Programmable NiCd/NiMH Fast-Charge Management IC

Check for Samples: bq24401

FEATURES

• Safe Management of Fast Charge for NiCd and NiMH Battery Packs
• High-Frequency Switching Controller for Efficient and Simple Charger Design
• Pre-Charge Qualification for Detecting Shorted, Damaged, or Overheated Cells
• Fast-Charge Termination by $\Delta T/\Delta t$, Maximum Temperature, and Maximum Charge Time
• Selectable Top-Off Mode for Achieving Maximum Capacity in NiMH Batteries
• Programmable Trickle-Charge Mode for Reviving Deeply Discharged Batteries and for Postcharge Maintenance
• Built-in Battery Removal and Insertion Detection
• Sleep Mode for Low Power Consumption

APPLICATIONS

• Nickel Charger
• High-Power, Multi-Cell Charger

GENERAL DESCRIPTION

The bq24401 is a programmable, monolithic IC for fast-charge management of nickel cadmium (NiCd) and nickel metal-hydride (NiMH) in single or multi-cell applications.

The bq24401 provides these charge termination criteria:

- Rate of temperature rise ($\Delta T/\Delta t$)
- Maximum temperature
- Maximum charge time

For safety, the bq24401 inhibits fast charge until the battery voltage and temperature are within user-defined limits. If the battery voltage is below the low-voltage threshold, the bq24401 uses trickle-charge to condition the battery. For NiMH batteries, the bq24401 provides an optional top-off charge to maximize the battery capacity.

The integrated high-speed comparator allows the bq24401 to be the basis for a complete, high-efficiency battery charger circuit for nickel-based chemistries.

8-Pin DIP or Narrow SOIC or TSSOP

<table>
<thead>
<tr>
<th>Pin</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MOD</td>
</tr>
<tr>
<td>VSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VCC</td>
<td></td>
</tr>
<tr>
<td>LED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TS</td>
</tr>
</tbody>
</table>

Pin Names

- SNS: Current-sense input
- VSS: System ground
- LED: Charge-status output
- BAT: Battery-voltage input
- TS: Temperature-sense input
- RC: Timer-program input
- VCC: Supply-voltage input
- MOD: Modulation-control output

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

PIN DESCRIPTIONS

SNS **Current-sense input**
Enables the bq24401 to sense the battery current via the voltage developed on this pin by an external sense-resistor connected in series with the battery pack.

Vss **System Ground**
Connect to the battery’s negative terminal.

LED **Charge-status output**
Open-drain output that indicates the charging status by turning on, turning off, or flashing an external LED, driven through a resistor.

BAT **Battery-voltage input**
Battery-voltage sense input. A simple resistive divider, across the battery terminals, generates this input.

TS **Temperature-sense input**
Input for an external battery-temperature monitoring circuit. An external resistive divider network with a negative temperature-coefficient thermistor sets the lower and upper temperature thresholds.

RC **Timer-program input**
Used to program the maximum fast charge-time, maximum top-off charge-time, hold-off period, trickle charge rate, and to disable or enable top-off charge. A capacitor from V\text{cc} and a resistor to ground connect to this pin.

Vcc **Supply-voltage input**
Recommended bypassing is 10µF + 0.1µF to 0.22µF of decoupling capacitance near the pin.

MOD **Modulation-control output**
Push-pull output that controls the charging current to the battery. MOD switches high to enable charging current to flow and low to inhibit charging-current flow.
FUNCTIONAL DESCRIPTION

The bq24401 is a versatile, NiCd and NiMH battery charge control device. See Figure 1 for a functional block diagram and Figure 2 for a state diagram.

Figure 1. Functional Block Diagram
4.0 V < \(V_{CC} < 6.0 \) V

Charge Initialization

Battery Voltage (Voltage at BAT pin checked continuously.)

Sleep Mode

\(V_{BAT} < V_{SLP} \)

\(V_{SLP} < V_{BAT} < V_{CC} \)

\(V_{TS} < V_{HTF} \)

Charge Suspended

\(V_{TS} < V_{HTF} \)

\(V_{BAT} < V_{HTF} \)

Battery Temperature (Temperature at TS pin checked continuously. Sampled every 8 seconds for \(\Delta T/M \).)

\(V_{TS} < V_{HTF} \)

\(V_{LBAT} < V_{BAT} \) and \(V_{HTF} < V_{TS} < V_{LTF} \)

Battery Conditioning

\(V_{TS} > V_{HTF} \)

\(V_{BAT} < V_{HTF} \)

\(V_{LTF} < V_{TS} < V_{LTF} \)

Fast Charge State

\(V_{BAT} < V_{MCV} \)

\(V_{TS} < V_{HTF} \)

Current Regulation

\(V_{TS} > V_{HTF} \)

\(V_{LTF} < V_{TS} < V_{LTF} \)

\(\Delta T/M \) (after hold-off period), or \(V_{TS} < V_{TCO} \) or \(Time = MTO \)

Top-Off Selected?

NO

\(V_{TS} > V_{HTF} \)

\(V_{LTF} < V_{TS} < V_{LTF} \)

Time = MTO

\(V_{TC} < V_{HTF} \)

Charge Suspended (See Note)

YES

\(V_{BAT} > V_{MCV} \)

Top-Off

\(V_{BAT} > V_{MCV} \)

Done

\(V_{CC} \) Reset or Battery Replacement

NOTE: If \(V_{TS} < V_{TCO} \) at any time, may only return to Trickle Maintenance Charge state and not to Top-Off.

Figure 2. State Diagram
ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CC}</td>
<td>V_{CC} relative to V_{SS}</td>
<td>-0.3 to 7</td>
</tr>
<tr>
<td>V_T</td>
<td>DC voltage applied on any pin, relative to V_{SS}</td>
<td>-0.3 to V_{CC}</td>
</tr>
<tr>
<td>T_{OPR}</td>
<td>Operating ambient temperature</td>
<td>-20 to 70</td>
</tr>
<tr>
<td>T_{STG}</td>
<td>Storage temperature</td>
<td>-40 to 125</td>
</tr>
<tr>
<td>T_{SOLDER}</td>
<td>Soldering temperature (10 s max.)</td>
<td>260</td>
</tr>
</tbody>
</table>

(1) Permanent device damage may occur if Absolute Maximum Ratings are exceeded. Functional operation should be limited to the Recommended DC Operating Conditions detailed in this data sheet. Exposure to conditions beyond the operational limits for extended periods of time may affect device reliability.

DC THRESHOLDS

$T_A = T_{OPR}$; $V_{CC} = 5V \pm 20\%$ (unless otherwise specified)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>TYPICAL</th>
<th>TOLERANCE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{TC0}</td>
<td>Temperature cutoff</td>
<td>Voltage at the TS pin</td>
<td>$0.225 \times V_{CC}$</td>
<td>±5%</td>
</tr>
<tr>
<td>V_{HTF}</td>
<td>High-temperature fault</td>
<td>Voltage at the TS pin</td>
<td>$0.25 \times V_{CC}$</td>
<td>±5%</td>
</tr>
<tr>
<td>V_{LT}</td>
<td>Low-temperature fault</td>
<td>Voltage at the TS pin</td>
<td>$0.5 \times V_{CC}$</td>
<td>±5%</td>
</tr>
<tr>
<td>V_{MCV}</td>
<td>Maximum cell voltage</td>
<td>Voltage at the BAT pin</td>
<td>2.00</td>
<td>±2.5%</td>
</tr>
<tr>
<td>V_{BAT}</td>
<td>Minimum cell voltage</td>
<td>Voltage at the BAT pin</td>
<td>950</td>
<td>±5%</td>
</tr>
<tr>
<td>V_{Tthet}</td>
<td>TS input change for $\Delta T/\Delta t$ detection</td>
<td>Voltage at the TS pin</td>
<td>$-V_{CC}/161$</td>
<td>±25%</td>
</tr>
<tr>
<td>V_{SNH}</td>
<td>High threshold at SNS</td>
<td>Voltage at the SNS pin</td>
<td>50</td>
<td>±10</td>
</tr>
<tr>
<td>V_{SNL}</td>
<td>Low threshold at SNS</td>
<td>Voltage at the SNS pin</td>
<td>-50</td>
<td>±10</td>
</tr>
<tr>
<td>V_{SLP}</td>
<td>Sleep-mode input threshold</td>
<td>Voltage at the BAT pin</td>
<td>$V_{CC}-1$</td>
<td>±0.5</td>
</tr>
</tbody>
</table>

(1) All voltages are relative to V_{SS} except as noted.

RECOMMENDED DC OPERATING CONDITIONS

over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CC}</td>
<td>Supply voltage</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>I_{CC}</td>
<td>Supply current</td>
<td>0.5</td>
<td>1</td>
<td>mA</td>
</tr>
<tr>
<td>I_{CSS}</td>
<td>Sleep current</td>
<td>$V_{BAT} = V_{SLP}$</td>
<td>5</td>
<td>µA</td>
</tr>
<tr>
<td>V_{TS}</td>
<td>Thermistor input</td>
<td>$V_{TS} \leq 0.5$ V prohibited</td>
<td>0.5</td>
<td>V_{CC}</td>
</tr>
<tr>
<td>V_{OH}</td>
<td>Output high input</td>
<td>MOD, $I_{OH} = 10$ mA</td>
<td>$V_{CC}-0.4$</td>
<td>V</td>
</tr>
<tr>
<td>V_{OL}</td>
<td>Output low input</td>
<td>MOD, $I_{OL} = 10$ mA</td>
<td>0.2</td>
<td>V</td>
</tr>
<tr>
<td>I_{EZ}</td>
<td>High-impedance leakage current</td>
<td>LED</td>
<td>5</td>
<td>µA</td>
</tr>
<tr>
<td>I_{ek}</td>
<td>Sink current</td>
<td>MOD, LED</td>
<td>20</td>
<td>mA</td>
</tr>
<tr>
<td>R_{MT0}</td>
<td>Charge timer resistor</td>
<td>2</td>
<td>250</td>
<td>kΩ</td>
</tr>
<tr>
<td>C_{MT0}</td>
<td>Charge timer capacitor</td>
<td>0.001</td>
<td>1</td>
<td>µF</td>
</tr>
</tbody>
</table>

IMPEDANCE

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{BAT}</td>
<td>Battery input impedance</td>
<td>10</td>
<td></td>
<td>MΩ</td>
</tr>
<tr>
<td>R_{TS}</td>
<td>TS input impedance</td>
<td>10</td>
<td></td>
<td>MΩ</td>
</tr>
<tr>
<td>R_{SNS}</td>
<td>SNS input impedance</td>
<td>10</td>
<td></td>
<td>MΩ</td>
</tr>
</tbody>
</table>

TIMING

$T_A = T_{OPR}$; $V_{CC} = 5V \pm 20\%$ (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_{MT0}</td>
<td>MTO time-base variation</td>
<td>$-5%$</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>f_{TRKL}</td>
<td>Pulse-trickle frequency</td>
<td>0.9</td>
<td>1</td>
<td>1.1</td>
</tr>
</tbody>
</table>
Initiation and Charge Qualification

The bq24401 initiates a charge cycle when it detects

- Application of power to V_{CC}
- Battery replacement
- Exit from sleep mode

Immediately following initiation, the IC enters a charge-qualification mode. The bq24401 charge qualification is based on battery voltage and temperature. If the voltage on the BAT pin is less than the internal threshold, V_{LBAT}, the bq24401 enters the battery conditioning state. This condition indicates the possibility of a defective or shorted battery pack. In an attempt to revive a fully depleted pack, the bq24401 enables the MOD pin to trickle-charge at a rate of once every 1.0s. As explained in the section "Top-Off and Pulse-Trickle Maintenance Charge," the trickle pulse-width is user-selectable and is set by the value of the resistance connected between the RC pin and V_{SS}.

During charge qualification, the LED pin blinks at a 1Hz rate, indicating the pending status of the charger.

Once battery conditioning (trickle charge) has raised the voltage on the BAT pin above V_{LBAT}, the IC enters fast charge, if the battery temperature is within the V_{LTF} to V_{HTF} range. The bq24401 will stay in the battery conditioning state indefinitely and will not progress to fast charge until the voltage on the BAT pin is above V_{LBAT} and the temperature is within the V_{LTF} and V_{HTF} range. No timer is implemented during battery conditioning.

Fast Charge (Current Regulation)

Following charge qualification (which includes trickle charge, if required), the bq24401 begins fast charge fast using a current-limited algorithm. During the fast-charge period, it monitors charge time, temperature, and voltage for adherence to the termination criteria. This monitoring is further explained in later sections. While in the fast charge state, the LED pin is pulled low (the LED is on). Following fast charge, the battery is topped off, if top-off is selected. The charging cycle ends with a trickle maintenance-charge that continues as long as the voltage on the BAT pin remains below V_{MCV}.

Table 1 summarizes the charging process.

<table>
<thead>
<tr>
<th>BATTERY CHEMISTRY</th>
<th>CHARGE ALGORITHM</th>
</tr>
</thead>
</table>
| NiCd or NiMH Batteries ($V_{BAT} < V_{MCV}$ always) | 1. Charge qualification
2. Trickle charge, if required
3. Fast charge (constant current)
4. Fast charge termination (rate of temperature rise, maximum charge time = 1 MTO)
5. Top-off (optional)
6. Trickle charge |

FAST CHARGE TERMINATION

Initial Hold-Off Period

The bq24401 incorporates a user programmable hold-off period to avoid premature fast charge termination that can occur with brand new nickel cells at the very beginning of fast charge. The values of the external resistor and capacitor connected to the RC pin set the initial hold-off period. During this period, the bq24401 avoids early termination due to an initial rise in the battery temperature by disabling the rate of temperature rise ($\Delta T/\Delta t$) feature. This period is fixed at the programmed value of the maximum charge time (MTO) divided by 32.

$$\text{hold-off period} = \frac{\text{MTO}}{32}$$

(1)
Maximum Charge Time

The bq24401 sets the maximum charge-time through the RC pin. With the proper selection of external resistor and capacitor values, various time-out values may be achieved. If the timer expires while still in fast charge, the bq24401 proceeds to top-off charge (if top-off is enabled) or trickle maintenance charge. If top-off is enabled, the timer is reset on the completion of fast charge before beginning top-off charge. Figure 3 shows a typical connection.

![Figure 3. Typical Connection for the RC Input](image)

The following equation shows the relationship between the R_{MTO} and C_{MTO} values and the maximum charge time (MTO) for the bq24401:

$$MTO = R_{\text{MTO}} \times C_{\text{MTO}} \times 35,988$$

(2)

MTO is measured in minutes, R_{MTO} in ohms, and C_{MTO} in farads. (Note: R_{MTO} and C_{MTO} values also determine other features of the device. See Table 4 for details.)

If, during fast charge, $V_{\text{TS}} > V_{\text{LTF}}$, then the timer is paused and the IC enters battery conditioning charge until $V_{\text{TS}} < V_{\text{LTF}}$. Since the IC is in the battery conditioning state, the LED flashes at the 1 Hz rate. Once $V_{\text{TS}} < V_{\text{LTF}}$, fast charge restarts and the timer resumes from where it left off with no change in total fast charge time.

Maximum Temperature

A negative-coefficient thermistor, referenced to V_{SS} and placed in thermal contact with the battery, may be used as a temperature-sensing device. Figure 4 shows a typical temperature-sensing circuit.

![Figure 4. Temperature Monitoring Configuration](image)

During fast charge, the bq24401 compares the battery temperature to an internal high-temperature cutoff threshold, V_{TCO}, and a low-temperature threshold, V_{LTF}. During fast charge only, the V_{HTF} fault comparator is
disabled. When the voltage at the TS pin is lower than V_{TCO}, the bq24401 terminates fast charge, moves to the charge suspended state, and turns off the LED. When V_{TS} rises above V_{HTF}, the bq24401 will resume charging in the trickle maintenance charge state, per Figure 2. In fast charge, when the voltage on the TS pin is higher than V_{LTF}, the charger enters the battery conditioning state, as described in the previous section. Fast charge is resumed when V_{TS} is less than V_{LTF}.

Rate of Temperature Rise

The bq24401 uses a rate of temperature rise ($\Delta T/\Delta t$) scheme to terminate fast charge for NiCd and NiMH batteries. During fast charge, it samples the TS pin voltage every 8 seconds and compares it to the value measured 2 samples earlier. This feature terminates fast charge if this voltage declines at a rate of $V_{CC}/161$ (V/min). Figure 4 shows a typical connection diagram. In preparation for sampling the TS pin voltage, the bq24401 briefly turns off most circuits (the MOD and RC pins will both go low) in order to get the cleanest possible, noise-free measurement. While the monitoring of the TS pin voltage is continuous, the sampling of the TS pin voltage with the internal ADC only occurs during fast charge.

Top-Off and Pulse-Trickle Maintenance Charge

Once constant-current fast charge has ended, the bq24401 measures the value of the C_{MTO} capacitor and then proceeds to either top-off or trickle maintenance charge. Top-off is optional and may be desirable on batteries that have a tendency to terminate charge before reaching full capacity. To enable this option, the capacitance value of C_{MTO} connected between the RC pin and V_{CC} (see Figure 3) should be greater than 0.13 µF, and the value of the resistor connected to this pin should be less than 250 kΩ. To disable top-off, the capacitance value should be less than 0.07 µF. The tolerance of the capacitor needs to be taken into account in component selection.

Once top-off is started, the timer is reset and top-off proceeds until the timer expires, V_{MCV} is reached, or there is a temperature fault. During top-off, current is delivered to the battery in pulses that occur each second. The fixed pulse width allows an average current of 1/16 of the fast charge current to be delivered to the battery every second. The LED is always off during top-off and trickle maintenance charge.

During top-off, there are three different temperature faults that can occur. If $V_{TS} > V_{LTF}$, top-off is suspended, the timer is paused, and trickle charge is started. When V_{TS} falls below V_{LTF}, top-off is resumed. If $V_{TS} < V_{HTF}$, all charging stops, but the timer keeps counting. When $V_{TS} > V_{HTF}$, top-off is resumed, if there is still time remaining on the timer. If there is not time left, trickle maintenance charge is entered. If $V_{TS} < V_{TCO}$, all charging stops. Only trickle maintenance charge may resume after $V_{TS} > V_{HTF}$.

Following top-off, the bq24401 trickle-charges the battery by enabling the MOD pin to charge at a rate of once every 1.0 second. The trickle pulse-width is user-selectable and is set by the value of the resistor R_{MTO}, connected between the RC pin and V_{SS}. Figure 5 shows the relationship between the trickle pulse-width and the value of R_{MTO}. The typical tolerance of the pulsewidth below 150 kΩ is ±10%.

![Figure 5. Relationship Between Trickle Pulse-Width and Value of R_{MTO}](image-url)
Note that with an \(R_{MTO} \) value around 150 k\(\Omega \), the trickle charge pulse width is nearly identical to the top-off pulse width of 62.5 ms (1/16 of a second for a 1A fast charge current). With \(R_{MTO} \) values near 150 k\(\Omega \), it can be difficult to tell which state the IC is in (top-off or trickle charge). The best way to tell if the bq24401 is in top-off or trickle charge is to look at the RC pin when the temperature is between the LTF and HTF. In top-off, the RC pin is counting and has a sawtooth waveform on it. In trickle charge, there is no timer and the RC pin is at a DC value.

The RC pin contains valuable information in determining what state the bq24401 is in, since it always operates in one of three modes. If the RC pin is low (around \(V_{SS} \) potential), the IC is in sleep mode. (If the RC pin is low for brief instants during fast charge, the bq24401 is sampling the TS pin for \(\Delta V/\Delta t \).) If the RC pin is at some DC value (usually around 1-2V), then the IC has paused the timer or the timer is inactive. If the RC pin is a sawtooth waveform (similar to Figure 14), then the timer is running and the RC pin is considered “active.” Lastly, the RC pin can be loaded by too large of a C or too small of an R. This will sometimes make the usual sawtooth waveform look like a triangle waveform on an oscilloscope (the rise time is lengthened), or the RC signal could have the appearance of being clipped (flat top or bottom). The timer is unreliable under these conditions and the bq24401 should not be operated in this manner. Table 2 summarizes the different states of the RC pin.

Table 2. RC Pin Status

<table>
<thead>
<tr>
<th>bq24401 Charge State</th>
<th>TS Pin State</th>
<th>RC Pin Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery absent</td>
<td>N/A</td>
<td>1-2V DC level</td>
</tr>
<tr>
<td>Sleep mode</td>
<td>N/A</td>
<td>Ground (Vss)</td>
</tr>
<tr>
<td>Charge qualification (including battery conditioning (trickle charge) and charge suspended)</td>
<td>N/A</td>
<td>1-2V DC level</td>
</tr>
<tr>
<td>Fast charge (current regulation)</td>
<td>(V_{TS} < V_{LTF})</td>
<td>Active</td>
</tr>
<tr>
<td></td>
<td>(V_{TS} > V_{LTF}) (in battery conditioning state)</td>
<td>1-2V DC level (timer is paused and will resume when (V_{TS} < V_{LTF}))</td>
</tr>
<tr>
<td>Top-off charge</td>
<td>(V_{LTF} > V_{HTF}) (in trickle maintenance charge state)</td>
<td>1-2V DC level (timer is paused and will resume when (V_{TS} < V_{LTF}))</td>
</tr>
<tr>
<td></td>
<td>(V_{HTF} > V_{TS} > V_{TCO})</td>
<td>Active</td>
</tr>
<tr>
<td>Trickle maintenance charge (after fast charge)</td>
<td>N/A</td>
<td>1-2V DC level</td>
</tr>
<tr>
<td>Charge complete</td>
<td>N/A</td>
<td>Active</td>
</tr>
</tbody>
</table>

Both top-off and trickle maintenance charge are terminated and the pack never receives any more charge (until a charge initialization occurs) if the voltage on the BAT pin reaches \(V_{MCV} \). During trickle maintenance charge, charging is suspended if \(V_{TS} < V_{HTF} \). It resumes when \(V_{TS} > V_{HTF} \). The bq24401 is designed to remain in trickle maintenance charge forever (excluding the two faults just mentioned) in order to keep the Nickel pack full.

Charge Current Control

The bq24401 implements a hysteretic control loop that regulates the current being delivered to the battery pack to a user programmable value that is set by the value of the \(R_{SNS} \) resistor. A second, outer control loop reduces the average current delivered to the pack in order to clamp the voltage at the BAT pin to a maximum of \(V_{MCV} \). The bq24401 controls the MOD pin to regulate the current and voltage of the pack. The bq24401 monitors charge current at the SNS input by sensing the voltage drop across a sense-resistor, \(R_{SNS} \), in series with the battery pack. See Figure 6 for a typical current-sensing circuit.
R_{SNS} is sized to provide the desired fast-charge current (I_{MAX}).

$$I_{\text{MAX}} = \frac{0.05}{R_{\text{SNS}}}$$

(3)

If the voltage at the SNS pin is greater than V_{SNSLO} or less than V_{SNSHI}, the bq24401 switches the MOD output high to pass charge current to the battery. When the SNS voltage is less than V_{SNSLO} or greater than V_{SNSHI}, the bq24401 switches the MOD output low to shut off charging current to the battery. A hysteresis capacitor (C_{HYS}) is required between the C_{MOD} pin and the SNS pin to add a healthy amount of hysteresis to the current sense signal (see Figure 7). Typical hysteresis values are between 5 and 25 mV. The amount of hysteresis can be calculated by examining the capacitive divider formed by C_{HYS} and C_{f}.

Hysteresis (V) = $V_{\text{CC}} \times \frac{C_{\text{HYS}}}{(C_{\text{HYS}} + C_{f})}$

(4)

Figure 6. Current-Sensing Circuit

Figure 7. 3-Cell NiCd/NiMH 1A Charger
Being a hysteretic controller, the switching frequency of the bq24401 is determined by the values of several of the external circuit components. The components that affect the switching frequency are: input voltage, R_{SNS} value, inductor value, hysteresis capacitor value (C_{HYS}), and the value of the filter on the current sense signal (R_f and C_f values). R_f and C_f have the most impact on the switching frequency and are also the components that are easiest to change to adjust the frequency, as they do not affect anything else in the circuit (besides, of course, the cleanliness and quality of the current sense signal being fed to the bq24401). In general, increasing the input voltage and/or inductor value or decreasing C_{HYS} and/or the $R_f \times C_f$ filter corner frequency will increase the switching frequency. Figure 8 and Figure 9 show empirical data on the variation in switching frequency based on adjusting R_f and C_f. This data was taken with an input voltage of 12V, inductor value of 220 µH, R_{SNS} value of 50 mΩ, and C_{HYS} value of 4.7 pF. Typical switching frequencies for the bq24401 are between 100 and 200 kHz, though it is possible to achieve switching frequencies in excess of 300kHz.

![Figure 8. Switching Frequency vs Capacitance](image1)

![Figure 9. Switching Frequency vs Resistance](image2)
Battery Voltage Input

As shown in Figure 10, a resistor voltage-divider between the battery pack's positive terminal and V_{SS} scales the battery voltage measured at the BAT pin. A low-pass filter then smooths out this voltage to present a clean signal to the BAT pin.

![Battery Voltage Divider and Filter](image)

The resistor values R_{B1} and R_{B2} are calculated by the following equation:

$$\frac{R_{B1}}{R_{B2}} = N - 1$$

where N is the number of cells in series. $R_{B1} + R_{B2}$ should be at least 200kΩ and no more than 1MΩ.

TEMPERATURE MONITORING

The bq24401 measures the temperature by the voltage at the TS pin. This voltage is typically generated by a negative-temperature-coefficient thermistor. The bq24401 compares this voltage against its internal threshold voltages to determine if charging is safe. These thresholds are the following:

- **High-temperature cutoff voltage**: $V_{TCO} = 0.225 \times V_{CC}$. This voltage corresponds to the maximum temperature (TCO) at which any charging is allowed. The bq24401 terminates charging if the voltage on the TS pin falls below V_{TCO}.

- **High-temperature fault voltage**: $V_{HTF} = 0.25 \times V_{CC}$. This voltage corresponds to a maximum allowed pack temperature (HTF) in all states except for fast charge. During fast charge, HTF faults are disabled to allow for a normal increase in pack temperature.

- **Low-temperature fault voltage**: $V_{LTF} = 0.5 \times V_{CC}$. This voltage corresponds to the minimum temperature (LTF) at which fast charging or top-off is allowed. If the voltage on the TS pin rises above V_{LTF}, the bq24401 suspends either fast charge or top-off and begins a trickle charge. When the voltage falls back below V_{LTF}, fast charge or top-off resumes from the point where suspended. If $V_{TS} > V_{LTF}$, the charger will always be in trickle charge.

Table 3 summarizes these various conditions.

<table>
<thead>
<tr>
<th>TEMPERATURE</th>
<th>CONDITION</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{TS} > V_{LTF}$</td>
<td>Cold battery – checked at all times</td>
<td>During charge qualification, no effect</td>
</tr>
<tr>
<td>$V_{HTF} < V_{TS} < V_{LTF}$</td>
<td>Optimal charging range</td>
<td>Allows all stages of charging</td>
</tr>
</tbody>
</table>

Table 3. Temperature-Monitoring Conditions and Actions
Table 3. Temperature-Monitoring Conditions and Actions (continued)

<table>
<thead>
<tr>
<th>TEMPERATURE</th>
<th>CONDITION</th>
<th>ACTION</th>
</tr>
</thead>
</table>
| \(V_{TS} < V_{HTF}\) | Hot battery – checked at all times, except during fast charge | During charge qualification, stops charging
During fast charge, no effect
During top-off, stops charging
During trickle maintenance charge, stops charging |
| \(V_{TS} < V_{TCO}\) | Battery exceeding maximum allowable temperature – checked at all times | During fast charge, terminates fast charge and stops charging, turns off LED
During top-off, terminates top-off and stops charging
During trickle maintenance charge, stops charging |

Table 4. Summary of NiCd or NiMH Charging Characteristics

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>VALUE(^{(1)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum cell voltage (V_{MCV})</td>
<td>2 V</td>
</tr>
<tr>
<td>Minimum pre-charge qualification voltage (V_{LBAT})</td>
<td>950 mV</td>
</tr>
<tr>
<td>High-temperature cutoff voltage (V_{TCO})</td>
<td>(0.225 \times V_{DC})</td>
</tr>
<tr>
<td>High-temperature fault voltage (V_{HTF})</td>
<td>(0.25 \times V_{DC})</td>
</tr>
<tr>
<td>Low-temperature fault voltage (V_{LTF})</td>
<td>(0.5 \times V_{DC})</td>
</tr>
<tr>
<td>(bq24401) fast-charge maximum time out (MTO)</td>
<td>(R_{MTO} \times C_{MTO} \times 35,988)</td>
</tr>
<tr>
<td>Fast-charge charging current (I_{MAX})</td>
<td>(0.05/R_{SNS})</td>
</tr>
<tr>
<td>Hold-off period</td>
<td>MTO/32</td>
</tr>
<tr>
<td>Top-off charging current (optional)</td>
<td>(I_{MAX}/16)</td>
</tr>
<tr>
<td>Top-off period (optional)</td>
<td>MTO</td>
</tr>
<tr>
<td>Trickle-charge frequency</td>
<td>1Hz</td>
</tr>
<tr>
<td>Trickle-charge pulse-width</td>
<td>See Figure 5</td>
</tr>
</tbody>
</table>

\(^{(1)}\) See the DC Thresholds Specification for details.

Charge Status Display

The charge status is indicated by open-drain output LED. Table 5 summarizes the display output of the bq24401. A temperature fault or timer expiring changes the charge state immediately (according to Figure 2) and will thus change the LED status immediately and accordingly.

Table 5. Charge Status Display

<table>
<thead>
<tr>
<th>bq24401 CHARGE STATE</th>
<th>LED STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charge qualification (including battery conditioning and charge suspended)</td>
<td>1 Hz flash</td>
</tr>
<tr>
<td>Fast charge (current regulation)</td>
<td>Low</td>
</tr>
<tr>
<td>Top-off charge</td>
<td></td>
</tr>
<tr>
<td>Trickle maintenance charge (after fast charge)</td>
<td>High impedance</td>
</tr>
<tr>
<td>Charge complete</td>
<td></td>
</tr>
<tr>
<td>Battery absent</td>
<td></td>
</tr>
<tr>
<td>Sleep mode</td>
<td></td>
</tr>
</tbody>
</table>

Sleep Mode

The bq24401 features a sleep mode for low power consumption. This mode is enabled when the voltage at the BAT pin is above the low-power-mode threshold, \(V_{SLP}\). During sleep mode, the bq24401 shuts down all unnecessary internal circuits, drives the LED output to high-impedance state, and drives the MOD pin low. Restoring BAT below the \(V_{MCV}\) threshold initiates the IC and starts a fast-charge cycle. Normally, the bq24401 only enters sleep mode when there is no battery connected on the output and the charger is idling with nothing to
charge. In addition, \(V_{IN} \) needs to be high enough such that when \(V_{IN} \) is present on the output, \(V_{BAT} \) would be greater than \(V_{SLP} \). In sleep mode, the output voltage will decay to \(V_{MCV} \) at which point the bq24401 turns on and pulses the MOD pin several times. With no battery connected, the output will rise to near \(V_{IN} \) at which point the bq24401 re-enters sleep mode. During sleep mode, the RC pin will be at \(V_{SS} \) potential. A typical sleep mode waveform is shown in Figure 17.
TYPICAL CHARACTERISTICS

Figure 11. bq24401 Start-up on Battery Insertion

Figure 12. bq24401 Start-up on Vin

Figure 13. Battery Removal During Fast Charge

Figure 14. bq24401 in Fast Charge
Figure 15. bq24401 in Fast Charge

Figure 16. bq24401 Fast Charge SNS and MOD Waveforms

Figure 17. bq24401 Cycling In and Out of Sleep Mode (No battery present)
REVISION HISTORY

<table>
<thead>
<tr>
<th>Changes from Revision September 2001 (*) to Revision A</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Changed the data sheet format. The data sheet was originally from Benchmark Products. In revision A, the data sheet was converted to the TI format, and a re-write of the data sheet was implemented</td>
<td>1</td>
</tr>
</tbody>
</table>
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>BQ24401D</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-20 to 70</td>
<td>24401</td>
<td></td>
</tr>
<tr>
<td>BQ24401DG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-20 to 70</td>
<td>24401</td>
<td></td>
</tr>
<tr>
<td>BQ24401DR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-20 to 70</td>
<td>24401</td>
<td></td>
</tr>
<tr>
<td>BQ24401PW</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>8</td>
<td>150</td>
<td>Green</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-20 to 70</td>
<td>24401</td>
<td></td>
</tr>
<tr>
<td>BQ24401PWG4</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>8</td>
<td>150</td>
<td>Green</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-20 to 70</td>
<td>24401</td>
<td></td>
</tr>
<tr>
<td>BQ24401PWR</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>8</td>
<td>2000</td>
<td>Green</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-20 to 70</td>
<td>24401</td>
<td></td>
</tr>
<tr>
<td>BQ24401PWRG4</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>8</td>
<td>2000</td>
<td>Green</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-20 to 70</td>
<td>24401</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) **RoHS**: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
- **RoHS Exempt**: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
- **Green**: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) **Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "-" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.**
Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

TAPE DIMENSIONS

- **A0**: Dimension designed to accommodate the component width
- **B0**: Dimension designed to accommodate the component length
- **K0**: Dimension designed to accommodate the component thickness
- **W**: Overall width of the carrier tape
- **P1**: Pitch between successive cavity centers

REEL DIMENSIONS

- Reel Diameter
- Reel Width (W1)

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

- **Q1**
- **Q2**
- **Q3**
- **Q4**

PACKAGE MATERIALS INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>BQ24401DR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.4</td>
<td>5.2</td>
<td>2.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>BQ24401PWR</td>
<td>TSSOP</td>
<td>PW</td>
<td>8</td>
<td>2000</td>
<td>330.0</td>
<td>12.4</td>
<td>7.0</td>
<td>3.6</td>
<td>1.6</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>

All dimensions are nominal.
Package Materials Information

Tape and Reel Box Dimensions

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BQ24401DR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
<tr>
<td>BQ24401PWR</td>
<td>TSSOP</td>
<td>PW</td>
<td>8</td>
<td>2000</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>

All dimensions are nominal
NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
4. This dimension does not include interlead flash.
5. Reference JEDEC registration MS-012, variation AA.
NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-153, variation AA.
NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2020, Texas Instruments Incorporated