1 Features

• Balanced Output
• Low Distortion: 0.0005% at f = 1 kHz
• Wide Output Swing: 17Vrms into 600 Ω
• High Capacitive Load Drive
• High Slew Rate: 15 V/µs
• Wide Supply Range: ±4.5 V to ±18 V
• Low Quiescent Current: ±5.2 mA
• 8-Pin DIP, SO-8, and SOL-16 Packages
• Companion to Audio Differential Line Receivers: INA134 and INA137
• Improved Replacement for SSM2142

2 Applications

• Audio Differential Line Drivers
• Audio Mix Consoles
• Distribution Amplifiers
• Graphic and Parametric Equalizers
• Dynamic Range Processors
• Digital Effects Processors
• Telecom Systems
• Hi-Fi Equipment
• Industrial Instrumentation

3 Description

The DRV134 and DRV135 are differential output amplifiers that convert a single-ended input to a balanced output pair. These balanced audio drivers consist of high performance op amps with on-chip precision resistors. They are fully specified for high performance audio applications and have excellent ac specifications, including low distortion (0.0005% at 1 kHz) and high slew rate (15 V/µs).

The on-chip resistors are laser-trimmed for accurate gain and optimum output common-mode rejection. Wide output voltage swing and high output drive capability allow use in a wide variety of demanding applications. They easily drive the large capacitive loads associated with long audio cables. Used in combination with the INA134 or INA137 differential receivers, they offer a complete solution for transmitting analog audio signals without degradation.

The DRV134 is available in 8-pin DIP and SOL-16 surface-mount packages. The DRV135 comes in a space-saving SO-8 surface-mount package. Both are specified for operation over the extended industrial temperature range, –40°C to +85°C and operate from –55°C to +125°C.

4 Simplified Schematic

![Simplified Schematic Diagram]

Device Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRV134</td>
<td>SOIC (16)</td>
<td>10.30 mm × 7.50 mm</td>
</tr>
<tr>
<td>DRV135</td>
<td>SOIC (8)</td>
<td>4.90 mm × 3.91 mm</td>
</tr>
</tbody>
</table>

(1) For all available packages, see the orderable addendum at the end of the datasheet.

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.
Table of Contents

1 Features ... 1
2 Applications ... 1
3 Description ... 1
4 Simplified Schematic .. 1
5 Revision History ... 2
6 Pin Configuration and Functions 3
7 Specifications ... 4
 7.1 Absolute Maximum Ratings 4
 7.2 Handling Ratings .. 4
 7.3 Recommended Operating Conditions 4
 7.4 Electrical Characteristics .. 5
 7.5 Typical Characteristics ... 6
8 Detailed Description .. 11
 8.1 Overview .. 11
 8.2 Functional Block Diagram 11
 8.3 Feature Description .. 11
8.4 Device Functional Modes ... 13
9 Application and Implementation 15
 9.1 Application Information ... 15
 9.2 Typical Application ... 15
10 Power Supply Recommendations 17
11 Layout .. 17
 11.1 Layout Guidelines .. 17
 11.2 Layout Examples ... 18
 11.3 Thermal Performance ... 19
12 Device and Documentation Support 19
 12.1 Documentation Support .. 19
 12.2 Related Links ... 19
 12.3 Trademarks .. 19
 12.4 Electrostatic Discharge Caution 19
 12.5 Glossary .. 19
13 Mechanical, Packaging, and Orderable Information 20

5 Revision History

Changes from Revision A (April 2007) to Revision B

- Added Handling Rating table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section ... 1
6 Pin Configuration and Functions

Pin Functions

<table>
<thead>
<tr>
<th>PIN</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>DIP-8 and SO-8</td>
<td>SOL-16</td>
</tr>
<tr>
<td>Gnd</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>+Sense</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>–Sense</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>V+</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>V–</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>V_IN</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>–V_o</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>+V_o</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>NC</td>
<td>–</td>
<td>1,2,7,8,9,10,15,16</td>
</tr>
</tbody>
</table>

NOTE: NC - No internal connection
7 Specifications

7.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted) (1)

<table>
<thead>
<tr>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage, V+ to V–</td>
<td>40</td>
<td>V</td>
</tr>
<tr>
<td>Input voltage range</td>
<td>V–</td>
<td>V+</td>
</tr>
<tr>
<td>Output short-circuit (to ground)</td>
<td>Continuous</td>
<td></td>
</tr>
<tr>
<td>Operating temperature</td>
<td>–55</td>
<td>125</td>
</tr>
<tr>
<td>Junction temperature</td>
<td>150</td>
<td></td>
</tr>
</tbody>
</table>

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 Handling Ratings

<table>
<thead>
<tr>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tstg</td>
<td>Storage temperature range</td>
<td>–55</td>
</tr>
<tr>
<td>V_{(ESD)}</td>
<td>Electrostatic discharge</td>
<td>–2000</td>
</tr>
</tbody>
</table>

Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins

Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (2)

<table>
<thead>
<tr>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>–500</td>
<td>500</td>
<td></td>
</tr>
</tbody>
</table>

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions
over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{spe}</td>
<td>Specification temperature range</td>
<td>–40</td>
<td>85</td>
</tr>
<tr>
<td>T_A</td>
<td>Operation temperature range</td>
<td>–55</td>
<td>125</td>
</tr>
<tr>
<td>V+</td>
<td>Positive supply</td>
<td>4.5</td>
<td>18</td>
</tr>
<tr>
<td>V–</td>
<td>Negative supply</td>
<td>–4.5</td>
<td>–18</td>
</tr>
</tbody>
</table>
7.4 Electrical Characteristics

At $T_A = +25^\circ C$, $V_S = \pm 18$ V, $R_L = 600 \Omega$ differential connected between $+V_O$ and $-V_O$, unless otherwise noted.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUDIO PERFORMANCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THD+N</td>
<td>$f = 20$Hz to 20kHz, $V_O = 10$Vrms</td>
<td>0.001%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$f = 1$kHz, $V_O = 10$Vrms</td>
<td>0.0005%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTO(1) Noise Floor</td>
<td>20 kHz BW</td>
<td>98</td>
<td></td>
<td></td>
<td>dBu</td>
</tr>
<tr>
<td>RTO(1) Headroom</td>
<td>THD+N < 1%</td>
<td>27</td>
<td></td>
<td></td>
<td>dBu</td>
</tr>
<tr>
<td>INPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z_I Input Impedance(2)</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td>I_I Input Current</td>
<td>$V_I = \pm 7.07$V</td>
<td>-1000</td>
<td>±700</td>
<td>1000</td>
<td>µA</td>
</tr>
<tr>
<td>GAIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential Initial</td>
<td>$[(+V_O) - (-V_O)]/V_I$</td>
<td>5.8</td>
<td>6</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Error</td>
<td>$V_I = \pm 10$V</td>
<td>-2%</td>
<td>±0.1%</td>
<td>2%</td>
<td></td>
</tr>
<tr>
<td>Error vs Temperature</td>
<td></td>
<td>±10</td>
<td>ppm/°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single-Ended Initial</td>
<td>$V_I = \pm 5$V</td>
<td>5.8</td>
<td>6</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Error</td>
<td>$V_I = \pm 10$V</td>
<td>-2%</td>
<td>±0.7%</td>
<td>2%</td>
<td></td>
</tr>
<tr>
<td>Error vs Temperature</td>
<td></td>
<td>±10</td>
<td>ppm/°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonlinearity</td>
<td></td>
<td>0.003%</td>
<td></td>
<td></td>
<td>% of FS</td>
</tr>
<tr>
<td>OUTPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCMR</td>
<td>Common-Mode Rejection, $f = 1kHz$</td>
<td>46</td>
<td>68</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>SBR</td>
<td>Signal Balance Ratio, $f = 1kHz$</td>
<td>35</td>
<td>54</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Output Offset Voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{OCM}(3)$ Offset Voltage, Common-Mode</td>
<td>$V_I = 0$</td>
<td>-250</td>
<td>50</td>
<td>250</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>Offset Voltage, Common-Mode vs Temperature</td>
<td>±150</td>
<td></td>
<td></td>
<td>µV/°C</td>
</tr>
<tr>
<td>$V_{OD}(4)$ Offset Voltage, Differential</td>
<td>$V_I = 0$</td>
<td>-10</td>
<td>±1</td>
<td>10</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>Offset Voltage, Differential vs Temperature</td>
<td>±5</td>
<td></td>
<td></td>
<td>µV/°C</td>
</tr>
<tr>
<td>PSRR</td>
<td>Offset Voltage, Differential vs Power Supply</td>
<td>$V_S = \pm 4.5$V to ± 18V</td>
<td>80</td>
<td>110</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>Output Voltage Swing, Positive</td>
<td>$(V+) - 3$</td>
<td>$(V+) - 2.5$</td>
<td>$(V+) + 2$</td>
<td>$(V-) + 1.5$</td>
</tr>
<tr>
<td></td>
<td>Output Voltage Swing, Negative</td>
<td>$(V-) - 3$</td>
<td>$(V-) - 2.5$</td>
<td>$(V-) + 2$</td>
<td>$(V-) + 1.5$</td>
</tr>
<tr>
<td>Impedance</td>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>C_L Load Capacitance, Stable Operation</td>
<td>C_L Tied to Ground (each output)</td>
<td>1</td>
<td></td>
<td></td>
<td>µF</td>
</tr>
<tr>
<td>I_{ISC} Short-Circuit Current</td>
<td></td>
<td>±85</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>FREQUENCY RESPONSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small-Signal Bandwidth</td>
<td></td>
<td>1.5</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>SR</td>
<td>Slew Rate</td>
<td>15</td>
<td></td>
<td></td>
<td>V/µs</td>
</tr>
<tr>
<td></td>
<td>Settling Time: 0.01%</td>
<td>$V_{OUT} = 10$V Step</td>
<td>2.5</td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>Overload Recovery</td>
<td>Output Overdriven 10%</td>
<td>3</td>
<td></td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>POWER SUPPLY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_S Rated Voltage</td>
<td></td>
<td>±18</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Voltage Range</td>
<td></td>
<td>±4.5</td>
<td>±18</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I_Q Quiescent Current</td>
<td>$I_O = 0$</td>
<td>-5.5</td>
<td>±5.2</td>
<td>5.5</td>
<td>mA</td>
</tr>
</tbody>
</table>

(1) dBu = 20log (Vrms /0.7746); RTO = Referred-to-Output.
(2) Resistors are ratio matched but have ±20% absolute value.
(3) $V_{OCM} = [(+V_O) - (-V_O)] / 2$.
(4) $V_{OD} = (+V_O) - (-V_O)$.
(5) Ensures linear operation. Includes common-mode offset.
Electrical Characteristics (continued)

At $T_A = +25°C$, $V_S = ±18$ V, $R_L = 600$ Ω differential connected between $+V_O$ and $-V_O$, unless otherwise noted.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMPERATURE RANGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specification Range</td>
<td></td>
<td>–40</td>
<td>85</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>Operation Range</td>
<td></td>
<td>–55</td>
<td>125</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>Storage Range</td>
<td></td>
<td>–55</td>
<td>125</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>θ_{JA} Thermal Resistance</td>
<td>8-Pin DIP</td>
<td>100</td>
<td></td>
<td></td>
<td>°C/W</td>
</tr>
<tr>
<td></td>
<td>SO-8 Surface mount</td>
<td>150</td>
<td></td>
<td></td>
<td>°C/W</td>
</tr>
<tr>
<td></td>
<td>SOL-16 Surface mount</td>
<td>80</td>
<td></td>
<td></td>
<td>°C/W</td>
</tr>
</tbody>
</table>

7.5 Typical Characteristics

At $T_A = 25°C$, $V_S = ±18$ V, $R_L = 600$ Ω differential connected between $+V_O$ and $-V_O$, unless otherwise noted.

![Graph 1](image1.png)

Figure 1. Total Harmonic Distortion + Noise vs Frequency

![Graph 2](image2.png)

Figure 2. Total Harmonic Distortion + Noise vs Frequency

![Graph 3](image3.png)

Figure 3. Total Harmonic Distortion + Noise vs Frequency

![Graph 4](image4.png)

Figure 4. System Total Harmonic Distortion + Noise vs Frequency
Typical Characteristics (continued)

At $T_A = 25\degree C$, $V_S = \pm 18\ V$, $R_L = 600\ \Omega$ differential connected between $+V_O$ and $-V_O$, unless otherwise noted.

Figure 5. Headroom – Total Harmonic Distortion + Noise vs Output Amplitude

Figure 6. Dim Intermodulation Distortion vs Output Amplitude

Figure 7. Harmonic Distortion Products vs Frequency

Figure 8. Gain vs Frequency

Figure 9. Output Voltage Noise Spectral Density vs Frequency

Figure 10. Output Voltage Noise vs Noise Bandwidth
Typical Characteristics (continued)

At $T_A = 25°C$, $V_S = \pm 18\,V$, $R_L = 600\,\Omega$ differential connected between $+V_O$ and $-V_O$, unless otherwise noted.

Figure 11. Power Supply Rejection vs Frequency

Figure 12. Maximum Output Voltage Swing vs Frequency

Figure 13. Output Voltage Swing vs Supply Voltage

Figure 14. Output Voltage Swing vs Output Current

Figure 15. Quiescent Current vs Supply Voltage

Figure 16. Short-Circuit Current vs Temperature
Typical Characteristics (continued)

At $T_A = 25^\circ C$, $V_S = \pm 18 \text{ V}$, $R_L = 600 \Omega$ differential connected between $+V_O$ and $-V_O$, unless otherwise noted.

Figure 17. Differential Offset Voltage
Production Distribution

- $C_L = 100 \text{ pF}$
- $C_L = 1000 \text{ pF}$

Figure 18. Common-Mode Offset Voltage
Production Distribution

- $C_L = 100 \text{ pF}$
- $C_L = 1000 \text{ pF}$

Submit Documentation Feedback
Typical Characteristics (continued)

At $T_A = 25^\circ$C, $V_S = \pm 18$ V, $R_L = 600 \, \Omega$ differential connected between $+V_O$ and $-V_O$ unless otherwise noted.
8 Detailed Description

8.1 Overview
The DRV134 and DRV135 consist of an input inverter driving a cross-coupled differential output stage with 50 Ω series output resistors. Characterized by low differential-mode output impedance (50 Ω) and high common-mode output impedance (1.6 kΩ), the DRV134 and DRV135 are ideal for audio applications.

Excellent internal design and layout techniques provide low signal distortion, high output level (27 dBu), and a low noise floor (−98 dBu). Laser trimming of thin film resistors assures excellent output common-mode rejection (OCMR) and signal balance ratio (SBR). In addition, low dc voltage offset reduces errors and minimizes load currents.

The Functional Block Diagram section shows a detailed block diagram of the DRV134 and DRV135.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Audio Performance
The DRV134 and DRV135 were designed for enhanced ac performance. Very low distortion, low noise, and wide bandwidth provide superior performance in high quality audio applications. Laser-trimmed matched resistors provide optimum output common-mode rejection (typically 68 dB), especially when compared to circuits implemented with op amps and discrete precision resistors. In addition, high slew rate (15 V/μs) and fast settling time (2.5 μs to 0.01%) ensure excellent dynamic response.

The DRV134 and DRV135 have excellent distortion characteristics. As shown in the distortion data provided in the Typical Characteristics section, THD+Noise is below 0.003% throughout the audio frequency range under various output conditions. Both differential and single-ended modes of operation are shown. In addition, the optional 10 μF blocking capacitors used to minimize V_{OCM} errors have virtually no effect on performance. Measurements were taken with an Audio Precision System One (with the internal 80 kHz noise filter) using the THD test circuit shown in Figure 24.
Feature Description (continued)

Up to approximately 10 kHz, distortion is below the measurement limit of commonly used test equipment. Furthermore, distortion remains relatively constant over the wide output voltage swing range (approximately 2.5 V from the positive supply and 1.5 V from the negative supply). A special output stage topology yields a design with minimum distortion variation from lot-to-lot and unit-to-unit. Furthermore, the small and large signal transient response curves demonstrate the stability under load of the DRV134 and DRV135.

![Distortion Test Circuit](image)

Figure 24. Distortion Test Circuit

8.3.2 Output Common-Mode Rejection

Output common-mode rejection (OCMR) is defined as the change in differential output voltage due to a change in output common-mode voltage. When measuring OCMR, V_{IN} is grounded and a common-mode voltage, V_{CM}, is applied to the output as shown in **Figure 25**. Ideally no differential mode signal (V_{OD}) should appear. However, a small mode-conversion effect causes an error signal whose magnitude is quantified by OCMR.

![Output Common-Mode Rejection Test Circuit](image)

Figure 25. Output Common-Mode Rejection Test Circuit

8.3.3 Signal Balance Ratio

Signal balance ratio (SBR) measures the symmetry of the output signals under loaded conditions. To measure SBR an input signal is applied and the outputs are summed as shown in **Figure 26**. V_{OUT} should be zero since each output ideally is exactly equal and opposite. However, an error signal results from any imbalance in the outputs. This error is quantified by SBR. The impedances of the DRV134 and DRV135’s output stages are closely matched by laser trimming to minimize SBR errors. In an application, SBR also depends on the balance of the load network.
8.4 Device Functional Modes

8.4.1 Differential-Output Mode

In differential-output mode, the DRV134 (and DRV135 in SO-8 package) converts a single-ended, ground-referenced input to a floating differential output with +6 dB gain (G = 2). Figure 27 shows the basic connections required for operation in differential-output mode.

Normally, +V_O is connected to +Sense, –V_O is connected to –Sense, and the outputs are taken from these junctions as shown in Figure 27.
Device Functional Modes (continued)

8.4.2 Single-Ended Mode

The DRV134 can be operated in single-ended mode without degrading output drive capability. Single-ended operation requires that the unused side of the output pair be grounded (both the \(V_O\) and Sense pins) to a low impedance return path. Gain remains +6 dB. Grounding the negative outputs as shown in Figure 28 results in a non-inverted output signal (G = +2) while grounding the positive outputs gives an inverted output signal (G = –2).

![Figure 28. Typical Single-Ended Application](image)

For best rejection of line noise and hum differential mode operation is recommended. However, single-ended performance is adequate for many applications. In general single ended performance is comparable to differential mode (see THD+N typical performance curves), but the common mode and noise rejection inherent in balanced-pair systems is lost.
9 Application and Implementation

NOTE
Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

Decoupling capacitors placed close to the device pins are strongly recommended in applications with noisy or high impedance power supplies.

For best system performance, it is recommended that a high input-impedance difference amplifier be used as the receiver. Used with the INA134 (G = 0 dB) or the INA137 (G = ±6 dB) differential line receivers, the DRV134 forms a complete solution for driving and receiving audio signals, replacing input and output coupling transformers commonly used in professional audio systems (Figure 29). When used with the INA137 (G = –6 dB) overall system gain is unity.

9.2 Typical Application

9.2.1 Cable Driving Application

The DRV134 is capable of driving large signals into 600-Ω loads over long cables. Low impedance shielded audio cables such as the standard Belden 8451 or 9452 (or similar) are recommended, especially in applications where long cable lengths are required.

For applications with large dc cable offset errors, a 10-µF electrolytic nonpolarized blocking capacitor at each sense pin is recommended as shown in Figure 29.

9.2.1.1 Design Requirements

Consider a design with the goal of differentially transmitting a single ended signal of up to 22.2 dBu through 500 ft of cable with no load at the receiving side. The signal at the end of the cable should have no more than 0.002 percent of total harmonic distortion plus noise (THD+N) at 10 kHz and less than 0.0005 percent of THD+N for frequencies between 20 Hz and 1 kHz.

The system is required to put out a single ended signal 0 dB with respect to the input signal and accommodate inputs with peak to RMS ratios of up to 1.5 for the maximum 22.2 dBu range established above.
Typical Application (continued)

9.2.1.2 Detailed Design Procedure

The dBu is a common unit of measurement for input sensitivity and output level of professional audio equipment. A 0 dBu signal dissipates 1 mW into a 600-Ω resistive load; therefore, a 0 dBu signal corresponds to approximately 0.775 V\text{RMS}. Equation 1 shows the relationship between the signal level in dBu (denoted by \(L_u \)) and the signal level in V\text{RMS} (denoted by \(x \)).

\[
L_u = 20\log_{10}\left(\frac{x}{0.775}\right)
\]

(1)

For this design, the single ended input signal of 22.2 dBu corresponds to 9.98 V\text{RMS} as shown in Equation 2.

\[
V_{\text{in}} = 0.775\left(10^{\frac{L_u}{20}}\right) = 9.98 \text{ V}_{\text{RMS}}
\]

(2)

Given that the system must accommodate for 22.2 dBu signals with up to 1.5 of peak to RMS ratio, the maximum peak input signal is 14.97 V\text{PEAK} as calculated in Equation 3.

\[
V_{\text{in, PEAK}} = 1.5(9.98) = 14.97 \text{ V}_{\text{PEAK}}
\]

(3)

The DRV134 is chosen to convert the single ended input signal into a differential signal and the outputs of the DRV134 will be connected to one end of the 500 ft cable. In order to prevent clipping and distortion of the input signal, the power supply rails for the DRV134 are chosen as 3 V above and below the peak calculated in Equation 3. The 3 V margin is derived from the output voltage swing specification given in the Electrical Characteristics table. The supplies selected are 18 V for V+ and –18 V for V–.

Finally, the INA137 is used at the end of the 500 ft cable in order to convert the differential signal output of the DRV134 into a single ended signal that is 0 dB with respect to the input signal.

Figure 30 shows the system diagram.
Typical Application (continued)

9.2.1.3 Application Curve

Figure 31 shows the performance obtained with the system depicted in Figure 30.

![Figure 31. Measured Performance of a System Based on DRV134](image)

10 Power Supply Recommendations

The DRV134 and DRV135 are designed to operate from an input voltage supply range between ±4.5 V and ±18 V. This input supply should be well regulated. If the input supply is located more than a few inches from the DRV134 or DRV135 additional bulk capacitance may be required in addition to the ceramic bypass capacitors.

11 Layout

11.1 Layout Guidelines

A driver/receiver balanced-pair (such as the DRV134 and INA137) rejects the voltage differences between the grounds at each end of the cable, which can be caused by ground currents, supply variations, etc. In addition to proper bypassing (as shown in Figure 32 and Figure 33), the suggestions below should be followed to achieve optimal OCMR and noise rejection.

- The DRV134 input should be driven by a low impedance source such as an op amp or buffer.
- As is the case for any single-ended system, the source’s common should be connected as close as possible to the DRV134’s ground. Any ground offset errors in the source will degrade system performance.
- Symmetry on the outputs should be maintained.
- Shielded twisted-pair cable is recommended for all applications. Physical balance in signal wiring should be maintained. Capacitive differences due to varying wire lengths may result in unequal noise pickup between the pair and degrade OCMR. Follow industry practices for proper system grounding of the cables.
11.2 Layout Examples

![DRV134 Layout Example](#)

Figure 32. DRV134 Layout Example

![DRV135 Layout Example](#)

Figure 33. DRV135 Layout Example

Submit Documentation Feedback

Product Folder Links: DRV134 DRV135
11.3 Thermal Performance
The DRV134 and DRV135 have robust output drive capability and excellent performance over temperature. In most applications there is no significant difference between the DIP, SOL-16, and SO-8 packages. However, for applications with extreme temperature and load conditions, the SOL-16 (DRV134UA) or DIP (DRV134PA) packages are recommended. Under these conditions, such as loads greater than 600 Ω or very long cables, performance may be degraded in the SO-8 (DRV135UA) package.

12 Device and Documentation Support

12.1 Documentation Support
12.1.1 Related Documentation
For related documentation see the following:
- Audio Differential Line Receivers 0dB (G = 1), INA134
- Audio Differential Line Receivers ±6dB (G = 1/2 or 2), INA137

12.2 Related Links
The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

<table>
<thead>
<tr>
<th>PARTS</th>
<th>PRODUCT FOLDER</th>
<th>SAMPLE & BUY</th>
<th>TECHNICAL DOCUMENTS</th>
<th>TOOLS & SOFTWARE</th>
<th>SUPPORT & COMMUNITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRV134</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
</tr>
<tr>
<td>DRV135</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
</tr>
</tbody>
</table>

12.3 Trademarks
All trademarks are the property of their respective owners.

12.4 Electrostatic Discharge Caution
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.5 Glossary
SLYZ022 — Ti Glossary.
This glossary lists and explains terms, acronyms, and definitions.
13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRV134PA</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>P</td>
<td>8</td>
<td>50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>N/A for Pkg Type</td>
<td>-55 to 125</td>
<td>DRV134PA</td>
<td>Samples</td>
</tr>
<tr>
<td>DRV134PAG4</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>P</td>
<td>8</td>
<td>50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>N/A for Pkg Type</td>
<td>-55 to 125</td>
<td>DRV134PAG4</td>
<td>Samples</td>
</tr>
<tr>
<td>DRV134UA</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>DW</td>
<td>16</td>
<td>40</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-3-260C-168 HR</td>
<td>-55 to 125</td>
<td>DRV134UA</td>
<td>Samples</td>
</tr>
<tr>
<td>DRV134UA/1K</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>DW</td>
<td>16</td>
<td>1000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-3-260C-168 HR</td>
<td>-55 to 125</td>
<td>DRV134UA</td>
<td>Samples</td>
</tr>
<tr>
<td>DRV134UA/E4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>DW</td>
<td>16</td>
<td>40</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-3-260C-168 HR</td>
<td>-55 to 125</td>
<td>DRV134UA/E4</td>
<td>Samples</td>
</tr>
<tr>
<td>DRV135UA</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-3-260C-168 HR</td>
<td>-55 to 125</td>
<td>DRV135UA</td>
<td>Samples</td>
</tr>
<tr>
<td>DRV135UA/2K5</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-3-260C-168 HR</td>
<td>-55 to 125</td>
<td>DRV135UA/2K5</td>
<td>Samples</td>
</tr>
<tr>
<td>DRV135UA/2K5E4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-3-260C-168 HR</td>
<td>-55 to 125</td>
<td>DRV135UA/2K5E4</td>
<td>Samples</td>
</tr>
<tr>
<td>DRV135UAG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-3-260C-168 HR</td>
<td>-55 to 125</td>
<td>DRV135UAG4</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.

(2) **RoHS:** TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substances do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a “~” will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRV134UA/1K</td>
<td>SOIC</td>
<td>DW</td>
<td>16</td>
<td>1000</td>
<td>330.0</td>
<td>16.4</td>
<td>10.75</td>
<td>10.7</td>
<td>2.7</td>
<td>12.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
<tr>
<td>DRV135UA/2K5</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.4</td>
<td>5.2</td>
<td>2.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>

TAPE DIMENSIONS

- A0: Dimension designed to accommodate the component width
- B0: Dimension designed to accommodate the component length
- K0: Dimension designed to accommodate the component thickness
- W: Overall width of the carrier tape
- P1: Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

- Q1
- Q2
- Q3
- Q4

Reel Diameter

Reel Width (W1)
DEVICE

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRV134UA/1K</td>
<td>SOIC</td>
<td>DW</td>
<td>16</td>
<td>1000</td>
<td>367.0</td>
<td>367.0</td>
<td>38.0</td>
</tr>
<tr>
<td>DRV135UA/2K5</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>853.0</td>
<td>449.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>

All dimensions are nominal
This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.
NOTES:

1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

2. This drawing is subject to change without notice.

3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.

4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.

5. Reference JEDEC registration MS-013.
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.
NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
4. This dimension does not include interlead flash.
5. Reference JEDEC registration MS-012, variation AA.
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.
P (R-PDIP-T8) PLASTIC DUAL-IN-LINE PACKAGE

NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001 variation BA.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2020, Texas Instruments Incorporated