The CD74FCT623 is an octal bus transceiver that uses a small-geometry BiCMOS technology. The output stage is a combination of bipolar and CMOS transistors that limits the output high level to two diode drops below V_{CC}. This resultant lowering of output swing (0 V to 3.7 V) reduces power-bus ringing [a source of electromagnetic interference (EMI)] and minimizes V_{CC} bounce and ground bounce and their effects during simultaneous output switching. The output configuration also enhances switching speed and is capable of sinking 64 mA.

This device is a noninverting, 3-state, bidirectional transceiver-buffer intended for two-way transmission from A bus to B bus or B bus to A bus, depending on the logic levels of the output-enable (OEAB, OEBA) inputs.

The dual output-enable provision gives these devices the capability to store data by simultaneously enabling OEAB and OEBA. Each output reinforces its input under these conditions, and when all other data sources to the bus lines are at high impedance, both sets of bus lines remain in their last states.

The CD74FCT623 is characterized for operation from 0°C to 70°C.

FUNCTION TABLE

<table>
<thead>
<tr>
<th>INPUTS</th>
<th>OPERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>L L</td>
<td>B data to A bus</td>
</tr>
<tr>
<td>H H</td>
<td>A data to B bus</td>
</tr>
<tr>
<td>H L</td>
<td>Isolation†</td>
</tr>
<tr>
<td>L H</td>
<td>B data to A bus, A data to B bus</td>
</tr>
</tbody>
</table>

†To prevent excess current in the high-impedance (isolation) state, all I/O terminals should be terminated with 10-kΩ to 1-MΩ resistors.
logic symbol†

† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

- DC supply voltage range, V_{CC}: -0.5 V to 6 V
- DC input clamp current, I_{IK} ($V_I < -0.5$ V): -20 mA
- DC output clamp current, I_{OK} ($V_O < -0.5$ V): -50 mA
- DC output sink current per output pin, I_{OL}: 70 mA
- DC output source current per output pin, I_{OH}: -30 mA
- Continuous current through V_{CC}, I_{CC}: 140 mA
- Package thermal impedance, θ_{JA} (see Note 1): E package 69 °C/W, M package 58 °C/W, SM package 70 °C/W
- Storage temperature range, T_{stg}: -65°C to 150°C

† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions (see Note 2)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>V_{CC}</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CC}</td>
<td>Supply voltage</td>
<td></td>
<td>4.75</td>
<td>5.25</td>
<td>V</td>
</tr>
<tr>
<td>V_{IH}</td>
<td>High-level input voltage</td>
<td></td>
<td>2</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{IL}</td>
<td>Low-level input voltage</td>
<td></td>
<td>0.8</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{I}</td>
<td>Input voltage</td>
<td></td>
<td>0</td>
<td>V_{CC}</td>
<td>V</td>
</tr>
<tr>
<td>V_{O}</td>
<td>Output voltage</td>
<td></td>
<td>0</td>
<td>V_{CC}</td>
<td>V</td>
</tr>
<tr>
<td>I_{OH}</td>
<td>High-level output current</td>
<td></td>
<td>-15</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>I_{OL}</td>
<td>Low-level output current</td>
<td></td>
<td>64</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>$\Delta t/\Delta v$</td>
<td>Input transition rise or fall rate</td>
<td></td>
<td>0</td>
<td>10</td>
<td>ns/V</td>
</tr>
<tr>
<td>T_A</td>
<td>Operating free-air temperature</td>
<td></td>
<td>0</td>
<td>70</td>
<td>°C</td>
</tr>
</tbody>
</table>

NOTE 2: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>V_{CC}</th>
<th>$T_A = 25^\circ$C</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IK}</td>
<td>$I_I = -18$ mA</td>
<td>4.75 V</td>
<td>-1.2</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{OH}</td>
<td>$I_{OH} = -15$ mA</td>
<td>4.75 V</td>
<td>2.4</td>
<td>2.4</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{OL}</td>
<td>$I_{OL} = 64$ mA</td>
<td>4.75 V</td>
<td>0.55</td>
<td>0.55</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_I</td>
<td>$V_I = V_{CC}$ or GND</td>
<td>5.25 V</td>
<td>±0.1</td>
<td>±1</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>I_{OZ}</td>
<td>$V_O = V_{CC}$ or GND</td>
<td>5.25 V</td>
<td>±0.5</td>
<td>±10</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>I_{OS}</td>
<td>$V_I = V_{CC}$ or GND, $V_O = 0$</td>
<td>5.25 V</td>
<td>-60</td>
<td>-60</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>I_{CC}</td>
<td>$V_I = V_{CC}$ or GND, $I_O = 0$</td>
<td>5.25 V</td>
<td>8</td>
<td>80</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>Δt_{CC}</td>
<td>One input at 3.4 V, Other inputs at V_{CC} or GND</td>
<td>5.25 V</td>
<td>1.6</td>
<td>1.6</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>C_I</td>
<td>$V_I = V_{CC}$ or GND</td>
<td>5.25 V</td>
<td>10</td>
<td>10</td>
<td>pF</td>
<td></td>
</tr>
<tr>
<td>C_O</td>
<td>$V_O = V_{CC}$ or GND</td>
<td>5.25 V</td>
<td>15</td>
<td>15</td>
<td>pF</td>
<td></td>
</tr>
</tbody>
</table>

‡ Not more than one output should be tested at a time, and the duration of the test should not exceed 100 ms.
§ This is the increase in supply current for each input at one of the specified TTL voltage levels rather than 0 V or V_{CC}.
switching characteristics over recommended operating conditions (unless otherwise noted) (see Figure 1)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>FROM INPUT</th>
<th>TO OUTPUT</th>
<th>TA = 25°C</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>tpd</td>
<td>A or B</td>
<td>B or A</td>
<td>5.3</td>
<td>1.5</td>
<td>7</td>
<td>ns</td>
</tr>
<tr>
<td>ten</td>
<td>OEBA</td>
<td>A</td>
<td>7.1</td>
<td>1.5</td>
<td>9.5</td>
<td>ns</td>
</tr>
<tr>
<td>tdis</td>
<td>OEBA</td>
<td>A</td>
<td>5.6</td>
<td>1.5</td>
<td>7.5</td>
<td>ns</td>
</tr>
</tbody>
</table>

noise characteristics, VCC = 5 V, CL = 50 pF, TA = 25°C

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOL(P)</td>
<td>1</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>VOH(V)</td>
<td>0.5</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>VIH(D)</td>
<td>2</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>VIL(D)</td>
<td>0.8</td>
<td></td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

operating characteristics, TA = 25°C

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>TYP</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cpd</td>
<td>No load, f = 1 MHz</td>
<td>48</td>
<td>pF</td>
</tr>
</tbody>
</table>
PARAMETER MEASUREMENT INFORMATION

From Output Under Test:

CL = 50 pF (see Note A)

Test Point:

500 Ω

LOAD CIRCUIT FOR TOTEM-POLE OUTPUTS

From Output Under Test:

CL = 50 pF (see Note A)

500 Ω

LOAD CIRCUIT FOR 3-STATE AND OPEN-DRAIN OUTPUTS

VOLTAGE WAVEFORMS INPUT RISE AND FALL TIMES

Input:

1.5 V 90%

0 V 10%

Input:

1.5 V 90%

0 V 10%

1.5 V 90%

0 V 10%

VOLTAGE WAVEFORMS PULSE DURATION

Input:

1.5 V

0 V

1.5 V

0 V

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

In-Phase Output:

1.5 V

1.5 V

VOL

VOH

Out-of-Phase Output:

1.5 V

1.5 V

VOL

VOH

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES

Input Rise and Fall Times:

10% 1.5 V

90% 1.5 V

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

Output Control:

1.5 V

1.5 V

3 V

0 V

Output Waveform 1 (see Note B):

1.5 V

1.5 V

3 V

0 V

Output Waveform 2 (see Note B):

1.5 V

1.5 V

3 V

0 V

NOTES:

A. CL includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 1 MHz, ZO = 50 Ω, tR and tF = 2.5 ns.

D. The outputs are measured one at a time with one input transition per measurement.

E. tPLZ and tPHZ are the same as tDIS.

F. tPZL and tPZH are the same as tEN.

G. tPHL and tPLH are the same as tPD.

Figure 1. Load Circuit and Voltage Waveforms
<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Lead finish/ Ball material (2)</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD74FCT623M</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>DW</td>
<td>20</td>
<td>25</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>0 to 70</td>
<td>74FCT623M</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBsolete: TI has discontinued the production of the device.

(2) **RoHS:** TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a ";" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
<table>
<thead>
<tr>
<th>Device</th>
<th>Package Name</th>
<th>Package Type</th>
<th>Pins</th>
<th>SPQ</th>
<th>L (mm)</th>
<th>W (mm)</th>
<th>T (µm)</th>
<th>B (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD74FCT623M</td>
<td>DW</td>
<td>SOIC</td>
<td>20</td>
<td>25</td>
<td>507</td>
<td>12.83</td>
<td>5080</td>
<td>6.6</td>
</tr>
</tbody>
</table>

All dimensions are nominal
NOTES:

1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.
5. Reference JEDEC registration MS-013.
NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated