

Support & training

AFE7906 SBASAF7C – JANUARY 2022 – REVISED MAY 2023

AFE7906 6-Channel, 5-MHz to 12-GHz RF Sampling Receiver with 3-GSPS ADCs

1 Features

Texas

• Request full data sheet

INSTRUMENTS

- Six RF sampling 14 bit, 3 GSPS ADCs
- Maximum RF signal bandwidth:
 - 4 ADCs: 1200 MHz per ADC6 ADCs: 600 MHz per ADC
- RF frequency range: 5 MHz 12 GHz
- Digital step attenuators (DSA): 25 dB range, 0.5dB steps
- Single DDC (on 6 channels) or dual-band DDCs (on 4 channels)
- 16x NCOs per DDC channel
- Optional Internal PLL/VCO for ADC clocks or external clock at ADC sample rate
- Sysref alignment detector
- SerDes data interface:
 - JESD204B and JESD204C compatible
 - 8 SerDes transmitters up to 29.5 Gbps
 - Subclass 1 multi-device synchronization
- Package: 17-mm × 17-mm FCBGA, 0.8-mm pitch

2 Applications

- Radar
- Seeker front end
- Defense radio
- Wireless communications test

3 Description

The AFE7906 is a high performance, wide bandwidth multi-channel receiver, integrating six RF Sampling ADCs. With operation up to 12 GHz, this device enables direct RF sampling in the L, S, C and X-band frequency ranges without the need for additional frequency conversions stages. This improvement in density and flexibility enables high-channel-count, multi-mission systems.

Each receiver chain includes a 25-dB range DSA (Digital Step Attenuator), followed by a 3-GSPS ADC (analog-to-digital converter). Four receiver channels have an analog peak power detector and various digital power detectors to assist an external or internal autonomous automatic gain controller, and RF overload detectors for device reliability protection. Flexible decimation options provide optimization of data bandwidth up to 1200 MHz for four RX or 600 MHz.

The device contains a SYSREF timing detector to allow optimization of the SYSREF input timing relative to the device clock.

Package Information

PART NUMBER	PACKAGE ⁽¹⁾	PACKAGE SIZE ⁽²⁾
AFE7906	FC-BGA	17.00 mm × 17.00 mm

 For all available packages, see the orderable addendum at the end of the data sheet.

(2) The package size (length × width) is a nominal value and includes pins, where applicable.

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

Table of Contents

1 Features	1
2 Applications	1
3 Description	1
4 Description (continued)	3
5 Revision History	3
6 Specifications	4
6.1 Absolute Maximum Ratings	4
6.2 ESD Ratings	4
6.3 Recommended Operating Conditions	5
6.4 Thermal Information	<mark>5</mark>
6.5 RF ADC Electrical Characteristics	6
6.6 PLL/VCO/Clock Electrical Characteristics	12

6.7 Digital Electrical Characteristics	14
6.8 Power Supply Electrical Characteristics	15
6.9 Timing Requirements	17
6.10 Switching Characteristics	18
6.11 Typical Characteristics	19
7 Device and Documentation Support	68
7.1 Receiving Notification of Documentation Updates	68
7.2 Support Resources	68
7.3 Trademarks	68
7.4 Electrostatic Discharge Caution	68
7.5 Glossary	68
8 Mechanical, Packaging, and Orderable Information	68

Dago

Page

4 Description (continued)

Each receiver chain includes a 25-dB range DSA (Digital Step Attenuator), followed by a 3-GSPS ADC (analogto-digital converter). Each receiver channel has an analog peak power detector and various digital power detectors to assist an external or internal autonomous automatic gain controller, and RF overload detectors for device reliability protection. Flexible decimation options provide optimization of data bandwidth up to 1200 MHz for four RX without FB paths or 600 MHz with two FB paths (1200 MHz BW each).

The device contains a SYSREF timing detector to allow optimization of the SYSREF input timing relative to the device clock.

5 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from July 9, 2022 to May 30, 2023 (from Revision B (July 2022) to Revision C (May 2023))

•	Changed the Device Information to Package Information table
•	Changed I_{IH} and I_{IL} units to μA_{\dots} 14

Changes from March 11, 2022 to July 8, 2022 (from Revision A (March 2022) to Revision B (July 2022))

Deleted ABJ from the Thermal Information table. The table applies to both ABJ and the ALK pa	Cpackages4
Changed 0RX - 3RX to 1RX - 4RX in several plots	40
Changed 0RX - 3RX to 1RX - 4RX in several plots	45

С	Changes from Revision * (January 2022) to Revision A (March 2022)	
•	Added <i>Feature</i> to Request the full data sheet	1
•	Added the Specification tables to the data sheet	4
•	Changed Power Mode 4 to f _{RX} = 2.25 GHz	15
•	Added the Typical Characteristics section to the data sheet	
	51	

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
Supply Voltage Range	DVDD0P9, VDDT0P9	-0.3	1.2	V
	VDD1P2RX, VDD1P2TXCLK, VDD1P2TXENC, VDD1P2PLL, VDD1P2PLLCLKREF, VDD1P2FB, VDD1P2FBCML, VDD1P2RXCML	-0.3	1.4	V
	VDD1P8RX, VDD1P8RXCLK, VDD1P8TX, VDD1P8TXDAC, VDD1P8TXENC, VDD1P8PLL, VDD1P8PLLVCO, VDD1P8FB, VDD1P8FBCLK, VDD1P8GPIO, VDDA1P8	-0.5	2.1	V
	{1/2/3/4}RXIN+/-	-0.5	VDDRX1P8+0.3	V
	1FBIN+/-, 2FB+/-	-0.5	VDDFB1P8+0.3	V
	REFCLK+/-, SYSREF+/-	-0.3	1.4	V
Pin Volatge	{1:8}STX+/-	-0.3	1.4	V
Range	GPIO{B/C/D/E}x, SPICLK, SPISDIO, SPISDO, SPISEN, RESETZ, BISTB0, BISTB1	-0.5	VDD1P8GPIO + 0.3	V
	IFORCE, VSENSE	-0.3	VDDCLK1P8 + 0.3	V
	SRDAMUX1, SRDAMUX2	-0.3	VDDA1P8+0.3	V
Peak Input Current	any input		20	mA
TJ	Junction temperature		150	°C
T _{stg}	Storage temperature	-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

				VALUE	UNIT
M	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/ JEDEC JS-001, all pins ⁽¹⁾	1000	V	
	V _(ESD)	Electrostatic discharge	Charged device model (CDM), per ANSI/ESDA/ JEDEC JS-002, all pins ⁽²⁾	150	v

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard

ESD control process. Manufacturing with less than 250-V CDM is possible if necessary precautions are taken.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
DVDD0P9, VDDT0P9	Supply voltage 0.9V	0.9	0.925	0.95	V
VDD1P2{RX/TXCLK/TXENC/FB/PLL/ PLLCLKREF/FBCML/RXCML}	Supply voltage 1.2V	1.15	1.2	1.25	V
VDD1P8{RX/RXCLK/TX/TXDAC/ TXENC/PLL/PLLVCO/FB/FBCLK/ GPIO}, VDDA1P8	Supply voltage 1.8V	1.75	1.8	1.85	V
T _A	Ambient temperature	-40		85	°C
т.	Operating Junction Temperature			110 <mark>(1)</mark>	°C
1 J 	Maximum Operating Junction Temperature	125			°C

(1) Prolonged use at or above this junction temperature can increase the device failure-in-time (FIT) rate. Refer to SBAA403 application note for additional details

6.4 Thermal Information

THERMAL METRIC ⁽¹⁾		AFE7906		
		FC-BGA	UNIT	
		400 PINS	-	
R _{θJA}	Junction-to-ambient thermal resistance	16.2	°C/W	
R _{0JC(top)}	Junction-to-case (top) thermal resistance	0.42	°C/W	
R _{θJB}	Junction-to-board thermal resistance	4.85	°C/W	
Ψ_{JT}	Junction-to-top characterization parameter	0.12	°C/W	
Ψ _{JB}	Junction-to-board characterization parameter	4.6	°C/W	

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 RF ADC Electrical Characteristics

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
ADC _{RES}	ADC resolution			14		bits	
F _{RFin}	RF input frequency range		5		12000	MHz	
		f_{IN} = 5 MHz, DSA=0dB, f_{ADC} = 1500MSPS, f_{NCO} = 17MHz, Decimate by 48		-0.4			
		f_{IN} = 30 MHz, DSA=0dB, f_{ADC} = 1500MSPS, f_{NCO} = 30MHz, Decimate by 24		-2.2			
Pro our c	Min Full scale input power, at device	$\label{eq:fine} \begin{array}{l} f_{\text{IN}} = 410 \text{ MHz}, \text{ DSA=0dB}, f_{\text{ADC}} \\ = 3000 \text{MSPS}, \ f_{\text{NCO}} = 400 \text{MHz}, \\ \text{Decimate by 12} \end{array}$		-2.5			
FS_CW,min	pins ⁽¹⁾	f _{IN} = 830 MHz, DSA=0dB		-2.9		UDIII	
		f _{IN} = 1760 MHz, DSA=0dB		-2.8			
		f _{IN} = 2610 MHz, DSA=0dB		-1.8			
		f _{IN} = 3610 MHz, DSA=0dB		-0.4			
		f _{IN} = 4910 MHz, DSA=0dB		0.1			
		f _{IN} = 8150 MHz, DSA=0dB		2.1			
		f _{IN} = 9610 MHz, DSA=0dB		4.3			
	MAX Full scale input power - reliability limited, at device pins	f_{IN} = 5 MHz, f_{ADC} = 1500MSPS, f_{NCO} = 17MHz, Decimate by 48		19.7			
		f_{IN} = 30 MHz, f_{ADC} = 1500MSPS, f_{NCO} = 30MHz, Decimate by 24		17.8			
		$ f_{\text{IN}} = 410 \text{ MHz}, \ f_{\text{ADC}} = \\ 3000 \text{MSPS}, \ f_{\text{NCO}} = 400 \text{MHz}, \\ Decimate by 24 $		17.6			
P _{FS CW,MAX}		f _{IN} = 830 MHz		16.7		dBm	
		f _{IN} = 1760 MHz		17.0			
		f _{IN} = 2610 MHz		18			
		f _{IN} = 3610 MHz		18.5			
		f _{IN} = 4910 MHz		19.3			
		f _{IN} = 8150 MHz		21.3			
		f _{IN} = 9610 MHz		23.5			
R _{TERM}	Input reference impedance			100.0		Ω	
ATT _{range}	DSA Attenuation range			25.0		dB	
	DSA Attenuation step			0.5			
	DSA Attenuation step accuracy	Delta=Gatt(X)-Gatt(X-1), F _{in} =3610MHz, after calibration		0.1		dB	
ATT _{step}	DSA Gain Steps Phase accuracy any 8dB range	F _{in} =3610MHz, after calibration		0.9			
	DSA Gain Steps Phase accuracy any 8dB range	F _{in} =4910MHz, after calibration		1.8		aeg	
		Measured Over 80MHz BW		0.2			
G _{flat}	Gain flatness	Measured Over 200MHz BW		0.5		dB	
		Measured Over 400MHz BW		1.1			

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
		f_{IN} = 5 MHz, DSA = 3dB, f_{ADC} = 1500MSPS, f_{NCO} = 17MHz, Decimate by 48	-147.1		
		f_{IN} = 30 MHz, DSA = 3dB, f_{ADC} = 1500MSPS, f_{NCO} = 30MHz, Decimate by 24	-150.7		
		$\label{eq:final_states} \begin{array}{l} f_{\text{IN}} = 410 \; \text{MHz}, \; \text{DSA} = 3 \text{dB}, \; f_{\text{ADC}} \\ = 3000 \text{MSPS}, \; \; f_{\text{NCO}} = 400 \text{MHz}, \\ \text{Decimate by 24} \end{array}$	-155.4		
		f _{IN} = 830 MHz, DSA = 3dB ⁽³⁾	-156.2		
		f _{IN} = 1760 MHz, DSA = 3dB ⁽³⁾	-156.0		
		f _{IN} = 2610 MHz, DSA = 3dB ⁽³⁾	-155.4		
		f _{IN} = 3610 MHz, DSA = 3dB ⁽³⁾	-155.1		
		f _{IN} = 4910 MHz, DSA = 3dB ⁽³⁾	-155.1		
		f _{IN} = 8110 MHz, DSA = 3dB ⁽³⁾	-152		
NCD	Noise Density	f _{IN} = 9610 MHz, DSA = 3dB ⁽³⁾	-151		
	(small signal = -30dBFS)	f_{IN} = 5 MHz, f_{ADC} = 1500MSPS, f_{NCO} = 17MHz, Decimate by 48, 3<=Atten<=22	-147.8		dBFS/Hz
		f_{IN} = 30 MHz, f_{ADC} = 1500MSPS, f_{NCO} = 30MHz, Decimate by 24, 3<=Atten<=22	-151.5		
		f _{IN} = 410 MHz, 3<=Atten<=22, f _{ADC} = 3000MSPS, f _{NCO} = 400MHz, Decimate by 24	-156.6		
		f _{IN} = 830 MHz, 3<=Atten<=22	-156.0		
		f _{IN} = 1760 MHz, 3<=Atten<=25	-155.8		
		f _{IN} = 2610 MHz, 3<=Atten<=25	-155.7		
		f _{IN} = 3610 MHz, 3<=Atten<=25	-155.4		
		f _{IN} = 4910 MHz, 3<=Atten<=25	-155.8		
		f _{IN} = 8150 MHz, 3<=Atten<=25	-152.5		
		f _{IN} = 9610 MHz, 3<=Atten<=25	-152.5		
		f_{IN} = 5 MHz, f_{ADC} = 1500MSPS, f_{NCO} = 17MHz, Decimate by 48	29.4		
		f_{IN} = 30 MHz, f_{ADC} = 1500MSPS, f_{NCO} = 30MHz, Decimate by 24	24.5		
		$ f_{\text{IN}} = 410 \; \text{MHz}, \; f_{\text{ADC}} = \\ 3000 \text{MSPS}, \; f_{\text{NCO}} = 400 \text{MHz}, \\ Decimate by 24 $	19.3		
NF _{min}	Noise Figure min	f _{IN} = 830 MHz	19.1		dB
	DOA Allen-U - Sub	f _{IN} = 1760 MHz	19.0		1
		f _{IN} = 2610 MHz	20.9		
		f _{IN} = 3610 MHz	22.8		
		f _{IN} = 4910 MHz	22.4		1
		f _{IN} = 8150 MHz	27.3		
		f _{IN} = 9610 MHz	30		

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
		f_{IN} = 5 MHz, f_{ADC} = 1500MSPS, f_{NCO} = 17MHz, Decimate by 48	30.6		
		f_{IN} = 30 MHz, f_{ADC} = 1500MSPS, f_{NCO} = 30MHz, Decimate by 24	25.1		
		$ f_{\text{IN}} = 410 \text{ MHz}, \ f_{\text{ADC}} = \\ 3000 \text{MSPS}, \ f_{\text{NCO}} = 400 \text{MHz}, \\ Decimate by 24 $	20.1		
NF	Noise Figure ⁽⁴⁾	f _{IN} = 830 MHz	20.0		dB
		f _{IN} = 1760 MHz	20.6		
		f _{IN} = 2610 MHz	21.9		
		f _{IN} = 3610 MHz	23.5		
		f _{IN} = 4910 MHz	22.3		
		f _{IN} = 8150 MHz	27.9		
		f _{IN} = 9610 MHz	30.7		
		f_{IN} = 5 MHz, f_{ADC} = 1500MSPS, f_{NCO} = 17MHz, Decimate by 48	45.9		
	Noise Figure ⁽⁴⁾ DSA Atten=20dB	f_{IN} = 30 MHz, f_{ADC} = 1500MSPS, f_{NCO} = 30MHz, Decimate by 24	40.2		
		f_{IN} = 410 MHz, f_{ADC} = 3000MSPS, f_{NCO} = 400MHz, Decimate by 24	35.0		
NF _{max}		f _{IN} = 830 MHz	34.7		dB
		f _{IN} = 1760 MHz	35.2		
		f _{IN} = 2610 MHz	36.0		
		f _{IN} = 3610 MHz	37.3		
		f _{IN} = 4910 MHz	37.6		
		f _{IN} = 8150 MHz	42.8		
		f _{IN} = 9610 MHz	45		
		$\rm f_{IN}$ = 30±1 MHz, $\rm f_{ADC}$ = 1500MSPS, $\rm f_{NCO}$ = 30MHz, Decimate by 24	-82		
		f_{IN} = 400MHz and 405MHz, f_{ADC} = 3000MSPS, f_{NCO} = 400MHz, Decimate by 24	-75		
		f _{IN} = 840 MHz, 3<=Atten<=12	-82		
	3^{rq} order intermodulation 2 tones at at	f _{IN} = 1770 MHz, 3<=Atten<=12	-84		dBc
	-7dBFS each tone	f _{IN} = 2610 MHz, 3<=Atten<=12	-74		d D O
		f _{IN} = 3610 MHz, 3<=Atten<=12	-77		
		f _{IN} = 4920 MHz, 3<=Atten<=12	-76		
		f _{IN} = 8150 MHz, 3<=Atten<=12, 25MHz tone spacing	-59		
		f _{IN} = 9610 MHz, 3<=Atten<=12, 25MHz tone spacing	-60		

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
		f_{IN} = 5 MHz, f_{ADC} = 1500MSPS, f_{NCO} = 17MHz, Decimate by 48	78		
		f_{IN} = 30 MHz, f_{ADC} = 1500MSPS, f_{NCO} = 30MHz, Decimate by 24	100		
	Spurious Free Dynamic Pange	f_{IN} = 410 MHz, f_{ADC} = 3000MSPS, f_{NCO} = 400MHz, Decimate by 24	94		
SFDR	within output bandwidth, $A_{IN} = -3$	f _{IN} = 830 MHz	88		dBFS
	dBFS	f _{IN} = 1760 MHz	81		
		f _{IN} = 2610 MHz	88		
		f _{IN} = 3610 MHz	84		
		f _{IN} = 4910 MHz	79		
		f _{IN} = 8150 MHz	78		
		f _{IN} = 9610 MHz	71		
		f_{IN} = 5 MHz, f_{ADC} = 1500MSPS, f_{NCO} = 17MHz, Decimate by 48	-84		
	2nd Harmonic Distortion A _{IN} = -3 dBFS ⁽²⁾	f _{IN} = 30 MHz, f _{ADC} = 1500MSPS, Bypass Mode (TI only test mode)	-91		
		f _{IN} = 410 MHz, f _{ADC} = 3000MSPS, Bypass Mode (TI only test mode)	-90		dBFS
		f _{IN} = 830 MHz	-86		
HDZ		f _{IN} = 1760 MHz	-90		
		f _{IN} = 2610 MHz	-88		
		f _{IN} = 3610 MHz	-87		
		f _{IN} = 4910 MHz	-84		
		f _{IN} = 8150 MHz	-70		
		f _{IN} = 9610 MHz	-70		
		f_{IN} = 5 MHz, f_{ADC} = 1500MSPS, f_{NCO} = 17MHz, Decimate by 48	-78		
		f _{IN} = 30 MHz, f _{ADC} = 1500MSPS, Bypass Mode (TI only test mode)	-96		
		f _{IN} = 410 MHz, f _{ADC} = 3000MSPS, Bypass Mode (TI only test mode)	-94		
202	3rd Harmonic Distortion	f _{IN} = 830 MHz	-80		
	A _{IN} = -3 dBFS	f _{IN} = 1760 MHz	-85		UDFO
		f _{IN} = 2610 MHz	-86		
		f _{IN} = 3610 MHz	-78		
		f _{IN} = 4910 MHz	-75		
		f _{IN} = 8150 MHz	-70		
		f _{IN} = 9610 MHz	-70		

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
		$f_{IN} = 5 \text{ MHz}, f_{ADC} = 1500 \text{MSPS}, f_{NCO}$ = 17MHz, Decimate by 48	-94		
		f_{IN} = 30 MHz, f_{ADC} = 1500MSPS, f_{NCO} = 30MHz, Decimate by 24	-94		
		f_{IN} = 410 MHz, f_{ADC} = 3000MSPS, f_{NCO} = 400MHz, Decimate by 24	-94		
HDn, n>3	SFDR excl. HD2 and HD3	f _{IN} = 830 MHz	-88		dBFS
		f _{IN} = 1760 MHz	-81		
		f _{IN} = 2610 MHz	-88		
		f _{IN} = 3610 MHz	-84		
		f _{IN} = 4910 MHz	-82		
		f _{IN} = 8150 MHz	-78		
		f _{IN} = 9610 MHz	-71		
		f_{IN} = 5 MHz, f_{ADC} = 1500MSPS, f_{NCO} = 17MHz, Decimate by 48	101		
	Spurious Free Dynamic Range A _{IN} = -13 dBFS	f_{IN} = 30 MHz, f_{ADC} = 1500MSPS, f_{NCO} = 30MHz, Decimate by 24	105		dBFS
		f_{IN} = 410 MHz, f_{ADC} = 3000MSPS, f_{NCO} = 400MHz, Decimate by 24	95		
SFDR		f _{IN} = 830 MHz	89		
		f _{IN} = 1760 MHz	89		
		f _{IN} = 2610 MHz	95		
		f _{IN} = 3610 MHz	87		
		f _{IN} = 4910 MHz	90		
		f _{IN} = 8150 MHz	83		
		f _{IN} = 9610 MHz	80		
		f_{IN} = 5 MHz, f_{ADC} = 1500MSPS, f_{NCO} = 17MHz, Decimate by 48	-104		
		f _{IN} = 30 MHz, f _{ADC} = 1500MSPS, Bypass Mode (TI only test mode)	-91		
		f _{IN} = 410 MHz, f _{ADC} = 3000MSPS, Bypass Mode (TI only test mode)	-104		
	2nd Harmonic Distortion ⁽²⁾	f _{IN} = 830 MHz, with board trim	-79		ARES
HD2	A _{IN} = -13 dBFS	f _{IN} = 1760 MHz, with board trim	-102		UDF3
		f _{IN} = 2610 MHz, with board trim	-100		
		f _{IN} = 3610 MHz, with board trim	-101		
		f _{IN} = 4910 MHz, with board trim	-99		
		f _{IN} = 8150 MHz, with board trim	-107		
		$f_{IN} = 9610 \text{ MHz}$, with board trim	-107		

Typical values at $T_A = +25^{\circ}$ C, full temperature range is $T_{A,MIN} = -40^{\circ}$ C to $T_{J,MAX} = +110^{\circ}$ C; RX Output Rate = 491.52MSPS below 6GHz input frequency and 1500MSPS above 6GHz input frequency, $f_{ADC} = 2949.12$ MSPS; PLL clock mode with $f_{REF} = 491.52$ MHz below 6GHz input frequency and External clock mode with $f_{CLK} = 2949.12$ MHz above 6GHz input frequency; nominal power supplies; DSA Setting =3dB; SerDes rate =24.33Gbps; unless otherwise noted.

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
		f_{IN} = 5 MHz, f_{ADC} = 1500MSPS, f_{NCO} = 17MHz, Decimate by 48	-103		
		f _{IN} = 30 MHz, f _{ADC} = 1500MSPS, Bypass Mode (TI only test mode)	-84		
		f _{IN} = 381 MHz, f _{ADC} = 3000MSPS, Bypass Mode (TI only test mode)	-91		
	3rd Harmonic Distortion	f _{IN} = 830 MHz	-95		
	A _{IN} = -13 dBFS	f _{IN} = 1760 MHz	-95		UDF3
		f _{IN} = 2610 MHz	-98		
		f _{IN} = 3610 MHz	-97		
		f _{IN} = 4910 MHz	-94		
		f _{IN} = 8150 MHz	-100		
		f _{IN} = 9610 MHz	-102		
		f_{IN} = 5 MHz, f_{ADC} = 1500MSPS, f_{NCO} = 17MHz, Decimate by 48	-104		
		f_{IN} = 30 MHz, f_{ADC} = 1500MSPS, f_{NCO} = 30MHz, Decimate by 24	-105		
		f_{IN} = 410 MHz, f_{ADC} = 3000MSPS, f_{NCO} = 400MHz, Decimate by 24	-95		dBFS
HDn, n>3	SFDR excl. HD2 and HD3	f _{IN} = 830 MHz	-89		
	$A_{\rm IN} = -13$ dBFS	f _{IN} = 1760 MHz	-89		
		f _{IN} = 2610 MHz	-95		
		f _{IN} = 3610 MHz	-90		
		f _{IN} = 4910 MHz	-90		
		f _{IN} = 8150 MHz	-83		
		f _{IN} = 9610 MHz	-80		
		f_{IN} = 5 MHz, f_{ADC} = 1500MSPS, f_{NCO} = 17MHz, Decimate by 48	-98		
		f_{IN} = 30 MHz, f_{ADC} = 1500MSPS, f_{NCO} = 30MHz, Decimate by 24	-98		
	Near Channel	f _{IN} = 400 MHz	-88		
	1RXIN to 2RXIN	f _{IN} = 830 MHz	-77		
Isolation	3RXIN to 4RXIN	f _{IN} = 1760 MHz	-71		dB
	2FBIN to 3RXIN	f _{IN} = 2610 MHz	-74		
		f _{IN} = 3610 MHz	-77		
		f _{IN} = 4910 MHz	-65		
		f _{IN} = 8150 MHz	-68		
		f _{IN} = 9610 MHz	-68		

(1) The input fullscale at minimum attenuation can be reduce by adding a digital gain range to the DSA, extending the useful range of the DSA. The noise figure remains constant over the digital gain range.

(2) After HD2 trim on specific printed circuit board.

(3) From DSA = 3dB down to 0dB, NSD increases 1dB per DSA dB

(4) NF increase 1dB per DSA 1dB above DSA = 3dB

6.6 PLL/VCO/Clock Electrical Characteristics

Typical values at TA = +25°C, full temperature range is $T_{A,MIN}$ = -40°C to $T_{J,MAX}$ = +110°C; Reference clock input frequency 491.52MHz (unless otherwise noted), phase noise normalized to f_{VCO} .

PARAMETER		TEST CONDITIONS	MIN TYP	MAX	UNIT
£	VCO1 min frequency			7.2	GHz
IVCO1	VCO1 max frequency		7.68		GHz
c	VCO2 min frequency			8.848	GHz
T _{VCO2}	VCO2 max frequency		9.216		GHz
£	VCO3 min frequency			9.8304	GHz
IVCO3	VCO3 max frequency		10.24		GHz
<i>c</i>	VCO4 min frequency			11.7965	GHz
IVCO4	VCO4 max frequency		12.288		GHz
DIV _{FBADC}	ADC sample rate divider from VCO rate		1, 2, 3, 4, 6 or 8		
DIV _{RXADC}	ADC sample rate divider		1, 2, 3, 4, 6 or 8		
		600kHz	-113		dBc/Hz
		800kHz	-116		dBc/Hz
	Closed Loop Phase Noise F _{PLL} =	1MHz	-119		dBc/Hz
	11.79848 GHz F _{REF} =491.52MHz	1.8MHz	-125		dBc/Hz
		5MHz	-133		dBc/Hz
		50MHz	-141		dBc/Hz
	Closed Loop Phase Noise F _{PLL} =8.84736 GHz F _{REF} =491.52MHz	600kHz	-114		dBc/Hz
		800kHz	-118		dBc/Hz
		1MHz	-120		dBc/Hz
		1.8MHz	-127		dBc/Hz
		5MHz	-135		dBc/Hz
		50MHz	-142		dBc/Hz
PN _{VCO}	Closed Loop Phase Noise Eput = 9 8403	600kHz	-113		dBc/Hz
		800kHz	-116		dBc/Hz
		1MHz	-119		dBc/Hz
	GHz F _{REF} =491.52MHz	1.8MHz	-125		dBc/Hz
		5MHz	-134		dBc/Hz
		50MHz	-140		dBc/Hz
		600kHz	-116		dBc/Hz
		800kHz	-119		dBc/Hz
	Closed Loop Phase Noise F _{PL1} =	1MHz	-122		dBc/Hz
	7.86432GHz F _{REF} =491.52MHz	1.8MHz	-127		dBc/Hz
		5MHz	-136		dBc/Hz
		50MHz	-143		dBc/Hz
		f _{PLL} =11.79848 GHz, [1KHz, 100MHz]	-43.4		dBc/Hz
F _{rms}	Clock PLL integrated phase error ⁽¹⁾	f _{PLL} =8.8536 GHz, [1KHz, 100MHz]	-47.6		dBc/Hz
		f _{PLL} =9.8304 GHz, [1KHz, 100MHz]	-46.2		dBc/Hz
f _{PFD}	PFD frequency		100	500	MHz
PN _{pll flat}	Normalized PLL flat Noise	f _{VCO} = 11796.48MHz	-226.5		dBc/Hz
F _{REF}	Input Clock frequency		0.1	12	GHz
V _{SS}	Input Clock level		0.6	1.8	Vppdiff

6.6 PLL/VCO/Clock Electrical Characteristics (continued)

Typical values at TA = +25°C, full temperature range is $T_{A,MIN}$ = -40°C to $T_{J,MAX}$ = +110°C; Reference clock input frequency 491.52MHz (unless otherwise noted), phase noise normalized to f_{VCO} .

PARAMETER		TEST CONDITIONS	MIN TYP	MAX	UNIT
Coupling			AC Coupling Only		
	REFCLK input impedance ⁽²⁾	Parallel resistance	100		Ω
		Parallel capacitance	0.5		pF

(1) Single Sideband, not including the reference clock contribution

(2) Refer to S11 data available from TI for impedance vs frequency

6.7 Digital Electrical Characteristics

Typical values at TA = +25°C, full temperature range is $T_{A,MIN}$ = -40°C to $T_{J,MAX}$ = +110°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
CML SerDes Outp	uts [8:1]STX+/-					
		Full rate mode	19		29.5	
		Half rate mode	9.5		16.25	
F _{SerDes}	SerDes Bit Rate	Quarter rate mode	4.75		8.125	Gbps
		1/8 th rate mode	2.375		4.062	
		1/16 th rate mode	1.1875		2.031	
TJ	Total Jitter Tolerance				0.42	UI
V _{STDIFF}	SerDes Transmitter Output Amplitude	differential	500		1000	mVpp
V _{STCOM}	SerDes Output Common Mode		0.4	0.45	0.55	V
Z _{STdiff}	SerDes Output Impedance			100		Ω
TRF	Output rise and fall time	20-80%	8			ps
TTJ	Output total jitter				0.21	UI
CMOS I/O: GPIO{E	B/C/D/E}x, SPICLK, SPISDIO, SPISDO, S	PISEN, RESETZ, BISTBO, BIS	STB1			
VIH	High-Level Input Voltage		0.6×VDD1 P8GPIO			V
VIL	Low-Level Input Voltage				0.4×VDD1 P8GPIO	V
IIH	High-Level Input Current		-250		250	μA
IIL	Low-Level Input Current		-250		250	μA
CL	CMOS input capacitance			2		pF
V _{OH}	High-Level Output Voltage		VDD1P8G PIO-0.2			V
V _{OL}	Low-Level Output Voltage				0.2	V
Differential Inputs	: SYSREF+/- Mode A					
F _{SYSREFMAX}	SYSREF Input Frequency Maximum			40		MHz
VSWINGSRMAX	SYSREF Input Swing Maximum			1.8		Vppdiff ⁽²⁾
V _{SWINGSRMIN}	SYSREF Input Swing Minimum	f _{REF} < 500MHz		0.3		Vppdiff ⁽²⁾
V _{SWINGSRMIN}	SYSREF Input Swing Minimum	f _{REF} > 500MHz		0.6		Vppdiff ⁽²⁾
V _{COMSRMAX}	SYSREF Input Common Mode Voltage Maximum			0.8		V
	SYSREF Input Common Mode Voltage Minimum			0.6		V
Z _T	Input termination	differential		100 <mark>(1)</mark>		Ω
CL	Input capacitance	Each pin to GND		0.5		pF
LVDS Inputs: 0SY	NCIN+/- and 1SYNCIN+/-		-			
VICOM	Input Common Voltage			1.2		V
V _{ID}	Differential Input Voltage swing			450		Vppdiff ⁽²⁾
Z _T	Input termination	differential		100		Ω
LVDS Outputs: 0S	YNCOUT+/- and 1SYNCOUT+/-				I	
V _{OCOM}	Output Common Voltage			1.2		V
V _{OD}	Differential Output Voltage swing			500		Vppdiff ⁽²⁾
Z _T	Internal Termination			100		Ω

(1) SYSREF termination is programmable between 100Ω , 150Ω and 300Ω

(2) Vppdiff is the difference between the maximum differential voltage (positive value) and minimum differential voltage (negative value).

6.8 Power Supply Electrical Characteristics

Typical values at $T_A = +25^{\circ}$ C, full temperature range is $T_{A,MIN} = -40^{\circ}$ C to $T_{J,MAX} = +110^{\circ}$ C; $f_{ADC} = 2949.12$ MSPS; nominal power supplies; 1 tone at -1 dBFS; DSA Attenuation =0dB; SerDes rate = 24.33Gbps; unless otherwise noted.

PARAMETER		TEST CONDITIONS	MIN TYP	MAX	UNIT
I _{VDD1P8}	Group 3A: VDD1P8FB + VDD1P8RX + VDD1P8TX		673		mA
	Group 3B: VDD1P8FBCLK + VDD1P8RXCLK + VDD1P8TXDAC+ VDD1P8GPIO + VDDA1P8		376		mA
	Group 3C: VDD1P8PLL + VDD1P8PLLVCO	Mode 1: 4R, f _{ADC} = 3 GSPS, DDC _{RX} =	17.5		mA
	Group 2A: VDD1P2FB + VDD1P2RX	6x Decimation, f _{RX} = 1.85 GHz, 8b/10b	557		mA
I _{VDD1P2}	Group 2B: VDD1P2TXCLK + VDD1P2TXENC	- couning, 20 Gbps, KX. 4-6-4-1	75		mA
	Group 2C: VDD1P2FBCML + VDD1P2RXCML + VDD1P2PLLCLKREF		68		mA
I _{VDD0P9}	Group 1A: DVDD0P9 + VDDT0P9	-	1582		mA
P _{diss}	Power Dissipation		4208		mW
	Group 3A: VDD1P8FB + VDD1P8RX + VDD1P8TX		1006		mA
I _{VDD1P8}	Group 3B: VDD1P8FBCLK + VDD1P8RXCLK + VDD1P8TXDAC+ VDD1P8GPIO + VDDA1P8	Mode 2: 4R2F, f _{ADC} = 3 GSPS, DDC _{FB} = DDC _{RX} = 6x Decimation, f _{RX} = 1.85 GHz, - 8b/10b coding, 20 Gbps, RX: 4-8-4-1, FB: 2-4-4-1	548		mA
	Group 3C: VDD1P8PLL + VDD1P8PLLVCO		17.5		mA
	Group 2A: VDD1P2FB + VDD1P2RX		839		mA
I _{VDD1P2}	Group 2B: VDD1P2TXCLK + VDD1P2TXENC		92		mA
	Group 2C: VDD1P2FBCML + VDD1P2RXCML + VDD1P2PLLCLKREF		68		mA
I _{VDD0P9}	Group 1A: DVDD0P9 + VDDT0P9		2174		mA
P _{diss}	Power Dissipation		5996		mW
	Group 3A: VDD1P8FB + VDD1P8RX + VDD1P8TX		672		mA
I _{VDD1P8}	Group 3B: VDD1P8FBCLK + VDD1P8RXCLK + VDD1P8TXDAC+ VDD1P8GPIO + VDDA1P8		506		mA
	Group 3C: VDD1P8PLL + VDD1P8PLLVCO	Mode 4: 4R, f _{ADC} = 3 GSPS, DDC _{RX} =	17.5		mA
	Group 2A: VDD1P2FB + VDD1P2RX	2x Decimation , f _{RX} = 2.25 GHz, 64/66	552		mA
I _{VDD1P2}	Group 2B: VDD1P2TXCLK + VDD1P2TXENC	- county, 24.75 Gops, RA. 0-0-2-1	76		mA
	Group 2C: VDD1P2FBCML + VDD1P2RXCML + VDD1P2PLLCLKREF		68		mA
I _{VDD0P9}	Group 1A: DVDD0P9 + VDDT0P9]	1613		mA
P _{diss}	Power Dissipation		4468		mW

6.8 Power Supply Electrical Characteristics (continued)

Typical values at $T_A = +25^{\circ}$ C, full temperature range is $T_{A,MIN} = -40^{\circ}$ C to $T_{J,MAX} = +110^{\circ}$ C; $f_{ADC} = 2949.12$ MSPS; nominal power supplies; 1 tone at -1 dBFS; DSA Attenuation =0dB; SerDes rate = 24.33Gbps; unless otherwise noted.

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
I _{VDD1P8}	Group 3A: VDD1P8FB + VDD1P8RX + VDD1P8TX		1005		mA
	Group 3B: VDD1P8FBCLK + VDD1P8RXCLK + VDD1P8TXDAC+ VDD1P8GPIO + VDDA1P8		562		mA
	Group 3C: VDD1P8PLL + VDD1P8PLLVCO	Mode 5: 4R2F, f_{ADC} = 3 GSPS, DDC _{RX} = 12x Decimation Dual Channel, DDC _{FB} =	17.5		mA
	Group 2A: VDD1P2FB + VDD1P2RX	$3x$ Decimation, $f_{RX} = 1.85$ and 2.65 GHz,	837		mA
I _{VDD1P2}	Group 2B: VDD1P2TXCLK + VDD1P2TXENC	FB: 4-4-4-1	92		mA
	Group 2C: VDD1P2FBCML + VDD1P2RXCML + VDD1P2PLLCLKREF		68		mA
I _{VDD0P9}	Group 1A: DVDD0P9 + VDDT0P9		2359		mA
P _{diss}	Power Dissipation		6195		mW
	Group 3A: VDD1P8FB + VDD1P8RX + VDD1P8TX	671		mA	
I _{VDD1P8}	Group 3B: VDD1P8FBCLK + VDD1P8RXCLK + VDD1P8TXDAC+ VDD1P8GPIO + VDDA1P8	Mode 6: 4R, f _{ADC} = 3 GSPS, DDC _{RX} = 12x Decimation Dual Channel, f _{RX} = 1.85 and 2.65 GHz, 8b/10b coding, 20 Gbps, RX: 4-16-8-1	374		mA
	Group 3C: VDD1P8PLL + VDD1P8PLLVCO		17.5		mA
	Group 2A: VDD1P2FB + VDD1P2RX		555		mA
I _{VDD1P2}	Group 2B: VDD1P2TXCLK + VDD1P2TXENC		75		mA
	Group 2C: VDD1P2FBCML + VDD1P2RXCML + VDD1P2PLLCLKREF		67		mA
I _{VDD0P9}	Group 1A: DVDD0P9 + VDDT0P9		1702		mA
P _{diss}	Power Dissipation		4305		mW
	Group 3A: VDD1P8FB + VDD1P8RX + VDD1P8TX		16		mA
I _{VDD1P8}	Group 3B: VDD1P8FBCLK + VDD1P8RXCLK + VDD1P8TXDAC+ VDD1P8GPIO + VDDA1P8		295		mA
	Group 3C: VDD1P8PLL + VDD1P8PLLVCO	Made 7: come configuration oc mode 2	12		mA
	Group 2A: VDD1P2FB + VDD1P2RX	Sleep Mode. SLEEP pin is pull high.	4		mA
I _{VDD1P2}	Group 2B: VDD1P2TXCLK + VDD1P2TXENC		24		mA
	Group 2C: VDD1P2FBCML + VDD1P2RXCML + VDD1P2PLLCLKREF		45		mA
I _{VDD0P9}	Group 1A: DVDD0P9 + VDDT0P9	1	156		mA
P _{diss}	Power Dissipation		818		mW

6.9 Timing Requirements

Typical values at $T_A = +25^{\circ}$ C, full temperature range is $T_{A,MIN} = -40^{\circ}$ C to $T_{J,MAX} = +110^{\circ}$ C; $f_{ADC} = 2949.12$ MSPS; nominal power supplies; 1 tone at -1 dBFS; DSA Attenuation =0dB; SerDes rate = 24.33Gbps; unless otherwise noted.

		MIN	NOM	MAX	UNIT	
Timing: SYSREF+/-						
t _{s(SYSREF)}	Setup Time, SYSREF+/- Valid to Rising Edge of CLK+/-		50		ps	
t _{h(SYSREF)}	Hold Time, SYSREF+/- Valid after Rising Edge of CLK+/-		50		ps	
Timing: Se	rial ports					
t _{s(SENB)}	Setup Time, SENB to Rising Edge of SCLK		15		ns	
t _{h(SENB)}	Hold Time, SENB after last Rising Edge of SCLK ⁽¹⁾		5 + t _{SCLK}		ns	
t _{s(SDIO)}	Setup Time, SDIO valid to Rising Edge of SCLK		15		ns	
t _{h(SDIO)}	Hold Time, SDIO valid after Rising Edge of SCLK		5		ns	
t _{(SCLK)_W}	Minimum SCLK period: registers write		25		ns	
t _{(SCLK)_R}	Minimum SCLK period: registers read		50		ns	
+	Minimum Data Output delay after Falling Edge of SCLK		0		ns	
^L d(data_out)	Maximum Data Output delay after Falling Edge of SCLK		15		ns	
t _{RESET}	Minimum RESETZ Pulse Width		1		ms	

(1) SDEN\\ need to be held one more extra clock cycle with the last SCLK edge

6.10 Switching Characteristics

Typical values at $T_A = +25^{\circ}$ C, full temperature range is $T_{A,MIN} = -40^{\circ}$ C to $T_{J,MAX} = +110^{\circ}$ C; $f_{ADC} = 2949.12$ MSPS; nominal power supplies; 1 tone at -1 dBFS; DSA Attenuation =0dB; SerDes rate = 24.33Gbps; unless otherwise noted.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
RX Chan	nel Latency					
tjesdrx	RX input to JESD output Latency	LMFS=2-16-16-1, 122.88 MSPS, 24x Decimation, Serdes rate = 16.22Gbps (JESD204C)		92		
		LMFS=4-16-8-1, 245.76 MSPS, 12x Decimation, Serdes rate = 16.22Gbps (JESD204C)		108		interface
		LMFS=2-8-8-1, 368.64 MSPS, 8x Decimation, Serdes rate = 16.22Gbps (JESD204C)		118		clock cycles ⁽¹⁾
		LMFS=4-8-4-1, 491.52 MSPS, 6x Decimation, Serdes rate = 16.22Gbps (JESD204C)		153		
FB Chan	nel Latency					
	SerDes Transmitter Analog Delay			3.6		ns
t _{JESDFB}	FB input to JESD output Latency	LMFS=1-2-8-1, 368.64 MSPS, 8x Decimation		151		interface
		LMFS=2-4-4-1, 491.52 MSPS, 6x Decimation		177		clock cycles ⁽¹⁾

(1) Interface clock cycles is the period of the digital interface clock rate, e.g. 1GSPS = 1ns.

6.11.1 RX Typical Characteristics 30 MHz and 400 MHz

Typical values at $T_A = +25^{\circ}$ C. Default conditions at 30MHz: ADC Sampling Rate = 1500 MSPS, output sample rate = 62.5 MSPS (decimate by 24x), PLL clock mode with $f_{REF} = 500$ MHz, $A_{IN} = -3$ dBFS, DSA setting = 3 dB. Default conditions at 400 MHz: ADC Sampling Rate = 1500 MSPS, output sample rate = 125 MSPS (decimate by 12x), PLL clock mode with $f_{REF} = 500$ MHz, $A_{IN} = -3$ dBFS, DSA setting = 3 dB. Lock mode with $f_{REF} = 500$ MHz, $A_{IN} = -3$ dBFS, DSA setting = 3 dB. Default conditions at 400 MHz: ADC Sampling Rate = 1500 MSPS, output sample rate = 125 MSPS (decimate by 12x), PLL clock mode with $f_{REF} = 500$ MHz, $A_{IN} = -3$ dBFS, DSA setting = 3 dB.

Typical values at $T_A = +25^{\circ}$ C. Default conditions at 30MHz: ADC Sampling Rate = 1500 MSPS, output sample rate = 62.5 MSPS (decimate by 24x), PLL clock mode with $f_{REF} = 500$ MHz, $A_{IN} = -3$ dBFS, DSA setting = 3 dB. Default conditions at 400 MHz: ADC Sampling Rate = 1500 MSPS, output sample rate = 125 MSPS (decimate by 12x), PLL clock mode with $f_{REF} = 500$ MHz, $A_{IN} = -3$ dBFS, DSA setting = 3 dB. Lock mode with $f_{REF} = 500$ MHz, $A_{IN} = -3$ dBFS, DSA setting = 3 dB. Default conditions at 400 MHz: ADC Sampling Rate = 1500 MSPS, output sample rate = 125 MSPS (decimate by 12x), PLL clock mode with $f_{REF} = 500$ MHz, $A_{IN} = -3$ dBFS, DSA setting = 3 dB.

6.11.2 RX Typical Characteristics at 800MHz

Typical values at $T_A = +25^{\circ}$ C, ADC Sampling Rate = 2949.12 GHz. Default conditions: output sample rate = 491.52MSPS (decimate by 6), PLL clock mode with $f_{REF} = 491.52$ MHz, $A_{IN} = -3$ dBFS, DSA setting = 4 dB.

29

Typical values at $T_A = +25$ °C, ADC Sampling Rate = 2949.12 GHz. Default conditions: output sample rate = 491.52MSPS (decimate by 6), PLL clock mode with $f_{REF} = 491.52MHz$, $A_{IN} = -3$ dBFS, DSA setting = 4 dB.

With 0.8 GHz matching, DDC bypass mode (TI only mode for characterization)

With 0.8 GHz matching, DDC bypass mode (TI only mode for characterization)

With 0.8 GHz matching, DDC bypass mode (TI only mode for characterization)

With 0.8 GHz matching

With 0.8 GHz matching, -7 dBFS each tone, 20-MHz tone spacing, all supplies at MIN, TYP, or MAX recommended operating voltages

Figure 6-79. RX IMD5 vs Supply and Channel at 0.8 GHz

6.11.3 RX Typical Characteristics 1.75GHz to 1.9GHz

6.11.3 RX Typical Characteristics 1.75GHz to 1.9GHz (continued)

6.11.3 RX Typical Characteristics 1.75GHz to 1.9GHz (continued)

6.11.3 RX Typical Characteristics 1.75GHz to 1.9GHz (continued)

Typical values at $T_A = +25^{\circ}$ C, ADC Sampling Rate = 2949.12 GHz. Default conditions: output sample rate = 491.52MSPS (decimate by 6), PLL clock mode with $f_{REF} = 491.52$ MHz, $A_{IN} = -3$ dBFS, DSA setting = 4 dB.

With 1.8 GHz matching, f_{in} = 1900MHz, measured after HD2 trim, DDC bypass mode (TI only mode for characterization)

With 1.8 GHz matching, f_{in} = 1900MHz, measured after HD2 trim, DDC bypass mode (TI only mode for characterization)

With 1.8 GHz matching, $f_{in} = 1900$ MHz, measured after HD2 trim, DDC bypass mode (TI only mode for characterization)

With 1.8 GHz matching, f_{in} = 1900MHz, measured after HD2 trim, DDC bypass mode (TI only mode for characterization)

Figure 6-102. RX HD2 vs Input Amplitude and Temperature at 1.9 GHz

Figure 6-104. RX HD3 vs DSA Setting and Temperature at 1.9 GHz

6.11.3 RX Typical Characteristics 1.75GHz to 1.9GHz (continued)

Typical values at $T_A = +25^{\circ}C$, ADC Sampling Rate = 2949.12 GHz. Default conditions: output sample rate = 491.52MSPS (decimate by 6), PLL clock mode with f_{REF} = 491.52MHz, A_{IN} = -3 dBFS, DSA setting = 4 dB.

With 1.8 GHz matching, fin = 1900MHz, DDC bypass mode (TI only mode for characterization)

Figure 6-105. RX HD3 vs Input Level and Channel at 1.9 GHz

With 1.8 GHz matching, fin = 1900MHz, DDC bypass mode (TI only mode for characterization)

Figure 6-110. RX Noise Spectral Density vs Supply and Channel at 1.75 GHz

6.11.4 RX Typical Characteristics 2.6GHz

6.11.5 RX Typical Characteristics 3.5GHz

6.11.6 RX Typical Characteristics 4.9GHz

Typical values at $T_A = +25$ °C, ADC Sampling Rate = 2949.12 GHz. Default conditions: output sample rate = 491.52MSPS (decimate by 6), PLL clock mode with $f_{REF} = 491.52$ MHz, $A_{IN} = -3$ dBFS, DSA setting = 4 dB.

With 4.9 GHz matching

Integrated Amplitude Error = $P_{IN}(DSA \text{ Setting}) - P_{IN}(DSA \text{ Setting}) = 0) + (DSA \text{ Setting})$

With 4.9 GHz matching Differential Phase Error = Phase $_{IN}(DSA Setting - 1) -$

Phase_{IN}(DSA Setting) Figure 6-181. RX Calibrated Differential Phase Error vs DSA

Setting at 4.9 GHz

Figure 6-183. RX Calibrated Integrated Phase Error vs DSA Setting at 4.9 GHz

With 4.9 GHz matching

Differential Phase Error = Phase_{IN}(DSA Setting -1) - Phase_{IN}(DSA Setting)

With 4.9 GHz matching

Integrated Phase Error = Phase(DSA Setting) – Phase(DSA Setting = 0)

Figure 6-182. RX Uncalibrated Integrated Phase Error vs DSA Setting at 4.9 GHz

Typical values at $T_A = +25$ °C, ADC Sampling Rate = 2949.12 GHz. Default conditions: output sample rate = 491.52MSPS (decimate by 6), PLL clock mode with $f_{REF} = 491.52$ MHz, $A_{IN} = -3$ dBFS, DSA setting = 4 dB.

With 4.9 GHz matching, DDC bypass mode (TI only mode for characterization)

With 4.9 GHz matching

Figure 6-199. RX Non-HD2/3 vs DSA Setting at 4.9 GHz

With 4.9 GHz matching, decimate by 3

With 4.9 GHz matching, –7 dBFS each tone, 20-MHz tone spacing, all supplies at MIN, TYP, or MAX recommended operating voltages

6.11.7 RX Typical Characteristics 6.8GHz

6.11.8 PLL and Clock Typical Characteristics

Typical values at $T_A = +25^{\circ}C$ with nominal supplies. Unless otherwise noted, $f_{REF} = 491.52$ MHz, Phase noise measured at TX output

7 Device and Documentation Support

7.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

7.2 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

7.3 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

7.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

7.5 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

8 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qtv	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		J			(2)	(6)	(0)		(40)	
AFE7906IABJ	ACTIVE	FCBGA	ABJ	400	90	RoHS & Green	SNAGCU	Level-3-260C-168 HR	-40 to 85	AFE7906I	Samples
AFE7906IALK	ACTIVE	FCBGA	ALK	400	90	Non-RoHS & Green	Call TI	Level-3-220C-168 HR	-40 to 85	AFE7906 SNPB	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com

PACKAGE OPTION ADDENDUM

30-May-2023

Texas **INSTRUMENTS**

www.ti.com

TRAY

PACKAGE MATERIALS INFORMATION

Chamfer on Tray corner indicates Pin 1 orientation of packed units.

Device	Package Name	Package Type	Pins	SPQ	Unit array matrix	Max temperature (°C)	L (mm)	W (mm)	K0 (µm)	P1 (mm)	CL (mm)	CW (mm)
AFE7906IABJ	ABJ	FCBGA	400	90	6 x 15	150	315	135.9	7620	19.5	21	19.2
AFE7906IABJ	ABJ	FCBGA	400	90	6 x 15	150	315	135.9	7620	19.5	21	19.2
AFE7906IALK	ALK	FCBGA	400	90	6 x 15	150	315	135.9	7620	19.5	21	19.2
AFE7906IALK	ALK	FCBGA	400	90	6 x 15	150	315	135.9	7620	19.5	21	19.2

*All dimensions are nominal

17-Apr-2024

ABJ0400A

PACKAGE OUTLINE

FCBGA - 2.65 mm max height

BALL GRID ARRAY

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. Dimension is measured at the maximum solder ball diameter, parallel to primary datum C.
- 4. Primary datum C and seating plane are defined by the spherical crowns of the solder balls.
- 5. The lids are electrically floating (e.g. not tied to GND).

ABJ0400A

EXAMPLE BOARD LAYOUT

FCBGA - 2.65 mm max height

BALL GRID ARRAY

NOTES: (continued)

6. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SPRU811 (www.ti.com/lit/spru811).

ABJ0400A

EXAMPLE STENCIL DESIGN

FCBGA - 2.65 mm max height

BALL GRID ARRAY

NOTES: (continued)

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

ALK0400A

PACKAGE OUTLINE

FCBGA - 2.65 mm max height

BALL GRID ARRAY

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. Dimension is measured at the maximum solder ball diameter, parallel to primary datum C.
- 4. Primary datum C and seating plane are defined by the spherical crowns of the solder balls.
- 5. Pb-Free die bump and SnPb solder ball.
- 6. The lids are electrically floating (e.g. not tied to GND).

ALK0400A

EXAMPLE BOARD LAYOUT

FCBGA - 2.65 mm max height

BALL GRID ARRAY

NOTES: (continued)

7. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SPRU811 (www.ti.com/lit/spru811).

ALK0400A

EXAMPLE STENCIL DESIGN

FCBGA - 2.65 mm max height

BALL GRID ARRAY

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated