High-Precision Voltage Reference With Integrated ADC Drive Buffer

Similar Devices:
- **ADS7042** Ultra-Low Power, Ultra-Small Size, 12-Bit, 1-MSPS, SAR ADC
- **ADS7049-Q1** Small-Size, Low-Power, 12-Bit, 2-MSPS, SAR ADC

Reference Designs:
- **TI Design**: *Analog Front-End Reference Design for Imaging Using Time-Interleaved SAR ADCs With 73-dB SNR, 7.5 MSPS*
- **Single-Ended to Differential Using an Op Amp and FDA for Bipolar Signals**

12.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.4 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI’s Terms of Use.

**TI E2E™ Online Community**  *TI’s Engineer-to-Engineer (E2E) Community*. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

**Design Support**  *TI’s Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.5 Trademarks

E2E is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.
12.6 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.7 Glossary

SLYZ022 — Ti Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
NOTES: (continued)

3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
## PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish (6)</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADS7052IRUGR</td>
<td>ACTIVE</td>
<td>X2QFN</td>
<td>RUG</td>
<td>8</td>
<td>3000</td>
<td>Green (RoHS &amp; no Sb/Br)</td>
<td>NIPDAUAG</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>9O</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:

**ACTIVE**: Product device recommended for new designs.

**LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

**NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

**PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.

**OBsolete**: TI has discontinued the production of the device.

(2) **RoHS**: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

**RoHS Exempt**: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

**Green**: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of ≤1000ppm threshold. Antimony trioxide based flame retardants must also meet the ≤1000ppm threshold requirement.

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) **Lead/Ball Finish** - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

**Important Information and Disclaimer**: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
### TAPE AND REEL INFORMATION

**REEL DIMENSIONS**

**TAPE DIMENSIONS**

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADS7052IRUGR</td>
<td>X2QFN</td>
<td>RUG</td>
<td>8</td>
<td>3000</td>
<td>180.0</td>
<td>8.4</td>
<td>1.6</td>
<td>1.6</td>
<td>0.66</td>
<td>4.0</td>
<td>8.0</td>
<td>Q2</td>
</tr>
</tbody>
</table>

*All dimensions are nominal.*
**TAPE AND REEL BOX DIMENSIONS**

*All dimensions are nominal*

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADS7052IRUGR</td>
<td>X2QFN</td>
<td>RUG</td>
<td>8</td>
<td>3000</td>
<td>183.0</td>
<td>183.0</td>
<td>20.0</td>
</tr>
</tbody>
</table>
NOTES:  
A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.  
B. This drawing is subject to change without notice.  
C. QFN (Quad Flatpack No-Lead) package configuration.  
D. This package complies to JEDEC MO-298 variation X2ECD.
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.
E. Maximum stencil thickness 0.127 mm (5 mils). All linear dimensions are in millimeters.
F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
G. Side aperture dimensions over-print land for acceptable area ratio > 0.66. Customers may reduce side aperture dimensions if stencil manufacturing process allows for sufficient release at smaller opening.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2020, Texas Instruments Incorporated