1 Features

- Dual-H-Bridge Motor Driver
 - Capable of Driving Two DC Motors or One Stepper Motor
 - Low-MOSFET ON-Resistance: HS + LS 305 mΩ
- 1.5-A Maximum Drive Current Per H-Bridge
- Configure Bridges Parallel for 3-A Drive Current
- Separate Motor and Logic-Supply Pins:
 - 0-V to 11-V Motor-Operating Supply-Voltage
 - 2-V to 7-V Logic Supply-Voltage
- Separate Logic and Motor Power Supply Pins
- Flexible PWM or PHASE/ENABLE Interface
- Low-Power Sleep Mode With 95-nA Maximum Supply Current
- Tiny 2.00-mm × 3.00-mm WSON Package

2 Applications

- Battery-Powered:
 - Cameras
 - DSLR Lenses
 - Consumer Products
 - Toys
 - Robotics
 - Medical Devices

3 Description

The DRV8835 provides an integrated motor driver solution for cameras, consumer products, toys, and other low-voltage or battery-powered motion control applications. The device has two H-bridge drivers, and drives two DC motors or one stepper motor, as well as other devices like solenoids. The output driver block for each consists of N-channel power MOSFETs configured as an H-bridge to drive the motor winding. An internal charge pump generates gate drive voltages.

The DRV8835 supplies up to 1.5-A of output current per H-bridge and operates on a motor power supply voltage from 0 V to 11 V, and a device power supply voltage of 2 V to 7 V.

PHASE/ENABLE and IN/IN interfaces are compatible with industry-standard devices.

Internal shutdown functions are provided for overcurrent protection, short circuit protection, undervoltage lockout, and overtemperature.

The DRV8835 is packaged in a tiny 12-pin WSON package (Eco-friendly: RoHS and no Sb/Br).

Device Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRV8835</td>
<td>WSON (12)</td>
<td>2.00 mm × 3.00 mm</td>
</tr>
</tbody>
</table>

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Simplified Schematic

VCC = 2 V to 7 V
VM = 0 V to 11 V

Copyright © 2016, Texas Instruments Incorporated

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.
Table of Contents

1 Features ... 1
2 Applications ... 1
3 Description ... 1
4 Revision History ... 2
5 Pin Configuration and Functions 4
6 Specifications .. 5
 6.1 Absolute Maximum Ratings 5
 6.2 ESD Ratings ... 5
 6.3 Recommended Operating Conditions 5
 6.4 Thermal Information .. 5
 6.5 Electrical Characteristics 6
 6.6 Timing Requirements ... 7
 6.7 Typical Characteristics 8
7 Detailed Description .. 9
 7.1 Overview .. 9
 7.2 Functional Block Diagram 9
 7.3 Feature Description .. 10
 7.4 Device Functional Modes 10
8 Application and Implementation 12
 8.1 Application Information 12
 8.2 Typical Application .. 12
9 Power Supply Recommendations 14
 9.1 Bulk Capacitance .. 14
 9.2 Power Supplies and Input Pins 14
10 Layout ... 15
 10.1 Layout Guidelines .. 15
 10.2 Layout Example ... 15
 10.3 Thermal Considerations 15
11 Device and Documentation Support 17
 11.1 Documentation Support 17
 11.2 Receiving Notification of Documentation Updates 17
 11.3 Community Resources 17
 11.4 Trademarks .. 17
 11.5 Electrostatic Discharge Caution 17
 11.6 Glossary ... 17
12 Mechanical, Packaging, and Orderable Information 17

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision G (May 2016) to Revision H
Page
- Changed the value of the capacitor on the VM pin from 10 \(\mu \text{F} \) to 0.1 \(\mu \text{F} \) in the Parallel Mode Connections figure 12
- Added one capacitor to the VM pin and updated the value of the existing capacitor on the VM pin in the Layout Example ... 15
- Deleted references to TI's PowerPAD package and updated it with thermal pad where applicable ... 16
- Added the Receiving Notification of Documentation Updates section .. 17

Changes from Revision F (April 2016) to Revision G
Page
- Changed the Layout Guidelines to clarify the guidelines for the VM pin ... 15

Changes from Revision E (December 2015) to Revision F
Page
- Deleted nFAULT from the Simplified Schematic in the Description section .. 1

Changes from Revision D (January 2014) to Revision E
Page
- Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section .. 1
Changes from Revision C (September 2013) to Revision D

- Changed *Features* bullet .. 1
- Changed motor supply voltage range in *Description* section .. 1
- Changed Motor power supply voltage range in *Recommended Operating Conditions* .. 5
- Added t_{OCR} and t_{DEAD} parameters to *Electrical Characteristics* .. 6
- Added paragraph to *Power Supplies and Input Pins* section ... 14
5 Pin Configuration and Functions

DSS Package

12-Pin WSON With Exposed Thermal Pad

Top View

<table>
<thead>
<tr>
<th>Pin</th>
<th>I/O(1)</th>
<th>DESCRIPTION</th>
<th>EXTERNAL COMPONENTS OR CONNECTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>GND, Thermal pad</td>
<td>6</td>
<td>—</td>
<td>Device ground</td>
</tr>
<tr>
<td>VM</td>
<td>1</td>
<td>—</td>
<td>Motor supply</td>
</tr>
<tr>
<td>VCC</td>
<td>12</td>
<td>—</td>
<td>Device supply</td>
</tr>
<tr>
<td>POWER AND GROUND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MODE</td>
<td>11</td>
<td>I</td>
<td>Input mode select</td>
</tr>
<tr>
<td>AIN1/APHASE</td>
<td>10</td>
<td>I</td>
<td>Bridge A input 1/PHASE input</td>
</tr>
<tr>
<td>AIN2/AENBL</td>
<td>9</td>
<td>I</td>
<td>Bridge A input 2/ENABLE input</td>
</tr>
<tr>
<td>BIN1/BPHASE</td>
<td>8</td>
<td>I</td>
<td>Bridge B input 1/PHASE input</td>
</tr>
<tr>
<td>BIN2/BENBL</td>
<td>7</td>
<td>I</td>
<td>Bridge B input 2/ENABLE input</td>
</tr>
<tr>
<td>CONTROL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AOUT1</td>
<td>2</td>
<td>O</td>
<td>Bridge A output 1</td>
</tr>
<tr>
<td>AOUT2</td>
<td>3</td>
<td>O</td>
<td>Bridge A output 2</td>
</tr>
<tr>
<td>BOUT1</td>
<td>4</td>
<td>O</td>
<td>Bridge B output 1</td>
</tr>
<tr>
<td>BOUT2</td>
<td>5</td>
<td>O</td>
<td>Bridge B output 2</td>
</tr>
</tbody>
</table>

(1) Directions: I = input, O = output
6 Specifications

6.1 Absolute Maximum Ratings

See (1)(2)

<table>
<thead>
<tr>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply voltage, VM</td>
<td>–0.3</td>
<td>12</td>
</tr>
<tr>
<td>Power supply voltage, VCC</td>
<td>–0.3</td>
<td>7</td>
</tr>
<tr>
<td>Digital input pin voltage</td>
<td>–0.5</td>
<td>VCC + 0.5</td>
</tr>
<tr>
<td>Peak motor drive output current</td>
<td>Internally limited</td>
<td></td>
</tr>
<tr>
<td>Continuous motor drive output current per H-bridge(3)</td>
<td>–1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>TJ</td>
<td>Operating junction temperature</td>
<td>–40</td>
</tr>
<tr>
<td>Tstg</td>
<td>Storage temperature</td>
<td>–60</td>
</tr>
</tbody>
</table>

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to network ground terminal.

(3) Power dissipation and thermal limits must be observed.

6.2 ESD Ratings

<table>
<thead>
<tr>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)</td>
<td>±2000</td>
</tr>
<tr>
<td>Charged-device model (CDM), per JEDEC specification JESD22-C101(2)</td>
<td>±1500</td>
</tr>
</tbody>
</table>

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

TA = 25°C (unless otherwise noted)

<table>
<thead>
<tr>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>Device power supply voltage</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>VM</td>
<td>Motor power supply voltage</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>VIN</td>
<td>Logic level input voltage</td>
<td>0</td>
<td>VCC</td>
</tr>
<tr>
<td>IOUT</td>
<td>H-bridge output current(1)</td>
<td>0</td>
<td>1.5</td>
</tr>
<tr>
<td>F_PWM</td>
<td>Externally applied PWM frequency</td>
<td>0</td>
<td>250</td>
</tr>
</tbody>
</table>

(1) Power dissipation and thermal limits must be observed.

6.4 Thermal Information

<table>
<thead>
<tr>
<th>THERMAL METRIC(1)</th>
<th>DRV8835</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>RJJA</td>
<td>Junction-to-ambient thermal resistance</td>
<td>50.4</td>
</tr>
<tr>
<td>RJJC(top)</td>
<td>Junction-to-case (top) thermal resistance</td>
<td>58</td>
</tr>
<tr>
<td>RJJB</td>
<td>Junction-to-board thermal resistance</td>
<td>19.9</td>
</tr>
<tr>
<td>ψJT</td>
<td>Junction-to-top characterization parameter</td>
<td>0.9</td>
</tr>
<tr>
<td>ψJB</td>
<td>Junction-to-board characterization parameter</td>
<td>20</td>
</tr>
<tr>
<td>RJJC(bot)</td>
<td>Junction-to-case (bottom) thermal resistance</td>
<td>6.9</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.
6.5 Electrical Characteristics

\(T_A = 25°C, \ V_M = 5 \text{ V}, \ V_{CC} = 3 \text{ V} \) (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{VM})</td>
<td>VM operating supply current</td>
<td>No PWM, no load</td>
<td>85</td>
<td>200</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 kHz PWM, no load</td>
<td>650</td>
<td>2000</td>
<td>µA</td>
</tr>
<tr>
<td>(I_{VMO})</td>
<td>VM sleep mode supply current</td>
<td>(V_M = 2 \text{ V}, \ V_{CC} = 0 \text{ V},) all inputs 0 V</td>
<td>5</td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_M = 5 \text{ V}, \ V_{CC} = 0 \text{ V},) all inputs 0 V</td>
<td>10</td>
<td>95</td>
<td>nA</td>
</tr>
<tr>
<td>(I_{VCC})</td>
<td>VCC operating supply current</td>
<td></td>
<td>450</td>
<td>2000</td>
<td>µA</td>
</tr>
<tr>
<td>(V_{UVO})</td>
<td>VCC undervoltage lockout voltage</td>
<td>(V_{CC}) rising</td>
<td>2</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC}) falling</td>
<td>1.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOGIC-LEVEL INPUTS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{IL})</td>
<td>Input low voltage</td>
<td></td>
<td>(0.3 \times V_{CC})</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(V_{IH})</td>
<td>Input high voltage</td>
<td></td>
<td>(0.5 \times V_{CC})</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(I_{IL})</td>
<td>Input low current</td>
<td>(V_{IN} = 0)</td>
<td>–5</td>
<td>5</td>
<td>µA</td>
</tr>
<tr>
<td>(I_{IH})</td>
<td>Input high current</td>
<td>(V_{IN} = 3.3 \text{ V})</td>
<td>50</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>(R_{PD})</td>
<td>Pulldown resistance</td>
<td></td>
<td>100</td>
<td></td>
<td>kΩ</td>
</tr>
</tbody>
</table>

H-BRIDGE FETS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{DS(ON)})</td>
<td>HS + LS FET on resistance</td>
<td>(V_{CC} = 3 \text{ V}, \ V_M = 3 \text{ V}, \ I_O = 800 \text{ mA}, \ T_J = 25°C)</td>
<td>370</td>
<td>420</td>
<td>mΩ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 5 \text{ V}, \ V_M = 5 \text{ V}, \ I_O = 800 \text{ mA}, \ T_J = 25°C)</td>
<td>305</td>
<td>355</td>
<td>mΩ</td>
</tr>
<tr>
<td>(I_{OFF})</td>
<td>OFF-state leakage current</td>
<td></td>
<td>±200</td>
<td></td>
<td>nA</td>
</tr>
</tbody>
</table>

PROTECTION CIRCUITS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{OCP})</td>
<td>Overcurrent protection trip level</td>
<td></td>
<td>1.6</td>
<td>3.5</td>
<td>A</td>
</tr>
<tr>
<td>(t_{DEG})</td>
<td>Overcurrent de-glitch time</td>
<td></td>
<td>1</td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>(t_{OCR})</td>
<td>Overcurrent protection retry time</td>
<td></td>
<td>1</td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>(t_{DEAD})</td>
<td>Output dead time</td>
<td></td>
<td>100</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(T_{SD})</td>
<td>Thermal shutdown temperature</td>
<td>Die temperature</td>
<td>150</td>
<td>160</td>
<td>180</td>
</tr>
</tbody>
</table>
6.6 Timing Requirements

$T_A = 25^\circ C$, $V_M = 5\, V$, $V_{CC} = 3\, V$, $R_L = 20\, \Omega$

<table>
<thead>
<tr>
<th>NO.</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>300</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>3</td>
<td>200</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>4</td>
<td>300</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>5</td>
<td>200</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>6</td>
<td>300</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>160</td>
<td>160</td>
<td>ns</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>30</td>
<td>188</td>
<td>ns</td>
</tr>
<tr>
<td>12</td>
<td>30</td>
<td>188</td>
<td>ns</td>
</tr>
</tbody>
</table>

Figure 1. Timing Requirements
6.7 Typical Characteristics

Figure 2. VM Operating Current

Figure 3. Sleep Current

Figure 4. $R_{DS(ON)}$ (High-Side + Low-Side)

Figure 5. V_{CC} Operating Current
7 Detailed Description

7.1 Overview
The DRV8835 is an integrated motor-driver solution used for brushed motor control. The device integrates two H-bridges, and drives two DC motor or one stepper motor. The output driver block for each H-bridge consists of N-channel power MOSFETs. An internal charge pump generates the gate drive voltages. Protection features include overcurrent protection, short circuit protection, undervoltage lockout, and overtemperature protection.

The bridges connect in parallel for additional current capability.

The DRV8835 allows separation of the motor voltage and logic voltage if desired. If VM and VCC are less than 7 V, the two voltages can be connected.

The mode pin allow selection of either a PHASE/ENABLE or IN/IN interface.

7.2 Functional Block Diagram
7.3 Feature Description

7.3.1 Protection Circuits

The DRV8835 is fully protected against undervoltage, overcurrent, and overtemperature events.

7.3.1.1 Overcurrent Protection (OCP)

An analog current limit circuit on each FET limits the current through the FET by removing the gate drive. If this analog current limit persists for longer than the OCP time, all FETs in the H-bridge disable. After approximately 1 ms, the bridge re-enable automatically.

Overcurrent conditions on both high-side and low-side devices; a short to ground, supply, or across the motor winding result in an overcurrent shutdown.

7.3.1.2 Thermal Shutdown (TSD)

If the die temperature exceeds safe limits, all FETs in the H-bridge disable. Operation automatically resumes once the die temperature falls to a safe level.

7.3.1.3 Undervoltage Lockout (UVLO)

If at any time the voltage on the VCC pins falls below the undervoltage lockout threshold voltage, all circuitry in the device disable, and internal logic resets. Operation resumes when VCC rises above the UVLO threshold.

Table 1. Device Protection

<table>
<thead>
<tr>
<th>FAULT</th>
<th>CONDITION</th>
<th>ERROR REPORT</th>
<th>H-BRIDGE</th>
<th>INTERNAL CIRCUITS</th>
<th>RECOVERY</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC undervoltage (UVLO)</td>
<td>VCC < VUVLO</td>
<td>None</td>
<td>Disabled</td>
<td>Disabled</td>
<td>VCC > VUVLO</td>
</tr>
<tr>
<td>Overcurrent (OCP)</td>
<td>IOUT > IOCP</td>
<td>None</td>
<td>Disabled</td>
<td>Operating</td>
<td>tOCR</td>
</tr>
<tr>
<td>Thermal Shutdown (TSD)</td>
<td>TJ > TTSD</td>
<td>None</td>
<td>Disabled</td>
<td>Operating</td>
<td>TJ < TTSD – THYS</td>
</tr>
</tbody>
</table>

7.4 Device Functional Modes

The DRV8835 is active when the VCC is set to a logic high. When in sleep mode, the H-bridge FETs are disabled (HIGH-Z).

Table 2. Device Operating Modes

<table>
<thead>
<tr>
<th>OPERATING MODE</th>
<th>CONDITION</th>
<th>H-BRIDGE</th>
<th>INTERNAL CIRCUITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating</td>
<td>nSLEEP high</td>
<td>Operating</td>
<td>Operating</td>
</tr>
<tr>
<td>Sleep mode</td>
<td>nSLEEP low</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>Fault encountered</td>
<td>Any fault condition met</td>
<td>Disabled</td>
<td>See Table 1</td>
</tr>
</tbody>
</table>
7.4.1 Bridge Control
Two control modes are available in the DRV8835: IN/IN mode, and PHASE/ENABLE mode. IN/IN mode is selected if the MODE pin is driven low or left unconnected; PHASE/ENABLE mode is selected if the MODE pin is driven to logic high. Table 3 and Table 4 show the logic for these modes.

Table 3. IN/IN Mode

<table>
<thead>
<tr>
<th>MODE</th>
<th>xIN1</th>
<th>xIN2</th>
<th>xOUT1</th>
<th>xOUT2</th>
<th>FUNCTION (DC MOTOR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Z</td>
<td>Z</td>
<td>Coast</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>L</td>
<td>H</td>
<td>Reverse</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>H</td>
<td>L</td>
<td>Forward</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>L</td>
<td>L</td>
<td>Brake</td>
</tr>
</tbody>
</table>

Table 4. Phase/Enable Mode

<table>
<thead>
<tr>
<th>MODE</th>
<th>xENABLE</th>
<th>xPHASE</th>
<th>xOUT1</th>
<th>xOUT2</th>
<th>FUNCTION (DC MOTOR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>X</td>
<td>L</td>
<td>L</td>
<td>Brake</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>L</td>
<td>H</td>
<td>Reverse</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>H</td>
<td>L</td>
<td>Forward</td>
</tr>
</tbody>
</table>

7.4.2 Sleep Mode
If the VCC pin reaches 0 V, the DRV8835 enters a low-power sleep mode. In this state all unnecessary internal circuitry powers down. For minimum supply current, all inputs should be low (0 V) during sleep mode.
8 Application and Implementation

NOTE
Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information
The DRV8835 is used in one or two motor control applications. Configure the DRV8835 in parallel to provide double the current to one motor. The following design procedure can be used to configure the DRV8835 in a brushed motor application.

8.2 Typical Application
The two H-bridges in the DRV8835 connect in parallel for double the current of a single H-bridge. Figure 6 shows the connections.

![Figure 6. Parallel Mode Connections](image)

8.2.1 Design Requirements
Table 5 lists the design requirements.

<table>
<thead>
<tr>
<th>DESIGN PARAMETER</th>
<th>REFERENCE</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor voltage</td>
<td>VCC</td>
<td>4 V</td>
</tr>
<tr>
<td>Motor RMS current</td>
<td>(I_{RMS})</td>
<td>0.3 A</td>
</tr>
<tr>
<td>Motor startup current</td>
<td>(I_{START})</td>
<td>0.6 A</td>
</tr>
<tr>
<td>Motor current trip point</td>
<td>(I_{LIMIT})</td>
<td>0.5 A</td>
</tr>
</tbody>
</table>
8.2.2 Detailed Design Procedure

8.2.2.1 Motor Voltage

The appropriate motor voltage depends on the ratings of the motor selected and the desired RPM. A higher voltage spins a brushed DC motor faster with the same PWM duty cycle applied to the power FETs. A higher voltage also increases the rate of current change through the inductive motor windings.

8.2.2.2 Lower-Power Operation

When entering sleep mode, TI recommends setting all inputs as a logic low to minimize system power.

8.2.3 Application Curve

The following scope captures motor startup as V_{CC} ramps from 0 V to 6 V. Channel 1 is VCC, Channel 2 is VM, and Channel 4 is the motor current of an unloaded motor during startup. The motor used is a NMB Technologies Corporation, PPN7PA12C1. As VCC and VM ramp, the current in the motor increases until the motor speed builds up. The motor current then reduces for normal operation.

Inputs are set as follows:

- Mode: IN/IN
- AIN1: High
- AIN2: Low

![Motor Startup With No Load](image-url)

Figure 7. Motor Startup With No Load
9 Power Supply Recommendations

9.1 Bulk Capacitance
The appropriate local bulk capacitance is an important factor in motor drive system design. More bulk capacitance is generally beneficial, but may increase costs and physical size.

The amount of local capacitance needed depends on a variety of factors, including:
- The highest current required by the motor system
- The power supply’s capacitance and ability to source current
- The amount of parasitic inductance between the power supply and motor system
- The acceptable voltage ripple
- The type of motor used (brushed DC, brushless DC, stepper)
- The motor braking method

9.2 Power Supplies and Input Pins
There is a weak pulldown resistor (approximately 100 kΩ) to ground on the input pins. VCC and VM may be applied and removed in any order. When VCC is removed, the device enters a low power state and draws very little current from VM. To minimize current draw, keep the input pins at 0 V during sleep mode.

The VM voltage supply does not have any undervoltage lockout protection (UVLO), so as long as VCC > 1.8 V, the internal device logic remains active. This means that the VM pin voltage may drop to 0 V, however, the load may not be sufficiently driven at low-VM voltages.
10 Layout

10.1 Layout Guidelines
The VCC pin should be bypassed to GND using low-ESR ceramic bypass capacitors with a recommended value of 0.1 μF rated for VCC. This capacitor should be placed as close to the VCC pin as possible with a thick trace.

The VM pin should be bypassed to GND using low-ESR ceramic bypass capacitors with a recommended value of 0.1 μF rated for VM. This capacitor should be placed as close to the VM pin as possible with a thick trace. The VM pin must bypass to ground using an appropriate bulk capacitor. This component can be an electrolytic and should be located close to the DRV8835.

10.2 Layout Example

![Layout Recommendation Diagram]

Figure 8. Layout Recommendation

10.3 Thermal Considerations
The DRV8835 has thermal shutdown (TSD) as described above. If the die temperature exceeds approximately 150°C, the device disables until the temperature drops to a safe level.

Any tendency of the device to enter thermal shutdown is an indication of either excessive power dissipation, insufficient heatsinking, or excessively high ambient temperature.
Thermal Considerations (continued)

10.3.1 Power Dissipation

Power dissipation in the DRV8835 is dominated by the power dissipated in the output FET resistance, or $R_{DS(on)}$. Average power dissipation when running both H-bridges can be roughly estimated by Equation 1:

$$P_{TOT} = 2 \times R_{DS(ON)} \times (I_{OUT(RMS)})^2$$

where

- P_{TOT} is the total power dissipation, $R_{DS(ON)}$ is the resistance of the HS plus LS FETs, and $I_{OUT(RMS)}$ is the RMS output current being applied to each winding. $I_{OUT(RMS)}$ is equal to the approximately 0.7× the full-scale output current setting. The factor of 2 comes from the fact that there are two H-bridges. (1)

The maximum amount of power dissipated in the device is dependent on ambient temperature and heatsinking.

NOTE

$R_{DS(on)}$ increases with temperature, so as the device heats, the power dissipation increases. Consider this increase when sizing the heatsink.

The power dissipation of the DRV8835 is a function of RMS motor current and the resistance of each FET ($R_{DS(ON)}$), see Equation 2.

$$\text{Power} = I_{RMS}^2 \times (\text{High-Side } R_{DS(on)} + \text{Low-Side } R_{DS(on)})$$

For this example, the ambient temperature is 35°C, and the junction temperature reaches 65°C. At 65°C, the sum of $R_{DS(on)}$ is about 1 Ω. With an example motor current of 0.8 A, the dissipated power in the form of heat will be $0.8 \times 1 = 0.64$ W.

The temperature that the DRV8835 reaches depends on the thermal resistance to the air and PCB. It is important to solder the device thermal pad to the PCB ground plane, with vias to the top and bottom board layers, in order dissipate heat into the PCB and reduce the device temperature. In the example used here, the DRV8835 had an effective thermal resistance $R_{\theta JA}$ of 47°C/W, and as shown in Equation 3.

$$T_J = T_A + (P_D \times R_{\theta JA}) = 35°C + (0.64 \times 47°C/W) = 65°C$$

10.3.2 Heatsinking

The package uses an exposed pad to remove heat from the device. For proper operation, this pad must thermally connect to copper on the PCB to dissipate heat. On a multi-layer PCB with a ground plane, this can be accomplished by adding a number of vias to connect the thermal pad to the ground plane. On PCBs without internal planes, copper area can be added on either side of the PCB to dissipate heat. If the copper area is on the opposite side of the PCB from the device, thermal vias are used to transfer the heat between top and bottom layers.

For more PCB design details, refer to QFN/SON PCB Attachment and AN-1187 Leadless Leadframe Package (LLP), available at www.ti.com.

In general, the more copper area that is provided, the more power can be dissipated.
11 Device and Documentation Support

11.1 Documentation Support

11.1.1 Related Documentation

For related documentation see the following:

• AN-1187 Leadless Leadframe Package (LLP) (SNOA401)
• Calculating Motor Driver Power Dissipation (SLVA504)
• DRV8835/DRV8836 Evaluation Module (SLVU694)
• QFN/SON PCB Attachment (SLUA271)
• Understanding Motor Driver Current Ratings (SLVA505)

11.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.3 Community Resources

The following links connect to TI community resources. Linked contents are provided “AS IS” by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.4 Trademarks

E2E is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

11.5 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.6 Glossary

SLYZ022 — Ti Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
Packaging Information

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead finish/ Ball material</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRV8835DSSR</td>
<td>ACTIVE</td>
<td>WSON</td>
<td>DSS</td>
<td>12</td>
<td>3000</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>835</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

TAPE DIMENSIONS

- **A0**: Dimension designed to accommodate the component width
- **B0**: Dimension designed to accommodate the component thickness
- **K0**: Dimension designed to accommodate the component length
- **W**: Overall width of the carrier tape
- **P1**: Pitch between successive cavity centers

REEL DIMENSIONS

- **A0**: Overall width of the carrier tape
- **B0**: Pitch between successive cavity centers
- **K0**: Dimension designed to accommodate the component thickness
- **W**: Dimension designed to accommodate the component width

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

- **Q1**: Pocket Quadrants
- **Q2**: Cavity
- **Q3**: Pocket Quadrants
- **Q4**: Cavity

All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRV8835DSSR</td>
<td>WSON</td>
<td>DSS</td>
<td>12</td>
<td>3000</td>
<td>180.0</td>
<td>8.4</td>
<td>2.25</td>
<td>3.25</td>
<td>1.05</td>
<td>4.0</td>
<td>8.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>
TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRV8835DSSR</td>
<td>WSON</td>
<td>DSS</td>
<td>12</td>
<td>3000</td>
<td>182.0</td>
<td>182.0</td>
<td>20.0</td>
</tr>
</tbody>
</table>
Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.
NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

5. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown. It is recommended that vias located under solder paste be filled, plugged or tented.
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated