Features

➤ Direct clock/calendar replacement for IBM® AT-compatible computers and other applications
➤ Functionally compatible with the DS1285
  - Closely matches MC146818A pin configuration
➤ 114 bytes of general nonvolatile storage
➤ 160ns cycle time allows fast bus operation
➤ Selectable Intel or Motorola bus timing
➤ Less than 0.5µA load under battery operation
➤ 14 bytes for clock/calendar and control
➤ BCD or binary format for clock and calendar data
➤ Calendar in day of the week, day of the month, months, and years, with automatic leap-year adjustment
➤ Time of day in seconds, minutes, and hours
  - 12- or 24-hour format
  - Optional daylight saving adjustment
➤ Programmable square wave output
➤ Three individually maskable interrupt event flags:
  - Periodic rates from 122µs to 500ms
  - Time-of-day alarm once per second to once per day
  - End-of-clock update cycle
➤ 24-pin plastic DIP or SOIC

General Description

The CMOS bq3285 is a low-power microprocessor peripheral providing a time-of-day clock and 100-year calendar with alarm features and battery operation. Other features include three maskable interrupt sources, square wave output, and 114 bytes of general nonvolatile storage.

The bq3285 write-protection of the clock, calendar, and storage registers during power failure. A backup battery then maintains data and operates the clock and calendar.

The bq3285 is a fully compatible real-time clock for IBM AT compatible computers and other applications. The only external components are a 32.768kHz crystal and a backup battery.
Pin Descriptions

**MOT**  
**Bus type select input**

MOT selects bus timing for either Motorola or Intel architecture. This pin should be tied to VCC for Motorola timing or to VSS for Intel timing (see Table 1). The setting should not be changed during system operation. MOT is internally pulled low by a 30KΩ resistor.

**AD0–AD7**  
**Multiplexed address/data input/output**

The bq3285 bus cycle consists of two phases: the address phase and the data-transfer phase. The address phase precedes the data-transfer phase. During the address phase, an address placed on AD0–AD7 is latched into the bq3285 on the falling edge of the AS signal. During the data-transfer phase of the bus cycle, the AD0–AD7 pins serve as a bidirectional data bus.

**AS**  
**Address strobe input**

AS serves to demultiplex the address/data bus. The falling edge of AS latches the address on AD0–AD7. This demultiplexing process is independent of the CS signal. For DIP and SOIC packages with MOT = VCC, the AS input is provided a signal similar to ALE in an Intel-based system.

---

**Table 1. Bus Setup**

<table>
<thead>
<tr>
<th>Bus Type</th>
<th>MOT Level</th>
<th>DS Equivalent</th>
<th>R/W Equivalent</th>
<th>AS Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motorola</td>
<td>VCC</td>
<td>DS, E, or φ2</td>
<td>R/W</td>
<td>AS</td>
</tr>
<tr>
<td>Intel</td>
<td>VSS</td>
<td>RD, MEMR, or IOR</td>
<td>WR, MEMW, or LOW</td>
<td>ALE</td>
</tr>
</tbody>
</table>
DS  Data strobe input
When MOT = VCC, DS controls data transfer during a bq3285 bus cycle. During a read cycle, the bq3285 drives the bus after the rising edge on DS. During a write cycle, the falling edge on DS is used to latch write data into the chip.
When MOT = VSS, the DS input is provided a signal similar to RD, MEMR, or I/OR in an Intel-based system. The falling edge on DS is used to enable the outputs during a read cycle.

R/W  Read/write input
When MOT = VCC, the level on R/W identifies the direction of data transfer. A high level on R/W indicates a read bus cycle, whereas a low on this pin indicates a write bus cycle.
When MOT = VSS, R/W is provided a signal similar to WR, MEMW, or I/OW in an Intel-based system. The rising edge on R/W latches data into the bq3285.

CS  Chip select input
CS should be driven low and held stable during the data-transfer phase of a bus cycle accessing the bq3285.

INT  Interrupt request output
INT is an open-drain output. INT is asserted low when any event flag is set and the corresponding event enable bit is also set. INT becomes high-impedance whenever register C is read (see the Control/Status Registers section).

SQW  Square-wave output
SQW may output a programmable frequency square-wave signal during normal (VCC valid) system operation. Any one of the 13 specific frequencies may be selected through register A. This pin is held low when the square-wave enable bit (SQWE) in register B is 0 (see the Control/Status Registers section).

RCL  RAM clear input
A low level on the RCL pin causes the contents of each of the 114 storage bytes to be set to FF(hex). The contents of the clock and control registers are unaffected. This pin should be used as a user-interface input (pushbutton to ground) and not connected to the output of any active component. RCL input is only recognized when held low for at least 125ms in the presence of VCC when the oscillator is running. Using RAM clear does not affect the battery load. This pin is connected internally to a 30KΩ pull-up resistor.

BC  3V backup cell input
BC should be connected to a 3V backup cell for RTC operation and storage register non-volatility in the absence of power. When VCC slew down past VBC (3V typical), the integral control circuitry switches the power source to BC. When VCC returns above VBC, the power source is switched to VCC.
Upon power-up, a voltage within the VBC range must be present on the BC pin for the oscillator to start up.

RST  Reset input
The bq3285 is reset when RST is pulled low. When reset, INT becomes high-impedance, and the bq3285 is not accessible. Table 4 in the Control/Status Registers section lists the register bits that are cleared by a reset.
Reset may be disabled by connecting RST to VCC. This allows the control bits to retain their states through power-down/power-up cycles.

X1–X2  Crystal inputs
The X1–X2 inputs are provided for an external 32.768KHz quartz crystal, Daiwa DT-26 or equivalent, with 6pF load capacitance. A trimming capacitor may be necessary for extremely precise time-base generation.
In the absence of a crystal, an oscillated output of 32.768kHz can be fed into the X1 input.
bq3285

Functional Description

Address Map

The bq3285 provides 14 bytes of clock and control/status registers and 114 bytes of general nonvolatile storage. Figure 1 illustrates the address map for the bq3285.

Update Period

The update period for the bq3285 is one second. The bq3285 updates the contents of the clock and calendar locations during the update cycle at the end of each update period (see Figure 2). The alarm flag bit may also be set during the update cycle.

The bq3285 copies the local register updates into the user buffer accessed by the host processor. When a 1 is written to the update transfer inhibit bit (UTI) in register B, the user copy of the clock and calendar bytes remains unchanged, while the local copy of the same bytes continues to be updated every second.

The update-in-progress bit (UIP) in register A is set at BU time before the beginning of an update cycle (see Figure 2). This bit is cleared and the update-complete flag (UF) is set at the end of the update cycle.

Figure 1. Address Map

Figure 2. Update Period Timing and UIP
Programming the RTC

The time-of-day, alarm, and calendar bytes can be written in either the BCD or binary format (see Table 2).

These steps may be followed to program the time, alarm, and calendar:

1. Modify the contents of register B:
   a. Write a 1 to the UTI bit to prevent transfers between RTC bytes and user buffer.
   b. Write the appropriate value to the data format (DF) bit to select BCD or binary format for all time, alarm, and calendar bytes.
   c. Write the appropriate value to the hour format (HF) bit.

2. Write new values to all the time, alarm, and calendar locations.

3. Clear the UTI bit to allow update transfers.

On the next update cycle, the RTC updates all 10 bytes in the selected format.

Table 2. Time, Alarm, and Calendar Formats

<table>
<thead>
<tr>
<th>Address</th>
<th>RTC Bytes</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Seconds</td>
<td>Decimal: 0–59</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Binary: 00H–3BH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BCD: 00H–59H</td>
</tr>
<tr>
<td>1</td>
<td>Seconds alarm</td>
<td>Decimal: 0–59</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Binary: 00H–3BH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BCD: 00H–59H</td>
</tr>
<tr>
<td>2</td>
<td>Minutes</td>
<td>Decimal: 0–59</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Binary: 00H–3BH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BCD: 00H–59H</td>
</tr>
<tr>
<td>3</td>
<td>Minutes alarm</td>
<td>Decimal: 0–59</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Binary: 00H–3BH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BCD: 00H–59H</td>
</tr>
<tr>
<td>4</td>
<td>Hours, 12-hour format</td>
<td>Decimal: 1–12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Binary: 01H–0CH AM; 01H–12H AM;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Binary-Coded Decimal: 00H–17H; 81H–92H PM</td>
</tr>
<tr>
<td></td>
<td>Hours, 24-hour format</td>
<td>Decimal: 0–23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Binary: 00H–17H</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BCD: 00H–23H</td>
</tr>
<tr>
<td>5</td>
<td>Hours alarm, 12-hour format</td>
<td>Decimal: 1–12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Binary: 01H–0CH AM; 01H–12H AM;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Binary-Coded Decimal: 00H–17H; 81H–92H PM</td>
</tr>
<tr>
<td></td>
<td>Hours alarm, 24-hour format</td>
<td>Decimal: 0–23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Binary: 00H–17H</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BCD: 00H–23H</td>
</tr>
<tr>
<td>6</td>
<td>Day of week (1=Sunday)</td>
<td>Decimal: 1–7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Binary: 01H–07H</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BCD: 01H–07H</td>
</tr>
<tr>
<td>7</td>
<td>Day of month</td>
<td>Decimal: 1–31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Binary: 01H–1FH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BCD: 01H–31H</td>
</tr>
<tr>
<td>8</td>
<td>Month</td>
<td>Decimal: 1–12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Binary: 01H–0CH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BCD: 01H–12H</td>
</tr>
<tr>
<td>9</td>
<td>Year</td>
<td>Decimal: 0–99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Binary: 00H–63H</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BCD: 00H–99H</td>
</tr>
</tbody>
</table>
Square-Wave Output

The bq3285 divides the 32.768kHz oscillator frequency to produce the 1Hz update frequency for the clock and calendar. Thirteen taps from the frequency divider are fed to a 16:1 multiplexer circuit. The output of this mux is fed to the SQW output and periodic interrupt generation circuitry. The four least-significant bits of register A, RS0–RS3, select among the 13 taps (see Table 3). The square-wave output is enabled by writing a 1 to the square-wave enable bit (SQWE) in register B.

Interrupts

The bq3285 allows three individually selected interrupt events to generate an interrupt request. These three interrupt events are:

- The periodic interrupt, programmable to occur once every 122µs to 500ms
- The alarm interrupt, programmable to occur once per second to once per day
- The update-ended interrupt, which occurs at the end of each update cycle

Each of the three interrupt events is enabled by an individual interrupt-enable bit in register B. When an event occurs, its event flag bit in register C is set. If the corresponding event enable bit is also set, then an interrupt request is generated. The interrupt request flag bit (INTF) of register C is set with every interrupt request. Reading register C clears all flag bits, including INTF, and makes INT high-impedance.

Two methods can be used to process bq3285 interrupt events:

- Enable interrupt events and use the interrupt request output to invoke an interrupt service routine.
- Do not enable the interrupts and use a polling routine to periodically check the status of the flag bits.

The individual interrupt sources are described in detail in the following sections.

<table>
<thead>
<tr>
<th>Register A Bits</th>
<th>Square Wave Frequency</th>
<th>Periodic Interrupt Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS3 RS2 RS1 RS0</td>
<td>Frequency</td>
<td>Units</td>
</tr>
<tr>
<td>0 0 0 0</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>0 0 0 1</td>
<td>256 Hz</td>
<td>None</td>
</tr>
<tr>
<td>0 0 1 0</td>
<td>128 Hz</td>
<td>None</td>
</tr>
<tr>
<td>0 0 1 1</td>
<td>8.192 kHz</td>
<td>None</td>
</tr>
<tr>
<td>0 1 0 0</td>
<td>0.096 kHz</td>
<td>None</td>
</tr>
<tr>
<td>0 1 0 1</td>
<td>2.048 kHz</td>
<td>None</td>
</tr>
<tr>
<td>0 1 1 0</td>
<td>1.024 kHz</td>
<td>None</td>
</tr>
<tr>
<td>0 1 1 1</td>
<td>512 Hz</td>
<td>None</td>
</tr>
<tr>
<td>1 0 0 0</td>
<td>256 Hz</td>
<td>None</td>
</tr>
<tr>
<td>1 0 0 1</td>
<td>128 Hz</td>
<td>None</td>
</tr>
<tr>
<td>1 0 1 0</td>
<td>64 Hz</td>
<td>None</td>
</tr>
<tr>
<td>1 0 1 1</td>
<td>32 Hz</td>
<td>None</td>
</tr>
<tr>
<td>1 1 0 0</td>
<td>16 Hz</td>
<td>None</td>
</tr>
<tr>
<td>1 1 0 1</td>
<td>8 Hz</td>
<td>None</td>
</tr>
<tr>
<td>1 1 1 0</td>
<td>4 Hz</td>
<td>None</td>
</tr>
<tr>
<td>1 1 1 1</td>
<td>2 Hz</td>
<td>None</td>
</tr>
</tbody>
</table>

Table 3. Square-Wave Frequency/Periodic Interrupt Rate
Periodic Interrupt

The mux output used to drive the SQW output also drives the interrupt-generation circuitry. If the periodic interrupt event is enabled by writing a 1 to the periodic interrupt enable bit (PIE) in register C, an interrupt request is generated once every 122\(\mu\)s to 500ms. The period between interrupts is selected by the same bits in register A that select the square wave frequency (see Table 3).

Alarm Interrupt

During each update cycle, the RTC compares the hours, minutes, and seconds bytes with the three corresponding alarm bytes. If a match of all bytes is found, the alarm interrupt event flag bit, AF in register C, is set to 1. If the alarm event is enabled, an interrupt request is generated.

An alarm byte may be removed from the comparison by setting it to a “don’t care” state. An alarm byte is set to a “don’t care” state by writing a 1 to each of its two most-significant bits. A “don’t care” state may be used to select the frequency of alarm interrupt events as follows:

- If none of the three alarm bytes is “don’t care,” the frequency is once per day, when hours, minutes, and seconds match.
- If only the alarm byte is “don’t care,” the frequency is once per hour, when minutes and seconds match.
- If only the hour and minute alarm bytes are “don’t care,” the frequency is once per minute, when seconds match.
- If the hour, minute, and second alarm bytes are “don’t care,” the frequency is once per second.

Update Cycle Interrupt

The update cycle ended flag bit (UF) in register C is set to a 1 at the end of an update cycle. If the update interrupt enable bit (UIE) of register B is 1, and the update transfer inhibit bit (UTI) in register B is 0, then an interrupt request is generated at the end of each update cycle.

Accessing RTC bytes

Time and calendar bytes read during an update cycle may be in error. Three methods to access the time and calendar bytes without ambiguity are:

- Enable the update interrupt event to generate interrupt requests at the end of the update cycle. The interrupt handler has a maximum of 999ms to access the clock bytes before the next update cycle begins (see Figure 3).
- Poll the update-in-progress bit (UIP) in register A. If UIP = 0, the polling routine has a minimum of \(t_{BUC}\) time to access the clock bytes (see Figure 3).
- Use the periodic interrupt event to generate interrupt requests every \(t_{PI}\) time, such that UIP = 1 always occurs between the periodic interrupts. The interrupt handler has a minimum of \(t_{PI}/2 + t_{BUC}\) time to access the clock bytes (see Figure 3).

Oscillator Control

When power is first applied to the bq3285 and \(V_{CC}\) is above \(V_{PPD}\), the internal oscillator and frequency divider are turned on by writing a 010 pattern to bits 4 through 6 of register A. A pattern of 11X turns the oscillator on, but keeps the frequency divider disabled. Any other pattern to these bits keeps the oscillator off.

---

**Figure 3. Update-Ended/Periodic Interrupt Relationship**
**Power-Down/Power-Up Cycle**

The bq3285 continuously monitors $V_{CC}$ for out-of-tolerance. During a power failure, when $V_{CC}$ falls below $V_{FPD}$ (4.17V typical), the bq3285 write-protecs the clock and storage registers. When $V_{CC}$ is below $V_{BC}$ (3V typical), the power source is switched to BC. RTC operation and storage data are sustained by a valid backup energy source. When $V_{CC}$ is above $V_{BC}$, the power source is $V_{CC}$. Write-protection continues for $t_{CSR}$ time after $V_{CC}$ rises above $V_{FPD}$.

**Control/Status Registers**

The four control/status registers of the bq3285 are accessible regardless of the status of the update cycle (see Table 4).

**Register A**

<table>
<thead>
<tr>
<th>Register A Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
</tr>
<tr>
<td>UIP</td>
</tr>
</tbody>
</table>

Register A programs:
- The frequency of the square-wave and the periodic event rate.
- Oscillator operation.

Register A provides:
- Status of the update cycle.

**Table 4. Control/Status Registers**

<table>
<thead>
<tr>
<th>Reg. (Hex)</th>
<th>Loc.</th>
<th>Read</th>
<th>Write</th>
<th>Bit Name and State on Reset</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 0A</td>
<td>Yes</td>
<td>Yes</td>
<td>UIP</td>
<td>na OS2 na OS1 na OS0 na RS3 na RS2 na RS1 na RS0 na</td>
</tr>
<tr>
<td>B 0B</td>
<td>Yes</td>
<td>Yes</td>
<td>UTI</td>
<td>na PIE 0 AIE 0 UIE 0 SQWE 0 DF na HF na DSE na</td>
</tr>
<tr>
<td>C 0C</td>
<td>Yes</td>
<td>No</td>
<td>INTF</td>
<td>0 PF 0 AF 0 UF 0 - 0 - 0 - 0 - 0</td>
</tr>
<tr>
<td>D 0D</td>
<td>Yes</td>
<td>No</td>
<td>VRT</td>
<td>na - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0</td>
</tr>
</tbody>
</table>

**Notes:**
1. Except bit 7.
2. na = not affected
Register B

Register B enables:
- Update cycle transfer operation
- Square-wave output
- Interrupt events
- Daylight saving adjustment

Register B selects:
- Clock and calendar data formats
- All bits of register B are read/write.

DSE - Daylight Saving Enable

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DSE</td>
</tr>
</tbody>
</table>

This bit enables daylight-saving time adjustments when written to 1:
- On the last Sunday in October, the time falls back to 1:00:00 AM.
- On the first Sunday in April, the time springs forward from 2:00:00 AM to 3:00:00 AM.

HF - Hour Format

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HF</td>
<td></td>
</tr>
</tbody>
</table>

This bit selects the time-of-day and alarm hour format:
- 1 = 24-hour format
- 0 = 12-hour format

DF - Data Format

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This bit selects the numeric format in which the time, alarm, and calendar bytes are represented:
- 1 = Binary
- 0 = BCD

SQWE - Square-Wave Enable

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SQWE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This bit enables the square-wave output:
- 1 = Enabled
- 0 = Disabled and held low

UIE - Update Cycle Interrupt Enable

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UIE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This bit enables an interrupt request due to an update ended interrupt event:
- 1 = Enabled
- 0 = Disabled

The UIE bit is automatically cleared when the UTI bit equals 1.

AIE - Alarm Interrupt Enable

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>AIE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This bit enables an interrupt request due to an alarm interrupt event:
- 1 = Enabled
- 0 = Disabled

PIE - Periodic Interrupt Enable

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PIE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This bit enables an interrupt request due to a periodic interrupt event:
- 1 = Enabled
- 0 = Disabled
UTI - Update Transfer Inhibit

This bit inhibits the transfer of RTC bytes to the user buffer:

1 = Inhibits transfer and clears UIE
0 = Allows transfer

Register C

<table>
<thead>
<tr>
<th>Register C Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
</tr>
<tr>
<td>UTI</td>
</tr>
</tbody>
</table>

Register C is the read-only event status register.

Bits 0–3 - Unused Bits

<table>
<thead>
<tr>
<th>Register C Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
</tr>
<tr>
<td>-</td>
</tr>
</tbody>
</table>

These bits are always set to 0.

UF - Update Event Flag

<table>
<thead>
<tr>
<th>Register C Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
</tr>
<tr>
<td>-</td>
</tr>
</tbody>
</table>

This bit is set to a 1 at the end of the update cycle. Reading register C clears this bit.

AF - Alarm Event Flag

<table>
<thead>
<tr>
<th>Register C Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
</tr>
<tr>
<td>-</td>
</tr>
</tbody>
</table>

This bit is set to a 1 when an alarm event occurs. Reading register C clears this bit.

PF - Periodic Event Flag

<table>
<thead>
<tr>
<th>Register C Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
</tr>
<tr>
<td>-</td>
</tr>
</tbody>
</table>

This bit is set to a 1 every tPI time, where tPI is the time period selected by the settings of RS0–RS3 in register A. Reading register C clears this bit.

INTF - Interrupt Request Flag

<table>
<thead>
<tr>
<th>Register C Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
</tr>
<tr>
<td>INTF</td>
</tr>
</tbody>
</table>

This flag is set to a 1 when any of the following is true:

AIE = 1 and AF = 1
PIE = 1 and PF = 1
UIE = 1 and UF = 1

Reading register C clears this bit.

Register D

<table>
<thead>
<tr>
<th>Register D Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
</tr>
<tr>
<td>VRT</td>
</tr>
</tbody>
</table>

Register D is the read-only data integrity status register.

Bits 0–6 - Unused Bits

<table>
<thead>
<tr>
<th>Register D Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
</tr>
<tr>
<td>-</td>
</tr>
</tbody>
</table>

These bits are always set to 0.

VRT - Valid RAM and Time

<table>
<thead>
<tr>
<th>Register D Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
</tr>
<tr>
<td>VRT</td>
</tr>
</tbody>
</table>

1 = Valid backup energy source
0 = Backup energy source is depleted

When the backup energy source is depleted (VRT = 0), data integrity of the RTC and storage registers is not guaranteed.
# Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>DC voltage applied on VCC relative to VSS</td>
<td>-0.3 to 7.0</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>VT</td>
<td>DC voltage applied on any pin excluding VCC relative to VSS</td>
<td>-0.3 to 7.0</td>
<td>V</td>
<td>VT ≤ VCC + 0.3</td>
</tr>
<tr>
<td>TTOPR</td>
<td>Operating temperature</td>
<td>0 to +70</td>
<td>°C</td>
<td>Commercial</td>
</tr>
<tr>
<td>TSTG</td>
<td>Storage temperature</td>
<td>-55 to +125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>TBIAS</td>
<td>Temperature under bias</td>
<td>-40 to +85</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>TSOLDER</td>
<td>Soldering temperature</td>
<td>260</td>
<td>°C</td>
<td>For 10 seconds</td>
</tr>
</tbody>
</table>

**Note:** Permanent device damage may occur if Absolute Maximum Ratings are exceeded. Functional operation should be limited to the Recommended DC Operating Conditions detailed in this data sheet. Exposure to conditions beyond the operational limits for extended periods of time may affect device reliability.

# Recommended DC Operating Conditions \((T_A = T_{OPR})\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>Supply voltage</td>
<td>4.5</td>
<td>5.0</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>VSS</td>
<td>Supply voltage</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>V</td>
</tr>
<tr>
<td>VIL</td>
<td>Input low voltage</td>
<td>-0.3</td>
<td>-</td>
<td>0.8</td>
<td>V</td>
</tr>
<tr>
<td>VIH</td>
<td>Input high voltage</td>
<td>2.2</td>
<td>-</td>
<td>(V_{CC} + 0.3)</td>
<td>V</td>
</tr>
<tr>
<td>VBC</td>
<td>Backup cell voltage</td>
<td>2.5</td>
<td>-</td>
<td>4.0</td>
<td>V</td>
</tr>
</tbody>
</table>

**Note:** Typical values indicate operation at \(T_A = 25°C\).
### DC Electrical Characteristics \((T_A = T_{OPR}, V_{CC} = 5V \pm 10\%\))

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Unit</th>
<th>Conditions/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{IL})</td>
<td>Input leakage current</td>
<td>-</td>
<td>-</td>
<td>± 1</td>
<td>(\mu A)</td>
<td>(V_{IN} = V_{SS} \text{ to } V_{CC})</td>
</tr>
<tr>
<td>(I_{OL})</td>
<td>Output leakage current</td>
<td>-</td>
<td>-</td>
<td>± 1</td>
<td>(\mu A)</td>
<td>(AD_0)–(AD_7), INT, and SQW in high impedance, (V_{OUT} = V_{SS} \text{ to } V_{CC})</td>
</tr>
<tr>
<td>(V_{OH})</td>
<td>Output high voltage</td>
<td>2.4</td>
<td>-</td>
<td>-</td>
<td>V</td>
<td>(I_{OH} = -2.0\ mA)</td>
</tr>
<tr>
<td>(V_{OL})</td>
<td>Output low voltage</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
<td>V</td>
<td>(I_{OL} = 4.0\ mA)</td>
</tr>
<tr>
<td>(I_{CC})</td>
<td>Operating supply current</td>
<td>-</td>
<td>7</td>
<td>15</td>
<td>mA</td>
<td>Min. cycle, duty = 100%, (I_{OH} = 0\ mA, I_{OL} = 0\ mA)</td>
</tr>
<tr>
<td>(V_{SO})</td>
<td>Supply switch-over voltage</td>
<td>-</td>
<td>(V_{BC})</td>
<td>-</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(I_{CCB})</td>
<td>Battery operation current</td>
<td>-</td>
<td>0.3</td>
<td>0.5</td>
<td>(\mu A)</td>
<td>(V_{BC} = 3\ V, T_A = 25^\circ C)</td>
</tr>
<tr>
<td>(V_{PFD})</td>
<td>Power-fail-detect voltage</td>
<td>4.0</td>
<td>4.17</td>
<td>4.35</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(I_{RCL})</td>
<td>Input current when (RCL = V_{SS})</td>
<td>-</td>
<td>-</td>
<td>185</td>
<td>(\mu A)</td>
<td>Internal 30K pull-up</td>
</tr>
<tr>
<td>(I_{MOTH})</td>
<td>Input current when (MOT = V_{CC})</td>
<td>-</td>
<td>-</td>
<td>-185</td>
<td>(\mu A)</td>
<td>Internal 30K pull-down</td>
</tr>
</tbody>
</table>

**Notes:** Typical values indicate operation at \(T_A = 25^\circ C, V_{CC} = 5V\) or \(V_{BC} = 3V\).

### Crystal Specifications (DT-26 or Equivalent)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_0)</td>
<td>Oscillation frequency</td>
<td>-</td>
<td>32.768</td>
<td>-</td>
<td>kHz</td>
</tr>
<tr>
<td>(C_L)</td>
<td>Load capacitance</td>
<td>-</td>
<td>6</td>
<td>-</td>
<td>pF</td>
</tr>
<tr>
<td>(T_P)</td>
<td>Temperature turnover point</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>°C</td>
</tr>
<tr>
<td>(k)</td>
<td>Parabolic curvature constant</td>
<td>-</td>
<td>-</td>
<td>-0.042</td>
<td>ppm/°C</td>
</tr>
<tr>
<td>(Q)</td>
<td>Quality factor</td>
<td>40,000</td>
<td>70,000</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(R_1)</td>
<td>Series resistance</td>
<td>-</td>
<td>70,000</td>
<td>45</td>
<td>KΩ</td>
</tr>
<tr>
<td>(C_0)</td>
<td>Shunt capacitance</td>
<td>-</td>
<td>1.1</td>
<td>1.8</td>
<td>pF</td>
</tr>
<tr>
<td>(C_0/C_1)</td>
<td>Capacitance ratio</td>
<td>-</td>
<td>430</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>(D_L)</td>
<td>Drive level</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>(\mu W)</td>
</tr>
<tr>
<td>(\Delta f_0)</td>
<td>Aging (first year at 25°C)</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>ppm</td>
</tr>
</tbody>
</table>
## Capacitance

(\(T_A = 25^\circ C, f = 1\text{MHz}, V_{CC} = 5.0\text{V}\))

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI/O</td>
<td>Input/output capacitance</td>
<td>-</td>
<td>-</td>
<td>7</td>
<td>pF</td>
<td>(V_{OUT} = 0\text{V})</td>
</tr>
<tr>
<td>CIN</td>
<td>Input capacitance</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>pF</td>
<td>(V_{IN} = 0\text{V})</td>
</tr>
</tbody>
</table>

### AC Test Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input pulse levels</td>
<td>0 to 3.0 V</td>
</tr>
<tr>
<td>Input rise and fall times</td>
<td>5 ns</td>
</tr>
<tr>
<td>Input and output timing reference levels</td>
<td>1.5 V (unless otherwise specified)</td>
</tr>
<tr>
<td>Output load (including scope and jig)</td>
<td>See Figures 4 and 5</td>
</tr>
</tbody>
</table>

![Figure 4. Output Load A](image1)

![Figure 5. Output Load B](image2)
## Read/Write Timing (TA = T_{opr}, V_{CC} = 5V ± 10%)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>tCYC</td>
<td>Cycle time</td>
<td>160</td>
<td>-</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tDSL</td>
<td>DS low or RD/WR high time</td>
<td>80</td>
<td>-</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tDSH</td>
<td>DS high or RD/WR low time</td>
<td>55</td>
<td>-</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tRWH</td>
<td>R/W hold time</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tRWS</td>
<td>R/W setup time</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tCS</td>
<td>Chip select setup time</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tCH</td>
<td>Chip select hold time</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tDHR</td>
<td>Read data hold time</td>
<td>0</td>
<td>-</td>
<td>25</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tDHW</td>
<td>Write data hold time</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tAS</td>
<td>Address setup time</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tAH</td>
<td>Address hold time</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tDAS</td>
<td>Delay time, DS to AS rise</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tASW</td>
<td>Pulse width, AS high</td>
<td>30</td>
<td>-</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tASD</td>
<td>Delay time, AS to DS rise (RD/WR fall)</td>
<td>35</td>
<td>-</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tOD</td>
<td>Output data delay time from DS rise (RD fall)</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tDW</td>
<td>Write data setup time</td>
<td>30</td>
<td>-</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tBUC</td>
<td>Delay time before update cycle</td>
<td>-</td>
<td>244</td>
<td>-</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td>tPI</td>
<td>Periodic interrupt time interval</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>See Table 3</td>
<td></td>
</tr>
<tr>
<td>tUC</td>
<td>Time of update cycle</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>μs</td>
<td></td>
</tr>
</tbody>
</table>
Motorola Bus Read/Write Timing
bq3285

Intel Bus Read Timing

Intel Bus Write Timing
Power-Down/Power-Up Timing \( (T_A = T_{OPR}) \)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>( t_F )</td>
<td>( V_{CC} ) slew from 4.5V to 0V</td>
<td>300</td>
<td>-</td>
<td>-</td>
<td>( \mu \text{s} )</td>
<td></td>
</tr>
<tr>
<td>( t_R )</td>
<td>( V_{CC} ) slew from 0V to 4.5V</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>( \mu \text{s} )</td>
<td></td>
</tr>
<tr>
<td>( t_{CSR} )</td>
<td>( CS ) at ( V_{IH} ) after power-up</td>
<td>20</td>
<td>-</td>
<td>200</td>
<td>ms</td>
<td>Internal write-protection period after ( V_{CC} ) passes ( V_{PD} ) on power-up.</td>
</tr>
</tbody>
</table>

Power-Down/Power-Up Timing
### Interrupt Delay Timing \( (T_A = T_{OPR}) \)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>tRSW</td>
<td>Reset pulse width</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>( \mu s )</td>
</tr>
<tr>
<td>tIRR</td>
<td>INT release from RST</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>( \mu s )</td>
</tr>
<tr>
<td>tIRD</td>
<td>INT release from DS (RD)</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>( \mu s )</td>
</tr>
</tbody>
</table>

### Interrupt Delay Timing

![Interrupt Delay Timing Diagram](image-url)
### 24-Pin DIP (P)

All dimensions are in inches.

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.160</td>
<td>0.190</td>
</tr>
<tr>
<td>A1</td>
<td>0.015</td>
<td>0.040</td>
</tr>
<tr>
<td>B</td>
<td>0.015</td>
<td>0.022</td>
</tr>
<tr>
<td>B1</td>
<td>0.045</td>
<td>0.065</td>
</tr>
<tr>
<td>C</td>
<td>0.008</td>
<td>0.013</td>
</tr>
<tr>
<td>D</td>
<td>1.240</td>
<td>1.280</td>
</tr>
<tr>
<td>E</td>
<td>0.600</td>
<td>0.625</td>
</tr>
<tr>
<td>E1</td>
<td>0.530</td>
<td>0.570</td>
</tr>
<tr>
<td>e</td>
<td>0.600</td>
<td>0.670</td>
</tr>
<tr>
<td>G</td>
<td>0.090</td>
<td>0.110</td>
</tr>
<tr>
<td>L</td>
<td>0.115</td>
<td>0.150</td>
</tr>
<tr>
<td>S</td>
<td>0.070</td>
<td>0.090</td>
</tr>
</tbody>
</table>

### 24-Pin SOIC (S)

All dimensions are in inches.

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.095</td>
<td>0.105</td>
</tr>
<tr>
<td>A1</td>
<td>0.004</td>
<td>0.012</td>
</tr>
<tr>
<td>B</td>
<td>0.013</td>
<td>0.020</td>
</tr>
<tr>
<td>C</td>
<td>0.008</td>
<td>0.013</td>
</tr>
<tr>
<td>D</td>
<td>0.600</td>
<td>0.615</td>
</tr>
<tr>
<td>E</td>
<td>0.290</td>
<td>0.305</td>
</tr>
<tr>
<td>e</td>
<td>0.045</td>
<td>0.055</td>
</tr>
<tr>
<td>H</td>
<td>0.395</td>
<td>0.415</td>
</tr>
<tr>
<td>L</td>
<td>0.020</td>
<td>0.040</td>
</tr>
</tbody>
</table>
### bq3285

#### Data Sheet Revision History

<table>
<thead>
<tr>
<th>Change No.</th>
<th>Page No.</th>
<th>Description</th>
<th>Nature of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>Address strobe input</td>
<td>Clarification</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>Backup cell voltage $V_{BC}$</td>
<td>Was 2.0 min; is 2.5 min</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>Power-fail detect voltage $V_{PFD}$</td>
<td>Was 4.1 min, 4.25 max; in 4.0 mi, 4.35 max</td>
</tr>
<tr>
<td>2</td>
<td>3, 12</td>
<td>Crystal type Daiwa DT-26 (not DT-26S)</td>
<td>Clarification</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>Changed value in first table</td>
<td>$I_{RCL}$ max. was 275; is now 185</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>Changed value in first table</td>
<td>$I_{MOTH}$ max. was -275; is now -185</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>Changed values for conditions of $I_{RCL}$, $I_{MOTH}$</td>
<td>Was 20K; is now 30K</td>
</tr>
<tr>
<td>4</td>
<td>1, 8, 20</td>
<td>PLCC last time buy and Reg A update</td>
<td>Reg A labeling corrected</td>
</tr>
<tr>
<td>5</td>
<td>1, 8, 20</td>
<td>PLCC package option removed</td>
<td>PLCC reached end of Last Time Buy</td>
</tr>
</tbody>
</table>

**Note:**  
Change 1 = Nov. 1992 B changes from June 1991 A.  
Change 2 = Nov. 1993 C changes from Nov. 1992 B  
Change 3 = Sept. 1996 D changes from Nov. 1993 C  
Change 4 = Jan. 1999 E changes from Sept. 1996 D  
Change 5 = May 2004 (SLUS028A) changes from Jan. 1999 E
Ordering Information

- **Device:**
  - bq3285 Real-Time Clock with 114 bytes of general storage

- **Package Option:**
  - P = 24-pin plastic DIP (0.600)
  - S = 24-pin SOIC (0.300)

- **Temperature:**
  - blank = Commercial (0 to +70°C)
NOTES:  
A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-011  
D. Falls within JEDEC MS-015 (32 pin only)
## PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead finish/Ball material</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>BQ3285S-SB2</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>DW</td>
<td>24</td>
<td>25</td>
<td>RoHS &amp; Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>3285S-SB2</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) **RoHS**: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

**RoHS Exempt**: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

**Green**: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) **Lead finish/Ball material** - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

**Important Information and Disclaimer**: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
## TUBE

*All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Name</th>
<th>Package Type</th>
<th>Pins</th>
<th>SPQ</th>
<th>L (mm)</th>
<th>W (mm)</th>
<th>T (µm)</th>
<th>B (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BQ3285S-SB2</td>
<td>DW</td>
<td>SOIC</td>
<td>24</td>
<td>25</td>
<td>507</td>
<td>12.83</td>
<td>5080</td>
<td>6.6</td>
</tr>
</tbody>
</table>
MECHANICAL DATA

DW (R-PDSO-G24)  PLASTIC SMALL OUTLINE

NOTES:
A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0.15).
D. Falls within JEDEC MS-013 variation AD.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.