1 Features

- Digital bipolar-latch Hall sensor
- Superior temperature stability
 - $B_{OP} \pm 10\%$ over temperature
- Multiple sensitivity options (B_{OP} / B_{RP})
 - $\pm 1.3 \text{ mT (FA, see Device Nomenclature)}$
 - $\pm 2.7 \text{ mT (AD, see Device Nomenclature)}$
 - $\pm 6 \text{ mT (AG, see Device Nomenclature)}$
 - $\pm 12 \text{ mT (BC, see Device Nomenclature)}$
- Supports a wide voltage range
 - 2.5 V to 38 V
 - No external regulator required
- Wide operating temperature range
 - $T_{A} = -40$ to $+125^\circ\text{C (Q, see Device Nomenclature)}$
 - $T_{A} = -40$ to $+150^\circ\text{C (E, see Device Nomenclature)}$
- Open-drain output (30-mA sink)
- Fast 35-µs power-on time
- Small package and footprint
 - Surface mount 3-pin SOT-23 (DBZ)
 - 2.92 mm × 1.30 mm
 - Through-hole 3-pin TO-92 (LPG, LPE)
 - 4.00 mm × 3.15 mm
- Protection features:
 - Reverse supply protection (up to -22 V)
 - Supports up to 40-V load dump
 - Output short-circuit protection
 - Output current limitation

2 Applications

- Power tools
- Flow meters
- Valve and solenoid status
- Brushless dc motors
- Proximity sensing
- Tachometers

3 Description

The DRV5013 device is a chopper-stabilized Hall effect sensor that offers a magnetic sensing solution with superior sensitivity stability over temperature and integrated protection features.

The magnetic field is indicated through a digital bipolar latch output. The IC has an open-drain output stage with 30-mA current sink capability. A wide operating voltage range from 2.5 V to 38 V with reverse polarity protection up to -22 V makes the device suitable for a wide range of industrial applications.

Internal protection functions are provided for reverse supply conditions, load dump, and output short circuit or overcurrent.

Package Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRV5013</td>
<td>SOT-23 (3)</td>
<td>2.92 mm × 1.30 mm</td>
</tr>
<tr>
<td></td>
<td>TO-92 (3)</td>
<td>4.00 mm × 3.15 mm</td>
</tr>
</tbody>
</table>

(1) For all available packages, see the package option addendum at the end of the data sheet.
Table of Contents

1 Features .. 1
2 Applications .. 1
3 Description .. 1
4 Revision History .. 2
5 Pin Configuration and Functions ... 4
6 Specifications .. 5
 6.1 Absolute Maximum Ratings .. 5
 6.2 ESD Ratings .. 5
 6.3 Recommended Operating Conditions .. 5
 6.4 Thermal Information .. 5
 6.5 Electrical Characteristics .. 6
 6.6 Switching Characteristics .. 6
 6.7 Magnetic Characteristics .. 7
 6.8 Typical Characteristics .. 8
7 Detailed Description .. 10
 7.1 Overview ... 10
 7.2 Functional Block Diagram ... 10
 7.3 Feature Description ... 11
 7.4 Device Functional Modes .. 15
8 Application and Implementation .. 16
 8.1 Application Information .. 16
 8.2 Typical Applications .. 16
 8.3 Power Supply Recommendations .. 19
 8.4 Layout .. 19
9 Device and Documentation Support ... 20
 9.1 Device Support ... 20
 9.2 Receiving Notification of Documentation Updates 20
 9.3 Support Resources ... 21
 9.4 Trademarks ... 21
 9.5 Electrostatic Discharge Caution .. 21
 9.6 Glossary .. 21
10 Mechanical, Packaging, and Orderable Information ... 21

4 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision K (August 2019) to Revision L (February 2023) Page
• Updated the numbering format for tables, figures, and cross-references throughout the document .. 1
• Changed table title from: Device Information to: Package Information ... 1
• Moved the Power Supply Recommendations and Layout sections to the Application and Implementation section ... 19

Changes from Revision J (June 2019) to Revision K (August 2019) Page
• Changed T J to show existing range is for Q version device in the Absolute Maximum Ratings table .. 5
• Added E version for T J to the Absolute Maximum Ratings table .. 5
• Changed T A to show existing range is for Q version device in the Recommended Operating Conditions table 5
• Added E version for T A to the Recommended Operating Conditions table .. 5
• Changed I CC test condition for T A from 125 to T A,MAX to highlight differences between the E and Q version devices .. 5
• Changed r DSON test condition for T A from 125 to T A,MAX to highlight the differences between the E and Q version devices .. 6
• Changed all test conditions for T A max from 125 to T A,MAX to highlight difference between the E and Q devices .. 6
• Added new condition statement to Typical Characteristics section .. 7
• Added data up to 150°C to Figure 1, Figure 2, Figure 4, Figure 6, Figure 8, and Figure 10 .. 8

Changes from Revision I (August 2018) to Revision J (June 2019) Page
• Added TO-92 (LPE) package to data sheet .. 1

Changes from Revision H (September 2016) to Revision I (August 2018) Page
• Changed Power Supply Recommendations section .. 19

Changes from Revision G (August 2016) to Revision H (September 2016) Page
• Changed the power-on time for the FA version in the Electrical Characteristics table .. 6
Changes from Revision F (May 2016) to Revision G (August 2016) Page
- Changed the maximum B_{OP} and the minimum B_{RP} for the FA version in the Magnetic Characteristics table...
- Added the Layout section...

Changes from Revision E (February 2016) to Revision F (May 2016) Page
- Revised preliminary limits for the FA version...

Changes from Revision D (December 2015) to Revision E (February 2016) Page
- Added the FA device option...
- Added the typical bandwidth value to Magnetic Characteristics table...

Changes from Revision C (September 2014) to Revision D (June 2015) Page
- Corrected body size of SOT-23 package and SIP package name to TO-92 ...
- Added B_{MAX} to Absolute Maximum Ratings ...
- Removed table note from junction temperature ...
- Added Community Resources ...
- Updated package tape and reel options for M and blank ...

Changes from Revision B (July 2014) to Revision C (September 2014) Page
- Updated high sensitivity options ...
- Changed the max operating junction temperature to 150°C ...
- Updated the output rise and fall time typical values and removed max values in Switching Characteristics ...
- Updated the values in Magnetic Characteristics ...
- Updated all Typical Characteristics graphs ...
- Updated Equation 4 ...
- Updated Figure 9-1 ...

Changes from Revision A (March 2014) to Revision B (June 2014) Page
- Changed I_{OCP} MIN and MAX values from 20 and 40 to 15 and 45, respectively, in the Electrical Characteristics ...
- Updated the hysteresis values for each device option in the Magnetic Characteristics table ...
- Changed the MIN value for the ±2.3 mT B_{RP} parameter from −4 to −5 in the Magnetic Characteristics table ...

Changes from Revision * (March 2014) to Revision A (March 2014) Page
- Changed all references to Hall IC to Hall Effect Sensor ...
- Changed RPM Meter to Tachometers in the Applications list ...
- Changed the power-on value from 50 to 35 μs in the Features list ...
- Changed the type of the OUT terminal from OD to Output in the Pin Functions table ...
- Deleted Output pin current and changed $V_{CC_{Max}}$ to V_{CC} after the voltage ramp rate for the supply voltage ...
- Changed R_{O} to R1 in the test conditions for t_{r} and t_{f} in the Switching Characteristics table ...
- Added the bandwidth parameter to Magnetic Characteristics table ...
- Changed the MIN value for the ±2.3 mT B_{RP} parameter from +2.3 to −2.3 in the Magnetic Characteristics table ...
- Deleted condition statement from the Typical Characteristics and changed all T_{J} to T_{A} in the graph conditions ...
- Deleted Number from the Power-On Time case names; added conditions to captions of case timing diagrams ...
- Added the R1 tradeoff and lower current text after the equation in the Output Stage section ...
- Added the C2 not required for most applications text after the second equation in the Output Stage section...
5 Pin Configuration and Functions

For additional configuration information, see *Device Markings* and *Mechanical, Packaging, and Orderable Information*.

Figure 5-1. DBZ Package 3-Pin SOT-23 Top View

<table>
<thead>
<tr>
<th>PIN NAME</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>GND</td>
<td>Ground</td>
<td>Ground pin</td>
</tr>
<tr>
<td>OUT</td>
<td>Output</td>
<td>Hall sensor open-drain output. The open drain requires a resistor pullup.</td>
</tr>
<tr>
<td>V_CC</td>
<td>Power</td>
<td>2.5 V to 38 V power supply. Bypass this pin to the GND pin with a 0.01-µF (minimum) ceramic capacitor rated for V_CC.</td>
</tr>
</tbody>
</table>
6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

<table>
<thead>
<tr>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CC}</td>
<td>–22(2)</td>
<td>40 V</td>
</tr>
<tr>
<td>Voltage ramp rate (V_{CC}), V_{CC} < 5 V</td>
<td>Unlimited</td>
<td>V/µs</td>
</tr>
<tr>
<td>Voltage ramp rate (V_{CC}), V_{CC} > 5 V</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Output pin voltage</td>
<td>–0.5</td>
<td>40 V</td>
</tr>
<tr>
<td>Output pin reverse current during reverse supply condition</td>
<td>0</td>
<td>100 mA</td>
</tr>
<tr>
<td>Magnetic flux density, B_{MAX}</td>
<td>Unlimited</td>
<td></td>
</tr>
<tr>
<td>Operating junction temperature, T_{J}</td>
<td>–40</td>
<td>150 °C</td>
</tr>
<tr>
<td>Storage temperature, T_{stg}</td>
<td>–65</td>
<td>150 °C</td>
</tr>
</tbody>
</table>

(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

(2) Specified by design. Only tested to –20 V.

6.2 ESD Ratings

<table>
<thead>
<tr>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{ESD}</td>
<td>Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) ±2500 V</td>
</tr>
<tr>
<td></td>
<td>Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2) ±500 V</td>
</tr>
</tbody>
</table>

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CC}</td>
<td>2.5</td>
<td>38 V</td>
</tr>
<tr>
<td>V_{O}</td>
<td>0</td>
<td>38 V</td>
</tr>
<tr>
<td>I_{SINK}</td>
<td>0</td>
<td>30 mA</td>
</tr>
<tr>
<td>T_{A}</td>
<td>–40</td>
<td>125 °C</td>
</tr>
</tbody>
</table>

(1) Power dissipation and thermal limits must be observed.

6.4 Thermal Information

<table>
<thead>
<tr>
<th>THERMAL METRIC(1)</th>
<th>DRV5013</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DBZ (SOT-23)</td>
<td>LPG, LPE (TO-92)</td>
</tr>
<tr>
<td></td>
<td>3 PINS</td>
<td>3 PINS</td>
</tr>
<tr>
<td>R_{JA}</td>
<td>Junction-to-ambient thermal resistance</td>
<td>333.2</td>
</tr>
<tr>
<td>R_{JC(top)}</td>
<td>Junction-to-case (top) thermal resistance</td>
<td>99.9</td>
</tr>
<tr>
<td>R_{JB}</td>
<td>Junction-to-board thermal resistance</td>
<td>66.9</td>
</tr>
<tr>
<td>\psi_{JT}</td>
<td>Junction-to-top characterization parameter</td>
<td>4.9</td>
</tr>
<tr>
<td>\psi_{JB}</td>
<td>Junction-to-board characterization parameter</td>
<td>65.2</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.
6.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER SUPPLIES (Vcc)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vcc</td>
<td>Vcc operating voltage</td>
<td>2.5</td>
<td>38</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Icc</td>
<td>Operating supply current</td>
<td></td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>t_on</td>
<td>Power-on time</td>
<td></td>
<td></td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>OPEN-DRAIN OUTPUT (OUT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_d</td>
<td>Output delay time</td>
<td></td>
<td></td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>t_r</td>
<td>Output rise time (10% to 90%)</td>
<td></td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_f</td>
<td>Output fall time (90% to 10%)</td>
<td></td>
<td></td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

(1) T_{A, MAX} is 125°C for Q devices and 150°C for E devices (see Figure 9-1).

6.6 Switching Characteristics

over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPEN-DRAIN OUTPUT (OUT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_d</td>
<td>Output delay time</td>
<td></td>
<td></td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>t_r</td>
<td>Output rise time (10% to 90%)</td>
<td></td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_f</td>
<td>Output fall time (90% to 10%)</td>
<td></td>
<td></td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>
6.7 Magnetic Characteristics

over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_{BW})</td>
<td>Bandwidth(2)</td>
<td>20</td>
<td>30</td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>(B_{OP})</td>
<td>Operate point; see Figure 7-2</td>
<td>(T_A = -40°C) to (T_{A,\text{MAX}})</td>
<td>(-0.6)</td>
<td>(1.3)</td>
<td>(3.4)</td>
</tr>
<tr>
<td>(B_{RP})</td>
<td>Release point; see Figure 7-2</td>
<td>(T_A = -40°C) to (T_{A,\text{MAX}})</td>
<td>(-3.4)</td>
<td>(-1.3)</td>
<td>(0.6)</td>
</tr>
<tr>
<td>(B_{hys})</td>
<td>Hysteresis; (B_{hys} = (B_{OP} - B_{RP}))</td>
<td>(T_A = -40°C) to (T_{A,\text{MAX}})</td>
<td>(1.2)</td>
<td>(2.6)</td>
<td></td>
</tr>
<tr>
<td>(B_O)</td>
<td>Magnetic offset; (B_O = (B_{OP} + B_{RP}) / 2)</td>
<td>(T_A = -40°C) to (T_{A,\text{MAX}})</td>
<td>(-1.5)</td>
<td>(0)</td>
<td>(1.5)</td>
</tr>
</tbody>
</table>

Note:

1. \(1 \) mT = 10 Gauss.
2. Bandwidth describes the fastest changing magnetic field that can be detected and translated to the output.
6.8 Typical Characteristics

\(T_A > 125^\circ C \) data are valid for \(E \) temperature range devices only, see Figure 9-1 \(T_A > 125^\circ C \) data are valid for Grade 0 devices only (\(E \), see Figure 9-1).

Figure 6-1. \(I_{CC} \) vs \(V_{CC} \)

Figure 6-2. \(I_{CC} \) vs Temperature

Figure 6-3. \(B_{OP} \) vs \(V_{CC} \)

Figure 6-4. \(B_{OP} \) vs Temperature

Figure 6-5. \(B_{RP} \) vs \(V_{CC} \)

Figure 6-6. \(B_{RP} \) vs Temperature
6.8 Typical Characteristics (continued)

$T_A > 125^\circ C$ data are valid for E temperature range devices only, see Figure 9-1 $T_A > 125^\circ C$ data are valid for Grade 0 devices only (E, see Figure 9-1)

![Hysteresis vs V_{CC}](image)

![Hysteresis vs Temperature](image)

![Offset vs V_{CC}](image)

![Offset vs Temperature](image)
7 Detailed Description

7.1 Overview

The DRV5013 device is a chopper-stabilized Hall sensor with a digital latched output for magnetic sensing applications. The DRV5013 device can be powered with a supply voltage between 2.5 V and 38 V, and continuously survives continuous –22 V reverse-battery conditions. The DRV5013 device does not operate when –22 V to 2.4 V is applied to the V\text{CC} pin (with respect to the GND pin). In addition, the device can withstand voltages up to 40 V for transient durations.

The field polarity is defined as follows: a south pole near the marked side of the package is a positive magnetic field. A north pole near the marked side of the package is a negative magnetic field.

The output state is dependent on the magnetic field perpendicular to the package. A south pole near the marked side of the package causes the output to pull low (operate point, B\text{OP}), and a north pole near the marked side of the package causes the output to release (release point, B\text{RP}). Hysteresis is included in between the operate point and the release point therefore magnetic-field noise does not accidentally trip the output.

An external pullup resistor is required on the OUT pin. The OUT pin can be pulled up to V\text{CC}, or to a different voltage supply. This allows for easier interfacing with controller circuits.

7.2 Functional Block Diagram
7.3 Feature Description

7.3.1 Field Direction Definition

Figure 7-1 shows the positive magnetic field defined as a south pole near the marked side of the package.

![Diagram showing field direction definition](image)

N = North pole, S = South pole

Figure 7-1. Field Direction Definition

7.3.2 Device Output

If the device is powered on with a magnetic field strength between B_{RP} and B_{OP}, then the device output is indeterminate and can either be Hi-Z or Low. If the field strength is greater than B_{OP}, then the output is pulled low. If the field strength is less than B_{RP}, then the output is released.

![Diagram showing device output](image)

Figure 7-2. DRV5013 — $B_{OP} > 0$
7.3.3 Power-On Time

After applying V_{CC} to the DRV5013 device, t_{on} must elapse before the OUT pin is valid. During the power-up sequence, the output is Hi-Z. A pulse as shown in Figure 7-3 and Figure 7-4 occurs at the end of t_{on}. This pulse can allow the host processor to determine when the DRV5013 output is valid after start-up. In Case 1 (Figure 7-3) and Case 2 (Figure 7-4), the output is defined assuming a constant magnetic field $B > B_{OP}$ and $B < B_{RP}$.

If the device is powered on with the magnetic field strength $B_{RP} < B < B_{OP}$, then the device output is indeterminate and can either be Hi-Z or pulled low. During the power-up sequence, the output is held Hi-Z.

Figure 7-3. Case 1: Power On When $B > B_{OP}$

Figure 7-4. Case 2: Power On When $B < B_{RP}$
until \(t_{\text{on}} \) has elapsed. At the end of \(t_{\text{on}} \), a pulse is given on the OUT pin to indicate that \(t_{\text{on}} \) has elapsed. After \(t_{\text{on}} \), if the magnetic field changes such that \(B_{\text{OP}} < B < B_{\text{RP}} \), the output is released. Case 3 (Figure 7-5) and Case 4 (Figure 7-6) show examples of this behavior.

Figure 7-5. Case 3: Power On When \(B_{\text{RP}} < B < B_{\text{OP}} \), Followed by \(B > B_{\text{OP}} \)

Figure 7-6. Case 4: Power On When \(B_{\text{RP}} < B < B_{\text{OP}} \), Followed by \(B < B_{\text{RP}} \)

7.3.4 Output Stage

Figure 7-7 shows the DRV5013 open-drain NMOS output structure, rated to sink up to 30 mA of current. For proper operation, use Equation 1 to calculate the value of pullup resistor \(R_1 \).
The size of R1 is a tradeoff between the OUT rise time and the current when OUT is pulled low. A lower current is generally better, however faster transitions and bandwidth require a smaller resistor for faster switching.

In addition, make sure that the value of R1 > 500 Ω so that the output driver can pull the OUT pin close to GND.

\[
\frac{V_{\text{ref max}}}{30 \, \text{mA}} \leq R1 \leq \frac{V_{\text{ref min}}}{100 \, \mu\text{A}}
\]

(1)

Note

\(V_{\text{ref}}\) is not restricted to \(V_{\text{CC}}\). The allowable voltage range of this pin is specified in the Absolute Maximum Ratings.

Select a value for C2 based on the system bandwidth specifications as shown in Equation 2.

\[
2 \times f_{\text{BW}} \, (\text{Hz}) < \frac{1}{2\pi \times R1 \times C2}
\]

(2)

Most applications do not require this C2 filtering capacitor.
7.3.5 Protection Circuits

The DRV5013 device is fully protected against overcurrent and reverse-supply conditions. Table 7-1 lists a summary of the protection circuits.

<table>
<thead>
<tr>
<th>FAULT</th>
<th>CONDITION</th>
<th>DEVICE</th>
<th>DESCRIPTION</th>
<th>RECOVERY</th>
</tr>
</thead>
<tbody>
<tr>
<td>FET overload (OCP)</td>
<td>$I_{\text{sink}} \geq I_{\text{OCP}}$</td>
<td>Operating</td>
<td>Output current is clamped to I_{OCP}</td>
<td>$I_O < I_{\text{OCP}}$</td>
</tr>
<tr>
<td>Load dump</td>
<td>$38 \text{ V} < V_{\text{CC}} < 40 \text{ V}$</td>
<td>Operating</td>
<td>Device will operate for a transient duration</td>
<td>$V_{\text{CC}} \leq 38 \text{ V}$</td>
</tr>
<tr>
<td>Reverse supply</td>
<td>$-22 \text{ V} < V_{\text{CC}} < 0 \text{ V}$</td>
<td>Disabled</td>
<td>Device will survive this condition</td>
<td>$V_{\text{CC}} \geq 2.5 \text{ V}$</td>
</tr>
</tbody>
</table>

7.3.5.1 Overcurrent Protection (OCP)

An analog current-limit circuit limits the current through the FET. The driver current is clamped to I_{OCP}. During this clamping, the $r_{\text{DS(on)}}$ of the output FET is increased from the nominal value.

7.3.5.2 Load Dump Protection

The DRV5013 device operates at DC V_{CC} conditions up to 38 V nominally, and can additionally withstand $V_{\text{CC}} = 40 \text{ V}$. No current-limiting series resistor is required for this protection.

7.3.5.3 Reverse Supply Protection

The DRV5013 device is protected in the event that the V_{CC} pin and the GND pin are reversed (up to -22 V).

Note

In a reverse supply condition, the OUT pin reverse-current must not exceed the ratings specified in the Absolute Maximum Ratings.

7.4 Device Functional Modes

The DRV5013 device is active only when V_{CC} is between 2.5 V and 38 V.

When a reverse supply condition exists, the device is inactive.
8 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

8.1 Application Information

The DRV5013 device is used in magnetic-field sensing applications.

8.2 Typical Applications

8.2.1 Standard Circuit

![Typical Application Circuit](image)

Figure 8-1. Typical Application Circuit

8.2.1.1 Design Requirements

For this design example, use the parameters listed in Table 8-1 as the input parameters.

<table>
<thead>
<tr>
<th>DESIGN PARAMETER</th>
<th>REFERENCE</th>
<th>EXAMPLE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>(V_{CC})</td>
<td>3.2 to 3.4 V</td>
</tr>
<tr>
<td>System bandwidth</td>
<td>(f_{BW})</td>
<td>10 kHz</td>
</tr>
</tbody>
</table>

8.2.1.2 Detailed Design Procedure

Table 8-2. External Components

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>PIN 1</th>
<th>PIN 2</th>
<th>RECOMMENDED</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>(V_{CC})</td>
<td>GND</td>
<td>A 0.01-µF (minimum) ceramic capacitor rated for (V_{CC})</td>
</tr>
<tr>
<td>C2</td>
<td>OUT</td>
<td>GND</td>
<td>Optional: Place a ceramic capacitor to GND</td>
</tr>
<tr>
<td>R1</td>
<td>OUT</td>
<td>REF(1)</td>
<td>Requires a resistor pullup</td>
</tr>
</tbody>
</table>

(1) REF is not a pin on the DRV5013 device, but a REF supply-voltage pullup is required for the OUT pin; the OUT pin may be pulled up to \(V_{CC} \).
8.2.1.2.1 Configuration Example

In a 3.3-V system, $3.2 \leq V_{\text{ref}} \leq 3.4$ V. Use Equation 3 to calculate the allowable range for R1.

$$\frac{V_{\text{ref}} \max}{30 \ \text{mA}} \leq R_1 \leq \frac{V_{\text{ref}} \min}{100 \ \mu\text{A}}$$

(3)

For this design example, use Equation 4 to calculate the allowable range of R1.

$$\frac{3.4\ \text{V}}{30 \ \text{mA}} \leq R_1 \leq \frac{3.2\ \text{V}}{100 \ \mu\text{A}}$$

(4)

Therefore:

$$113 \ \Omega \leq R_1 \leq 32 \ \text{k}\Omega$$

(5)

After finding the allowable range of R1 (Equation 5), select a value between 500 Ω and 32 kΩ for R1.

Assuming a system bandwidth of 10 kHz, use Equation 6 to calculate the value of C2.

$$2 \times f_{\text{BW}} \ (\text{Hz}) < \frac{1}{2\pi \times R_1 \times C_2}$$

(6)

For this design example, use Equation 7 to calculate the value of C2.

$$2 \times 10 \ \text{kHz} < \frac{1}{2\pi \times R_1 \times C_2}$$

(7)

An R1 value of 10 kΩ and a C2 value less than 820 pF satisfy the requirement for a 10-kHz system bandwidth. A selection of R1 = 10 kΩ and C2 = 680 pF would cause a low-pass filter with a corner frequency of 23.4 kHz.

8.2.1.3 Application Curves

![Figure 8-2. 10-kHz Switching Magnetic Field](image)

![Figure 8-3. 10-kHz Switching Magnetic Field](image)
8.2.2 Alternative Two-Wire Application

For systems that require minimal wire count, the device output can be connected to \(V_{CC} \) through a resistor, and the total supplied current can be sensed near the controller.

Current can be sensed using a shunt resistor or other circuitry.

8.2.2.1 Design Requirements

Table 8-3 lists the related design parameters.

<table>
<thead>
<tr>
<th>DESIGN PARAMETER</th>
<th>REFERENCE</th>
<th>EXAMPLE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>(V_{CC})</td>
<td>12 V</td>
</tr>
<tr>
<td>OUT resistor</td>
<td>(R_1)</td>
<td>1 k(\Omega)</td>
</tr>
<tr>
<td>Bypass capacitor</td>
<td>(C_1)</td>
<td>0.1 (\mu) F</td>
</tr>
<tr>
<td>Current when (B < B_{RP})</td>
<td>(I_{\text{RELEASE}})</td>
<td>About 3 mA</td>
</tr>
<tr>
<td>Current when (B > B_{DP})</td>
<td>(I_{\text{OPERATE}})</td>
<td>About 15 mA</td>
</tr>
</tbody>
</table>
8.2.2.2 Detailed Design Procedure

When the open-drain output of the device is high-impedance, current through the path equals the I_{CC} of the device (approximately 3 mA).

When the output pulls low, a parallel current path is added, equal to $V_{CC} / (R_1 + r_{DS(on)})$. Using 12 V and 1 kΩ, the parallel current is approximately 12 mA, making the total current approximately 15 mA.

The local bypass capacitor C_1 should be at least 0.1 µF, and a larger value if there is high inductance in the power line interconnect.

8.3 Power Supply Recommendations

The DRV5013 device is designed to operate from an input voltage supply (VM) range between 2.5 V and 38 V. A 0.01-µF (minimum) ceramic capacitor rated for V_{CC} must be placed as close to the DRV5013 device as possible. Larger values of the bypass capacitor may be needed to attenuate any significant high-frequency ripple and noise components generated by the power source. TI recommends limiting the supply voltage variation to less than 50 mVpp.

8.4 Layout

8.4.1 Layout Guidelines

The bypass capacitor should be placed near the DRV5013 device for efficient power delivery with minimal inductance. The external pullup resistor should be placed near the microcontroller input to provide the most stable voltage at the input; alternatively, an integrated pullup resistor within the GPIO of the microcontroller can be used.

Generally, using PCB copper planes underneath the DRV5013 device has no effect on magnetic flux, and does not interfere with device performance. This is because copper is not a ferromagnetic material. However, if nearby system components contain iron or nickel, they may redirect magnetic flux in unpredictable ways.

8.4.2 Layout Example

![DRV5013 Layout Example](image-url)
9 Device and Documentation Support

9.1 Device Support

9.1.1 Device Nomenclature

Figure 9-1 shows a legend for reading the complete device name for and DRV5013 device.

<table>
<thead>
<tr>
<th>Prefix</th>
<th>DRV5013: Digital latch Hall sensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOP/BRP</td>
<td>FA: 1.3/−1.3 mT</td>
</tr>
<tr>
<td></td>
<td>AD: 2.7/−2.7 mT</td>
</tr>
<tr>
<td></td>
<td>AG: 6/−6 mT</td>
</tr>
<tr>
<td></td>
<td>BC: 12/−12 mT</td>
</tr>
<tr>
<td>AEC-Q100</td>
<td>Q1: Automotive qualification</td>
</tr>
<tr>
<td></td>
<td>Blank: Non-auto</td>
</tr>
<tr>
<td>Tape and Reel</td>
<td>R: 3000 pcs/reel</td>
</tr>
<tr>
<td></td>
<td>T: 250 pcs/reel</td>
</tr>
<tr>
<td></td>
<td>M: 3000 pcs/box (ammo)</td>
</tr>
<tr>
<td></td>
<td>Blank: 1000 pcs/bag (bulk)</td>
</tr>
<tr>
<td>Package</td>
<td>DBZ: 3-pin SOT-23</td>
</tr>
<tr>
<td></td>
<td>LPG: 3-pin TO-92</td>
</tr>
<tr>
<td></td>
<td>LPE: 3-pin TO-92</td>
</tr>
<tr>
<td>Temperature Range</td>
<td>Q: −40 to 125°C</td>
</tr>
<tr>
<td></td>
<td>E: −40 to 150°C</td>
</tr>
</tbody>
</table>

Figure 9-1. Device Nomenclature

9.1.2 Device Markings

Marked Side

1 2 3

Marked Side Front

1 2 3

Figure 9-2. SOT-23 (DBZ) Package

Figure 9-3. TO-92 (LPG, LPE) Package

9.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on Subscribe to updates to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.
9.3 Support Resources

TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

9.4 Trademarks
TI E2E™ is a trademark of Texas Instruments.
All trademarks are the property of their respective owners.

9.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

9.6 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

10 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>PINS</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead finish/ Ball material</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRV5013ADQDBZR</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBZ</td>
<td>3</td>
<td>3000</td>
<td>RoHS & Green</td>
<td>NIPDAUAG</td>
<td>SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>(+NLAD, 13AD, 1J52)</td>
</tr>
<tr>
<td>DRV5013ADQDBZT</td>
<td>LIFEBUY</td>
<td>SOT-23</td>
<td>DBZ</td>
<td>3</td>
<td>250</td>
<td>RoHS & Green</td>
<td>NIPDAUAG</td>
<td>SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>(+NLAD, 13AD, 1J52)</td>
</tr>
<tr>
<td>DRV5013ADQLPG</td>
<td>ACTIVE</td>
<td>TO-92</td>
<td>LPG</td>
<td>3</td>
<td>1000</td>
<td>RoHS & Green</td>
<td>SN</td>
<td>N / A for Pkg Type</td>
<td>-40 to 125</td>
<td>+NLAD</td>
<td></td>
</tr>
<tr>
<td>DRV5013ADQLPGM</td>
<td>ACTIVE</td>
<td>TO-92</td>
<td>LPG</td>
<td>3</td>
<td>3000</td>
<td>RoHS & Green</td>
<td>SN</td>
<td>N / A for Pkg Type</td>
<td>-40 to 125</td>
<td>+NLAD</td>
<td></td>
</tr>
<tr>
<td>DRV5013AGQDBZR</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBZ</td>
<td>3</td>
<td>3000</td>
<td>RoHS & Green</td>
<td>NIPDAUAG</td>
<td>SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>(+NLAG, 13AG, 1IW2)</td>
</tr>
<tr>
<td>DRV5013AGDBZT</td>
<td>LIFEBUY</td>
<td>SOT-23</td>
<td>DBZ</td>
<td>3</td>
<td>250</td>
<td>RoHS & Green</td>
<td>NIPDAUAG</td>
<td>SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>(+NLAG, 13AG, 1IW2)</td>
</tr>
<tr>
<td>DRV5013AGQLPG</td>
<td>ACTIVE</td>
<td>TO-92</td>
<td>LPG</td>
<td>3</td>
<td>1000</td>
<td>RoHS & Green</td>
<td>SN</td>
<td>N / A for Pkg Type</td>
<td>-40 to 125</td>
<td>+NLAG</td>
<td></td>
</tr>
<tr>
<td>DRV5013AGQLPGM</td>
<td>ACTIVE</td>
<td>TO-92</td>
<td>LPG</td>
<td>3</td>
<td>3000</td>
<td>RoHS & Green</td>
<td>SN</td>
<td>N / A for Pkg Type</td>
<td>-40 to 125</td>
<td>+NLAG</td>
<td></td>
</tr>
<tr>
<td>DRV5013BCELPE</td>
<td>ACTIVE</td>
<td>TO-92</td>
<td>LPE</td>
<td>3</td>
<td>1000</td>
<td>RoHS & Green</td>
<td>SN</td>
<td>N / A for Pkg Type</td>
<td>-40 to 150</td>
<td>1UVJ</td>
<td></td>
</tr>
<tr>
<td>DRV5013BCELP6M</td>
<td>ACTIVE</td>
<td>TO-92</td>
<td>LPE</td>
<td>3</td>
<td>3000</td>
<td>RoHS & Green</td>
<td>SN</td>
<td>N / A for Pkg Type</td>
<td>-40 to 150</td>
<td>1UVJ</td>
<td></td>
</tr>
<tr>
<td>DRV5013BCQDBZR</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBZ</td>
<td>3</td>
<td>3000</td>
<td>RoHS & Green</td>
<td>NIPDAUAG</td>
<td>SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>(+NLBC, 1IX2)</td>
</tr>
<tr>
<td>DRV5013BCQDBZT</td>
<td>LIFEBUY</td>
<td>SOT-23</td>
<td>DBZ</td>
<td>3</td>
<td>250</td>
<td>RoHS & Green</td>
<td>NIPDAUAG</td>
<td>SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>(+NLBC, 1IX2)</td>
</tr>
<tr>
<td>DRV5013BCQLPG</td>
<td>ACTIVE</td>
<td>TO-92</td>
<td>LPG</td>
<td>3</td>
<td>1000</td>
<td>RoHS & Green</td>
<td>SN</td>
<td>N / A for Pkg Type</td>
<td>-40 to 125</td>
<td>+NLBC</td>
<td></td>
</tr>
<tr>
<td>DRV5013BCQLPGM</td>
<td>ACTIVE</td>
<td>TO-92</td>
<td>LPG</td>
<td>3</td>
<td>3000</td>
<td>RoHS & Green</td>
<td>SN</td>
<td>N / A for Pkg Type</td>
<td>-40 to 125</td>
<td>+NLBC</td>
<td></td>
</tr>
<tr>
<td>DRV5013FAQDBZR</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBZ</td>
<td>3</td>
<td>3000</td>
<td>RoHS & Green</td>
<td>SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>(+NLFA, 1IZ2)</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.
RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF DRV5013:

• Automotive: DRV5013-Q1

NOTE: Qualified Version Definitions:

• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects
TAPE AND REEL INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRV5013ADQDBZR</td>
<td>SOT-23</td>
<td>DBZ</td>
<td>3</td>
<td>3000</td>
<td>180.0</td>
<td>8.4</td>
<td>3.2</td>
<td>2.85</td>
<td>1.3</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>DRV5013ADQDBZT</td>
<td>SOT-23</td>
<td>DBZ</td>
<td>3</td>
<td>250</td>
<td>180.0</td>
<td>8.4</td>
<td>3.2</td>
<td>2.85</td>
<td>1.3</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>DRV5013AGQDBZR</td>
<td>SOT-23</td>
<td>DBZ</td>
<td>3</td>
<td>3000</td>
<td>180.0</td>
<td>8.4</td>
<td>3.2</td>
<td>2.85</td>
<td>1.3</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>DRV5013AGQDBZT</td>
<td>SOT-23</td>
<td>DBZ</td>
<td>3</td>
<td>250</td>
<td>180.0</td>
<td>8.4</td>
<td>3.15</td>
<td>2.77</td>
<td>1.22</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>DRV5013BCQDBZR</td>
<td>SOT-23</td>
<td>DBZ</td>
<td>3</td>
<td>3000</td>
<td>178.0</td>
<td>9.0</td>
<td>3.15</td>
<td>2.77</td>
<td>1.22</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>DRV5013BCQDBZT</td>
<td>SOT-23</td>
<td>DBZ</td>
<td>3</td>
<td>250</td>
<td>178.0</td>
<td>9.0</td>
<td>3.15</td>
<td>2.77</td>
<td>1.22</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>DRV5013FAQDBZR</td>
<td>SOT-23</td>
<td>DBZ</td>
<td>3</td>
<td>3000</td>
<td>180.0</td>
<td>8.4</td>
<td>3.2</td>
<td>2.85</td>
<td>1.3</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
</tbody>
</table>

All dimensions are nominal
TAPE AND REEL BOX DIMENSIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRV5013ADQDBZR</td>
<td>SOT-23</td>
<td>DBZ</td>
<td>3</td>
<td>3000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>DRV5013ADQDBZT</td>
<td>SOT-23</td>
<td>DBZ</td>
<td>3</td>
<td>250</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>DRV5013AGQDBZR</td>
<td>SOT-23</td>
<td>DBZ</td>
<td>3</td>
<td>3000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>DRV5013AGQDBZT</td>
<td>SOT-23</td>
<td>DBZ</td>
<td>3</td>
<td>250</td>
<td>202.0</td>
<td>201.0</td>
<td>28.0</td>
</tr>
<tr>
<td>DRV5013BCQDBZR</td>
<td>SOT-23</td>
<td>DBZ</td>
<td>3</td>
<td>3000</td>
<td>202.0</td>
<td>201.0</td>
<td>28.0</td>
</tr>
<tr>
<td>DRV5013BCQDBZT</td>
<td>SOT-23</td>
<td>DBZ</td>
<td>3</td>
<td>3000</td>
<td>180.0</td>
<td>180.0</td>
<td>18.0</td>
</tr>
<tr>
<td>DRV5013BCQDBZT</td>
<td>SOT-23</td>
<td>DBZ</td>
<td>3</td>
<td>250</td>
<td>180.0</td>
<td>180.0</td>
<td>18.0</td>
</tr>
<tr>
<td>DRV5013BCQDBZT</td>
<td>SOT-23</td>
<td>DBZ</td>
<td>3</td>
<td>250</td>
<td>202.0</td>
<td>201.0</td>
<td>28.0</td>
</tr>
<tr>
<td>DRV5013FAQDBZR</td>
<td>SOT-23</td>
<td>DBZ</td>
<td>3</td>
<td>3000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>

All dimensions are nominal
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. Reference JEDEC registration TO-236, except minimum foot length.
4. Support pin may differ or may not be present.
NOTES: (continued)

4. Publication IPC-7351 may have alternate designs.
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
7. Board assembly site may have different recommendations for stencil design.
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
LPG0003A

TO-92 - 5.05 mm max height

TRANSISTOR OUTLINE

TAPE SPECIFICATIONS

4221343/C 01/2018
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated