

Technical documentation

Support & training

DS160PR1601 SNLS732 – FEBRUARY 2023

DS160PR1601 16 Gbps 16 Lane Linear Redriver

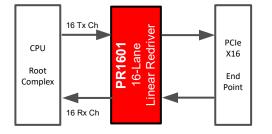
1 Features

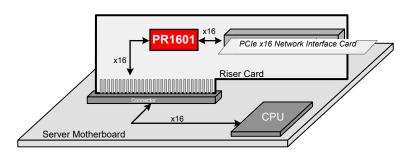
- 16-lane linear redriver supporting PCIe 4.0, and UPI 2.0
- Supports data rates up to 16-Gbps
- P2P with Intel retimer common footprint
- 64 integrated AC coupling capacitors on TX pins inside package saving board space
- CTLE boosts of 16 dB at 8 GHz
- Analog EyeScan to aid redriver tuning, debug and remote monitoring
- Ultra-low latency of 130 ps
- · Low additive random jitter of 100 fs for PRBS data
- Excellent RX/TX return loss of -13 dB at 8 GHz
- Single 3.3 V supply
- Low active power of 160 mW/channel
- I²C/SMBus or EEPROM programming
- Automatic receiver detection for PCIe use cases
- · Seamless support for PCIe link training
- Internal voltage regulator provides immunity to supply noise
- High speed production testing for reliable manufacturing
- Support for x4, x8, x16 bus width
- 8.90 mm × 22.80 mm BGA package

2 Applications

- Rack server, Microserver, and tower server
- High performance computing
- Hardware accelerator
- Network attached storage
- Storage area network (SAN) and host bus adapter (HBA) card
- Network interface card (NIC)
- Desktop PC or motherboard

3 Description


The DS160PR1601 is a 32-channel (16-channel in each direction) x16 (16-lane) low-power highperformance linear repeater or redriver designed to support PCIe 4.0, UPI 2.0 and other interfaces up to 16 Gbps.


The DS160PR1601 receivers deploy continuous time linear equalizers (CTLE) to provide a programmable high-frequency boost. The equalizer can open an input eye that is completely closed due to intersymbol interference (ISI) induced by an interconnect medium, such as PCB traces. The CTLE receiver is followed by a linear output driver. The linear datapaths of DS160PR1601 preserves transmit preset signal characteristics. The linear redriver becomes part of the passive channel that as a whole get link trained for best transmit and receive equalization settings. This transparency in the link training protocol results in best electrical link and lowest possible latency. Low channel-channel cross-talk, low additive jitter and excellent return loss makes the device almost a passive element in the link, but with its equalization.

Package Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
DS160PR1601	ZDG (nfBGA, 354)	22.89 mm × 8.90 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Typical Application

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

Table of Contents

1 Features1
2 Applications1
3 Description1
4 Revision History
5 Pin Configuration and Functions
6 Specifications15
6.1 Absolute Maximum Ratings15
6.2 ESD and Latchup Ratings15
6.3 Recommended Operating Conditions15
6.4 Thermal Information16
6.5 DC Electrical Characteristics
6.6 High Speed Electrical Characteristics17
6.7 SMBUS/I2C Timing Charateristics
6.8 Typical Characteristics20
6.9 Typical Jitter Characteristics20
7 Detailed Description21
7.1 Overview21
7.2 Functional Block Diagram21

	7.3 Control and Configuration Interface	.22
	7.4 Feature Description	25
	7.5 Device Functional Modes	
8	Application and Implementation	.27
	8.1 Application Information	. 27
	8.2 Typical Applications	
	8.3 Power Supply Recommendations	
	8.4 Layout	. 31
9	Device and Documentation Support	
	9.1 Documentation Support	. 33
	9.2 Receiving Notification of Documentation Updates	
	9.3 Support Resources	. 33
	9.4 Trademarks	. 33
	9.5 Electrostatic Discharge Caution	33
	9.6 Glossary	
1	0 Mechanical, Packaging, and Orderable	
	Information	. 33

4 Revision History

DATE	REVISION	NOTES
February 2023	*	Initial Release

5 Pin Configuration and Functions

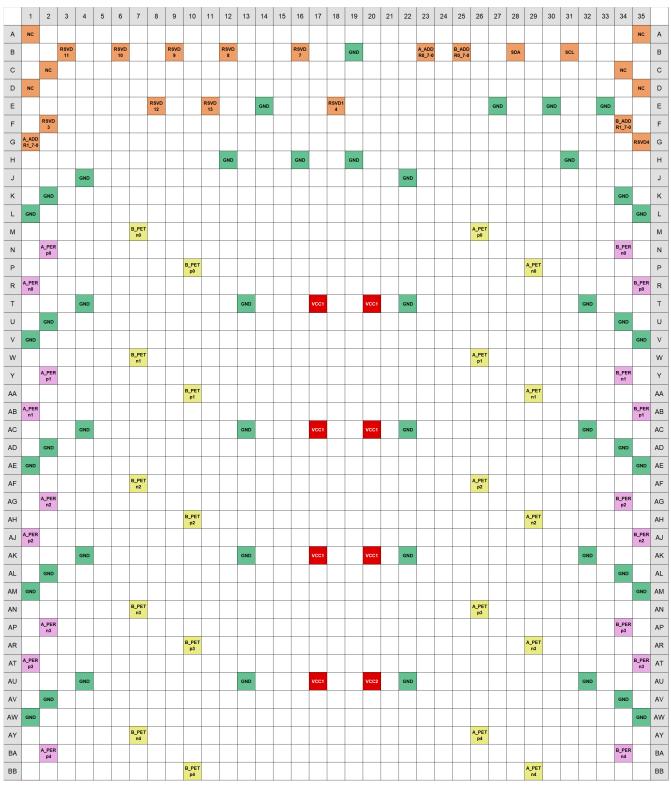
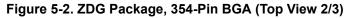
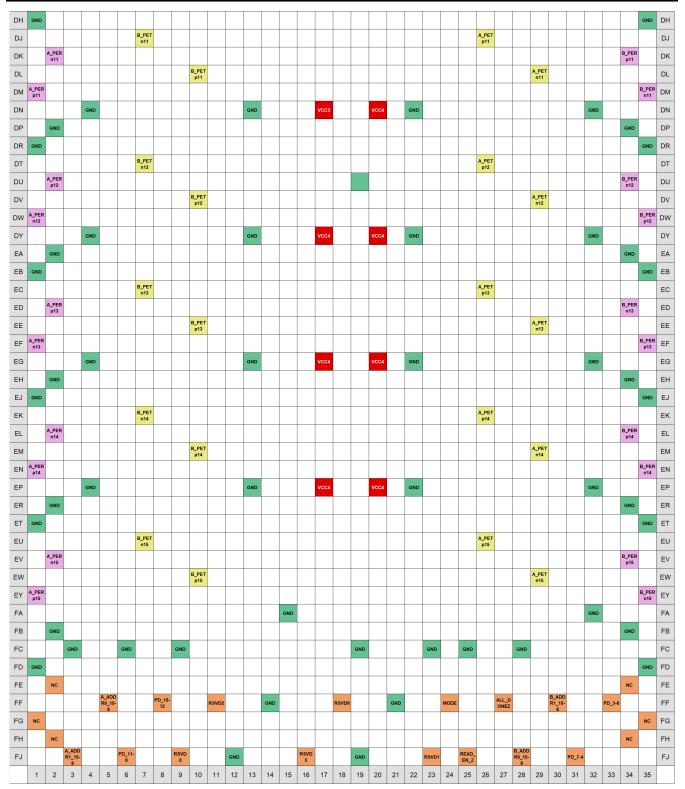



Figure 5-1. ZDG Package, 354-Pin BGA (Top View 1/3)

B_PER p4 BC BC A_PER BD GND VCC2 VCC2 GND BD GND GND BE BE GND GND BF BF GND GNE B_PET n5 A_PET p5 BG BG A_PER p5 B_PER n5 BH BH B_PET p5 A_PET n5 BJ BJ B_PER p5 BK A_PER BK BL BL GND GND GND GND vcca BM BM GND BN BN GND B_PET n6 A_PET p6 BP BP A_PER n6 B_PER p6 BR BR B_PET p6 A_PET n6 вт BT BU A_PER B_PER BU BV GND GND GND BV GND BW GND GND вw BY BY GND GND CA B_PET n7 A_PET p7 CA A_PER n7 B_PER p7 СВ СВ В_РЕТ p7 A_PET n7 сс сс CD A_PER B_PER n7 CD CE CE GND VCC2 GND GND GND CF CF GND GND GND CG CG GND A_PET p8 B_PET n8 СН СН A_PER p8 B_PER n8 CJ CJ B_PET p8 A_PET n8 СК ск CL A_PER n8 B_PER p8 CL СМ vcc3 vcc3 СМ GND GND GND GND CN CN GND GND СР CP GND GND B_PET n9 A_PE1 p9 CR CR A_PER p9 B_PER n9 СТ СТ B_PET p9 A_PE1 n9 cu CU CV A_PER B_PER p9 CV cw GND GND vcc3 GND GND cw СҮ СҮ GND GNE DA DA GND GND B_PET n10 A_PE1 p10 DB DB A_PER n10 B_PER p10 DC DC B_PE1 p10 A_PE1 n10 DD DD B_PER DE DE A_PER DF GND GND DF GNE DG DG 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 1 2 3 4



DS160PR1601 SNLS732 – FEBRUARY 2023

DS160PR1601 SNLS732 – FEBRUARY 2023

Figure 5-3. ZDG Package 354-Pin BGA Top View 3/3

		Legend		
Ground Power IOs, RSVD /NC Differential Input Differential Output				Differential Output

Table 5-1. Pin Functions PIN TYPE DESCRIPTION NO. NAME A1 N/C No internal connection. N/C A35 No internal connection. B12 RSVD8 Reserved for future use. No internal connection. B16 RSVD7 Reserved for future use. No internal connection. _ B19 GND Ground Ground B23 A ADDR0 7-0 5-level input strap pins as defined in Table 7-2. Sets SMBus/I2C secondary address Input according to Table 7-1 and Table 7-3. B25 5-level input strap pins as defined in Table 7-2. Sets SMBus/I2C secondary address B ADDR0 7-0 Input according to Table 7-1 and Table 7-3. 3.3 V SMBus/I2C data IO pin SDA. External 1 k Ω to 5 k Ω pullup resistor is required B28 SDA Input /Output as per SMBus / I2C interface standard. The device can alter between SMBus/I2C primary and secondary mode through exercising MODE pin. B3 RSVD11 Reserved for future use. No internal connection. B31 SCL Input /Output 3.3 V SMBus/I2C clock IO pin SCL. External 1 k Ω to 5 k Ω pullup resistor is required as per SMBus / I2C interface standard. The device can alter between SMBus/I2C primary and secondary mode through exercising MODE pin. B6 RSVD10 Reserved for future use. No internal connection. B9 RSVD9 Reserved for future use. No internal connection. C2 N/C No internal connection. C34 N/C No internal connection. D1 N/C No internal connection D35 N/C No internal connection. RSVD13 E11 Reserved for future use. No internal connection. E14 GND Ground Ground E18 RSVD14 Reserved for future use. No internal connection. E27 GND Ground Ground E30 GND Ground Ground E33 GND Ground Ground E8 RSVD12 Reserved for future use. No internal connection. F2 RSVD3 Reserved for future use. No internal connection. F34 5-level input strap pins as defined in Table 7-2. Sets SMBus/I2C secondary address B_ADDR1_7-0 Input according to Table 7-1 and Table 7-3. G1 5-level input strap pins as defined in Table 7-2. Sets SMBus/I2C secondary address A ADDR1 7-0 Input according to Table 7-1 and Table 7-3. G35 RSVD4 Reserved for future use. No internal connection. H12 GND Ground Ground H16 GND Ground Ground H19 GND Ground Ground H31 GND Ground Ground J22 GND Ground Ground J4 GND Ground Ground K2 GND Ground Ground K34 GND Ground Ground L1 GND Ground Ground L35 GND Ground Ground M26 A PETp0 Diff Output Differential transmit signal, channel A, lane 0, positive Μ7 B PETn0 **Diff Output** Differential transmit signal, channel B, lane 0, negative

	Table 5-1. Pin Functions (continued)			
PIN		TYPE	DESCRIPTION	
NO.	NAME			
N2	A_PERp0	Diff Input	Differential receive signal, channel A, lane 0, positive	
N34	B_PERn0	Diff Input	Differential receive signal, channel B, lane 0, negative	
P10	B_PETp0	Diff Output	Differential transmit signal, channel B, lane 0, positive	
P29	A_PETn0	Diff Output	Differential transmit signal, channel A, lane 0, negative	
R1	A_PERn0	Diff Input	Differential receive signal, channel A, lane 0, negative	
R35	B_PERp0	Diff Input	Differential receive signal, channel B, lane 0, positive	
T13	GND	Ground	Ground	
T17	VCC1	Power	3.3 V Supply Voltage	
T20	VCC1	Power	3.3 V Supply Voltage	
T22	GND	Ground	Ground	
T32	GND	Ground	Ground	
T4	GND	Ground	Ground	
U2	GND	Ground	Ground	
U34	GND	Ground	Ground	
V1	GND	Ground	Ground	
V35	GND	Ground	Ground	
W26	A_PETp1	Diff Output	Differential transmit signal, channel A, lane 1, positive	
W7	B PETn1	Diff Output	Differential transmit signal, channel B, lane 1, negative	
Y2	 A_PERp1	Diff Input	Differential receive signal, channel A, lane 1, positive	
Y34	B_PERn1	Diff Input	Differential receive signal, channel B, lane 1, negative	
AA10	B PETp1	Diff Output	Differential transmit signal, channel B, lane 1, positive	
AA29	A_PETn1	Diff Output	Differential transmit signal, channel B, lane 1, negative	
AB1	 A_PERn1	Diff Input	Differential receive signal, channel A, lane 1, negative	
AB35	 B_PERp1	Diff Input	Differential receive signal, channel B, lane 1, positive	
AC13	GND	Ground	Ground	
AC17	VCC1	Power	3.3 V Supply Voltage	
AC20	VCC1	Power	3.3 V Supply Voltage	
AC22	GND	Ground	Ground	
AC32	GND	Ground	Ground	
AC4	GND	Ground	Ground	
AD2	GND	Ground	Ground	
AD34	GND	Ground	Ground	
AE1	GND	Ground	Ground	
AE35	GND	Ground	Ground	
AF26	A_PETp2	Diff Output	Differential transmit signal, channel A, lane 2, positive	
AF7	B_PETn2	Diff Output	Differential transmit signal, channel B, lane 2, negative	
AG2	 A_PERn2	Diff Input	Differential receive signal, channel A, lane 2, negative	
AG34	B_PERp2	Diff Input	Differential receive signal, channel B, lane 2, positive	
AH10	B_PETp2	Diff Output		
AH29	A_PETn2	Diff Output		
AJ1	 A_PERp2	Diff Input	Differential receive signal, channel A, lane 2, positive	
AJ35	B_PERn2	Diff Input	Differential receive signal, channel B, lane 2, negative	
AK13	GND	Ground	Ground	
	-			

Power

VCC1

AK17

3.3 V Supply Voltage

PIN		TYPE	5-1. Pin Functions (continued) DESCRIPTION
NO.	NAME		
AK20	VCC1	Power	3.3 V Supply Voltage
AK22	GND	Ground	Ground
AK32	GND	Ground	Ground
AK4	GND	Ground	Ground
AL2	GND		
		Ground	Ground
AL34	GND	Ground	Ground
AM1	GND	Ground	Ground
AM35	GND	Ground	Ground
AN26	A_PETp3	Diff Output	Differential transmit signal, channel A, lane 3, positive
AN7	B_PETn3	Diff Output	Differential transmit signal, channel B, lane 3, negative
AP2	A_PERn3	Diff Input	Differential receive signal, channel A, lane 3, negative
AP34	B_PERp3	Diff Input	Differential receive signal, channel B, lane 3, positive
AR10	B_PETp3	Diff Output	Differential transmit signal, channel B, lane 3, positive
AR29	A_PETn3	Diff Output	Differential transmit signal, channel A, lane 3, negative
AT1	A_PERp3	Diff Input	Differential receive signal, channel A, lane 3, positive
AT35	B_PERn3	Diff Input	Differential receive signal, channel B, lane 3, negative
AU13	GND	Ground	Ground
AU17	VCC1	Power	3.3 V Supply Voltage
AU20	VCC2	Power	3.3 V Supply Voltage
AU22	GND	Ground	Ground
AU32	GND	Ground	Ground
AU4	GND	Ground	Ground
AV2	GND	Ground	Ground
AV34	GND	Ground	Ground
AW1	GND	Ground	Ground
AW35	GND	Ground	Ground
AY26	A_PETp4	Diff Output	Differential transmit signal, channel A, lane 4, positive
AY7	B_PETn4	Diff Output	Differential transmit signal, channel B, lane 4, negative
BA2	A_PERp4	Diff Input	Differential receive signal, channel A, lane 4, positive
BA34	B_PERn4	Diff Input	Differential receive signal, channel B, lane 4, negative
BB10	B_PETp4	Diff Output	Differential transmit signal, channel B, lane 4, positive
BB29	A_PETn4	Diff Output	Differential transmit signal, channel A, lane 4, negative
BC1	 A_PERn4	Diff Input	Differential receive signal, channel A, lane 4, negative
BC35	B_PERp4	Diff Input	Differential receive signal, channel B, lane 4, positive
BD13	GND	Ground	Ground
BD17	VCC2	Power	3.3 V Supply Voltage
BD20	VCC2	Power	3.3 V Supply Voltage
BD22	GND	Ground	Ground
BD32	GND	Ground	Ground
BD4	GND	Ground	Ground
BE2	GND	Ground	Ground
BE34	GND	Ground	Ground
BE34 BF1	GND	Ground	Ground
BF35	GND	Ground	Ground
0100		Ground	

NAME

A_PETp5

PIN

NO.

BG26

Table 5-1. Pin Functions (continued) TYPE DESCRIPTION Diff Output Differential transmit signal, channel A, lane 5, positive Diff Output Differential transmit signal, channel B, lane 5, negative

	- <u>-</u>	-		
BG7	B_PETn5	Diff Output	Differential transmit signal, channel B, lane 5, negative	
BH2	A_PERp5	Diff Input	Differential receive signal, channel A, lane 5, positive	
BH34	B_PERn5	Diff Input	Differential receive signal, channel B, lane 5, negative	
BJ10	B_PETp5	Diff Output	Differential transmit signal, channel B, lane 5, positive	
BJ29	A_PETn5	Diff Output	Differential transmit signal, channel A, lane 5, negative	
BK1	A_PERn5	Diff Input	Differential receive signal, channel A, lane 5, negative	
BK35	B_PERp5	Diff Input	Differential receive signal, channel B, lane 5, positive	
BL13	GND	Ground	Ground	
BL17	VCC2	Power	3.3 V Supply Voltage	
BL20	VCC2	Power	3.3 V Supply Voltage	
BL22	GND	Ground	Ground	
BL32	GND	Ground	Ground	
BL4	GND	Ground	Ground	
BM2	GND	Ground	Ground	
BM34	GND	Ground	Ground	
BN1	GND	Ground	Ground	
BN35	GND	Ground	Ground	
BP26	A_PETp6	Diff Output	Differential transmit signal, channel A, lane 6, positive	
BP7	B_PETn6	Diff Output	Differential transmit signal, channel B, lane 6, negative	
BR2	A_PERn6	Diff Input	Differential receive signal, channel A, lane 6, negative	
BR34	B_PERp6	Diff Input	Differential receive signal, channel B, lane 6, positive	
BT10	B_PETp6	Diff Output	Differential transmit signal, channel B, lane 6, positive	
BT29	A_PETn6	Diff Output	Differential transmit signal, channel A, lane 6, negative	
BU1	A_PERp6	Diff Input	Differential receive signal, channel A, lane 6, positive	
BU35	B_PERn6	Diff Input	Differential receive signal, channel B, lane 6, negative	
BV13	GND	Ground	Ground	
BV17	VCC2	Power	3.3 V Supply Voltage	
BV20	VCC2	Power	3.3 V Supply Voltage	
BV22	GND	Ground	Ground	
BV32	GND	Ground	Ground	
BV4	GND	Ground	Ground	
BW2	GND	Ground	Ground	
BW34	GND	Ground	Ground	
BY1	GND	Ground	Ground	
BY35	GND	Ground	Ground	
CA26	A_PETp7	Diff Output	Differential transmit signal, channel A, lane 7, positive	
CA7	B_PETn7	Diff Output	Differential transmit signal, channel B, lane 7, negative	
CB2	A_PERn7	Diff Input	Differential receive signal, channel A, lane 7, negative	
CB34	B_PERp7	Diff Input	Differential receive signal, channel B, lane 7, positive	
CC10	B_PETp7	Diff Output	Differential transmit signal, channel B, lane 7, positive	
CC29	A_PETn7	Diff Output	Differential transmit signal, channel A, lane 7, negative	
CD1	A_PERp7	Diff Input	Differential receive signal, channel A, lane 7, positive	
CD35	B_PERn7	Diff Input	Differential receive signal, channel B, lane 7, negative	

PIN		TYPE	5-1. Pin Functions (continued) DESCRIPTION
NO.	NAME		
CE13	GND	Ground	Ground
CE17	VCC2	Power	3.3 V Supply Voltage
CE20	VCC3	Power	3.3 V Supply Voltage
CE22	GND	Ground	Ground
CE32	GND	Ground	Ground
CE4	GND	Ground	Ground
CE4 CF2	GND	Ground	Ground
CF2 CF34	GND		
		Ground	Ground
CG1	GND	Ground	Ground
CG35	GND	Ground	Ground
CH26	A_PETp8	Diff Output	Differential transmit signal, channel A, lane 8, positive
CH7	B_PETn8	Diff Output	Differential transmit signal, channel B, lane 8, negative
CJ2	A_PERp8	Diff Input	Differential receive signal, channel A, lane 8, positive
CJ34	B_PERn8	Diff Input	Differential receive signal, channel B, lane 8, negative
CK10	B_PETp8	Diff Output	Differential transmit signal, channel B, lane 8, positive
СК29	A_PETn8	Diff Output	Differential transmit signal, channel A, lane 8, negative
CL1	A_PERn8	Diff Input	Differential receive signal, channel A, lane 8, negative
CL35	B_PERp8	Diff Input	Differential receive signal, channel B, lane 8, positive
CM13	GND	Ground	Ground
CM17	VCC3	Power	3.3 V Supply Voltage
CM20	VCC3	Power	3.3 V Supply Voltage
CM22	GND	Ground	Ground
CM32	GND	Ground	Ground
CM4	GND	Ground	Ground
CN2	GND	Ground	Ground
CN34	GND	Ground	Ground
CP1	GND	Ground	Ground
CP35	GND	Ground	Ground
CR26	A_PETp9	Diff Output	Differential transmit signal, channel A, lane 9, positive
CR7	B_PETn9	Diff Output	Differential transmit signal, channel B, lane 9, negative
CT2	A_PERp9	Diff Input	Differential receive signal, channel A, lane 9, positive
CT34	B_PERn9	Diff Input	Differential receive signal, channel B, lane 9, negative
CU10	B_PETp9	Diff Output	Differential transmit signal, channel B, lane 9, positive
CU29	A_PETn9	Diff Output	Differential transmit signal, channel A, lane 9, negative
CV1	A_PERn9	Diff Input	Differential receive signal, channel A, lane 9, negative
CV35	B_PERp9	Diff Input	Differential receive signal, channel B, lane 9, positive
CW13	GND	Ground	Ground
CW17	VCC3	Power	3.3 V Supply Voltage
CW20	VCC3	Power	3.3 V Supply Voltage
CW22	GND	Ground	Ground
CW32	GND	Ground	Ground
CW32 CW4	GND	Ground	Ground
CYV4 CY2	GND	Ground	Ground
CY34	GND	Ground	Ground

Table 5-1. Pir	Functions	(continued)
	I FUIICUOIIS	(continueu)

PIN		TYPE	DESCRIPTION
NO.	NAME	-	
DA1	GND	Ground	Ground
DA35	GND	Ground	Ground
DB26	A_PETp10	Diff Output	Differential transmit signal, channel A, lane 10, positive
DB20	B_PETn10	Diff Output	Differential transmit signal, channel B, lane 10, negative
DC2	A_PERn10	Diff Input	Differential receive signal, channel A, lane 10, negative
DC34	B_PERp10	Diff Input	Differential receive signal, channel B, lane 10, positive
DC34		· ·	
DD10 DD29	B_PETp10	Diff Output	Differential transmit signal, channel B, lane 10, positive
	A_PETn10	Diff Output	Differential transmit signal, channel A, lane 10, negative
DE1	A_PERp10	Diff Input	Differential receive signal, channel A, lane 10, positive
DE35	B_PERn10	Diff Input	Differential receive signal, channel B, lane 10, negative
DF13	GND	Ground	Ground
DF17	VCC3	Power	3.3 V Supply Voltage
DF20	VCC3	Power	3.3 V Supply Voltage
DF22	GND	Ground	Ground
DF32	GND	Ground	Ground
DF4	GND	Ground	Ground
DG2	GND	Ground	Ground
DG34	GND	Ground	Ground
DH1	GND	Ground	Ground
DH35	GND	Ground	Ground
DJ26	A_PETp11	Diff Output	Differential transmit signal, channel A, lane 11, positive
DJ7	B_PETn11	Diff Output	Differential transmit signal, channel B, lane 11, negative
DK2	A_PERn11	Diff Input	Differential receive signal, channel A, lane 11, negative
DK34	B_PERp11	Diff Input	Differential receive signal, channel B, lane 11, positive
DL10	B_PETp11	Diff Output	Differential transmit signal, channel B, lane 11, positive
DL29	A_PETn11	Diff Output	Differential transmit signal, channel A, lane 11, negative
DM1	A_PERp11	Diff Input	Differential receive signal, channel A, lane 11, positive
DM35	B_PERn11	Diff Input	Differential receive signal, channel B, lane 11, negative
DN13	GND	Ground	Ground
DN17	VCC3	Power	3.3 V Supply Voltage
DN20	VCC4	Power	3.3 V Supply Voltage
DN22	GND	Ground	Ground
DN32	GND	Ground	Ground
DN4	GND	Ground	Ground
DP2	GND	Ground	Ground
DP34	GND	Ground	Ground
DR1	GND	Ground	Ground
DR35	GND	Ground	Ground
DT26	A PETp12	Diff Output	Differential transmit signal, channel A, lane 12, positive
DT7	B_PETn12	Diff Output	Differential transmit signal, channel B, lane 12, negative
DU2	A_PERp12	Diff Input	Differential receive signal, channel A, lane 12, negative
DU2 DU34	B_PERn12	Diff Input	Differential receive signal, channel B, lane 12, negative
		-	
DV10	B_PETp12	Diff Output	Differential transmit signal, channel B, lane 12, positive
DV29	A_PETn12	Diff Output	Differential transmit signal, channel A, lane 12, negative

PIN			DESCRIPTION
NO.	NAME		
DW1	A PERn12	Diff Input	Differential receive signal, channel A, lane 12, negative
DW35	B PERp12	Diff Input	Differential receive signal, channel B, lane 12, positive
DY13	GND	Ground	Ground
DY17	VCC4	Power	3.3 V Supply Voltage
DY20	VCC4	Power	3.3 V Supply Voltage
DY22	GND	Ground	Ground
DY32	GND	Ground	Ground
DY4	GND	Ground	Ground
EA2	GND	Ground	Ground
EA34	GND	Ground	Ground
EB1	GND	Ground	Ground
EB35	GND	Ground	Ground
EC26	A_PETp13	Diff Output	Differential transmit signal, channel A, lane 13, positive
EC20	B PETn13	Diff Output	Differential transmit signal, channel B, lane 13, negative
ED2		· ·	Differential receive signal, channel A, lane 13, positive
	A_PERp13	Diff Input	
ED34	B_PERn13	Diff Input	Differential receive signal, channel B, lane 13, negative
EE10	B_PETp13	Diff Output	Differential transmit signal, channel B, lane 13, positive
EE29	A_PETn13	Diff Output	Differential transmit signal, channel A, lane 13, negative
EF1	A_PERn13	Diff Input	Differential receive signal, channel A, lane 13, negative
EF35	B_PERp13	Diff Input	Differential receive signal, channel B, lane 13, positive
EG13	GND	Ground	Ground
EG17	VCC4	Power	3.3 V Supply Voltage
EG20	VCC4	Power	3.3 V Supply Voltage
EG22	GND	Ground	Ground
EG32	GND	Ground	Ground
EG4	GND	Ground	Ground
EH2	GND	Ground	Ground
EH34	GND	Ground	Ground
EJ1	GND	Ground	Ground
EJ35	GND	Ground	Ground
EK26	A_PETp14	Diff Output	Differential transmit signal, channel A, lane 14, positive
EK7	B_PETn14	Diff Output	Differential transmit signal, channel B, lane 14, negative
EL2	A_PERn14	Diff Input	Differential receive signal, channel A, lane 14, negative
EL34	B_PERp14	Diff Input	Differential receive signal, channel B, lane 14, positive
EM10	B_PETp14	Diff Output	Differential transmit signal, channel B, lane 14, positive
EM29	A_PETn14	Diff Output	Differential transmit signal, channel A, lane 14, negative
EN1	A_PERp14	Diff Input	Differential receive signal, channel A, lane 14, positive
EN35	B_PERn14	Diff Input	Differential receive signal, channel B, lane 14, negative
EP13	GND	Ground	Ground
EP17	VCC4	Power	3.3 V Supply Voltage
EP20	VCC4	Power	3.3 V Supply Voltage
EP22	GND	Ground	Ground
EP32	GND	Ground	Ground
EP4	GND	Ground	Ground

Table 5-1. Pin Functions (continued)					
PIN		TYPE	DESCRIPTION		
NO.	NAME				
ER2	GND	Ground	Ground		
ER34	GND	Ground	Ground		
ET1	GND	Ground	Ground		
ET35	GND	Ground	Ground		
EU26	A_PETp15	Diff Output	Differential transmit signal, channel A, lane 15, positive		
EU7	B_PETn15	Diff Output	Differential transmit signal, channel B, lane 15, negative		
EV2	A_PERn15	Diff Input	Differential receive signal, channel A, lane 15, positive		
EV34	B_PERp15	Diff Input	Differential receive signal, channel B, lane 15, positive		
EW10	B_PETp15	Diff Output	Differential transmit signal, channel B, lane 15, negative		
EW29	A_PETn15	Diff Output	Differential transmit signal, channel A, lane 15, negative		
EY1	A_PERp15	Diff Input	Differential receive signal, channel A, lane 15, positive		
EY35	B_PERn15	Diff Input	Differential receive signal, channel B, lane 15, negative		
FA15	GND	Ground	Ground		
FA32	GND	Ground	Ground		
FB2	GND	Ground	Ground		
FB34	GND	Ground	Ground		
FC19	GND	Ground	Ground		
FC23	GND	Ground	Ground		
FC25	GND	Ground	Ground		
FC28	GND	Ground	Ground		
FC3	GND	Ground	Ground		
FC6	GND	Ground	Ground		
FC9	GND	Ground	Ground		
FD1	GND	Ground	Ground		
FD35	GND	Ground	Ground		
FE2	N/C	—	No internal connection.		
FE34	N/C	—	No internal connection.		
FF11	RSVD2	—	Reserved for future use. No internal connection.		
FF14	GND	Ground	Ground		
FF18	RSVD6	—	Reserved for future use. No internal connection.		
FF21	GND	Ground	Ground		
FF24	MODE	Input	5-level input strap pin. Sets device control configuration modes. The pin can be exercised at device power up or in normal operation mode. L1: SMBus/I2C Primary Mode - device control configuration is read from external EEPROM. When the device has finished reading from the EEPROM successfully, it will drive the ALL_DONE_N pin LOW. SMBus/I2C secondary operation is available in this mode before, during or after EEPROM reading. Note during EEPROM reading if the external SMBus/I2C primary wants to access the device registers it must support arbitration. To set the pin for L1 pull-down with 2.062 k Ω ±10% resistor. L2: SMBus/I2C Secondary Mode – device control configuration is done by an external controller with SMBus/I2C primary. To set the pin for L1 pull-down with 18.75 k Ω ±10% resistor. L0, L3 and L4: RESERVED – TI internal test modes.		

PIN TYPE DESCRIPTION			DESCRIPTION
NO.	NAME		
FF27	ALL_DONE#	Output	 EEPROM loading is done. Active low 3.3 V open drain output pin. The pin can be left unconnected. In <i>SMBus/I2C Primary Mode</i>: Indicates the completion of a valid EEPROM register load operation. External pullup resistor such as 4.7 kΩ required for operation. High: External EEPROM load failed or incomplete Low: External EEPROM load successful and complete In <i>SMBus/I2C secondary</i>: The pin is High-Z.
FF30	B_ADDR1_15-8	Input	5-level input strap pins as defined in Table 7-2. Sets SMBus/I2C secondary address according to Table 7-1 and Table 7-3.
FF33	PD_3-0	Input	3.3 V LVCMOS input. Implements device power-down /reset according to Table 7-1.
FF5	A_ADDR0_15-8	Input	5-level input strap pins as defined in Table 7-2. Sets SMBus/I2C secondary address according to Table 7-1 and Table 7-3.
FF8	PD_15-12	Input	3.3 V LVCMOS input. Implements device power-down /reset according to Table 7-1.
FG1	N/C	-	No internal connection.
FG35	N/C	—	No internal connection.
FH2	N/C	_	No internal connection.
FH34	N/C	—	No internal connection.
FJ12	GND	Ground	Ground
FJ16	RSVD5	—	Reserved for future use. No internal connection.
FJ19	GND	Ground	Ground
FJ23	RSVD1	Input	TI internal use. Leave unconnected.
FJ25	READ_EN_#	Input	Initiate EEPROM load. Active low 3.3 V LVCMOS input In <i>SMBus/I2C Primary Mode</i> : After device power up, when the pin is low, it initiates the EEPROM read function. Once EEPROM read is complete (indicated by ALL_DONE# asserted low), this pin can be held low for normal device operation. During the EEPROM load process the device's signal path is disabled. In <i>SMBus/I2C Secondary</i> : In these modes the pin is not used. The pin can be left floating. The pin has internal 1-MΩ weak pulldown resistor.
FJ28	B_ADDR0_15-8	Input	5-level input strap pins as defined in Table 7-2. Sets SMBus/I2C secondary address according to Table 7-1 and Table 7-3.
FJ3	A_ADDR1_15-8	Input	5-level input strap pins as defined in Table 7-2. Sets SMBus/I2C secondary address according to Table 7-1 and Table 7-3.
FJ31	PD_7-4	Input	3.3 V LVCMOS input. Implements device power-down /reset according to Table 7-1.
FJ6	PD_11-8	Input	3.3 V LVCMOS input. Implements device power-down /reset according to Table 7-1.
FJ9	RSVD0	Input	TI internal use. Leave unconnected.

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
VCC _{ABSMAX}	Supply Voltage (VCC)	-0.5	4.0	V
VIO _{CMOS,ABSMAX}	3.3 V LVCMOS and Open Drain I/O voltage	-0.5	4.0	V
VIO _{5LVL,ABSMAX}	5-level Input I/O voltage	-0.5	2.75	V
VIO _{HS-RX,ABSMAX}	High-speed I/O voltage (RXnP, RXnN)	-0.5	3.2	V
VIO _{HS-TX,ABSMAX}	High-speed I/O voltage (TXnP, TXnN)	-0.5	2.75	V
T _{J,ABSMAX}	Junction temperature		150	°C
T _{stg}	Storage temperature range	-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD and Latchup Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	
V _(ESD) Electrostatic discharge		Charged device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±500	V
V _(Signal+)	Positive signal pin latch-up	Signal pin test, per JESD78F class II, immunity level A (all signal pins)	+100	
V	Nogativo signal nin latch un	Signal pin test, per JESD78F class II, immunity level A (all signal pins except RX pins)	-100	mA
V _(Signal-)		Signal pin test, per JESD78F class II, immunity level B, annex A flow 1F (RX pins are connected through 75nF - 265 nF capacitors) ⁽³⁾	-100	

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as ±2 kV may actually have higher performance.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

(3) Per annex A flow 1F, negative pulse immunity on RX pins is –50 mA without series capacitors.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN	NOM	MAX	UNIT
vcc	Supply voltage, VCC to GND	DC plus AC power should not exceed these limits	3.0	3.3	3.6	V
		DC to <50 Hz, sinusoidal ¹			250	mVpp
		50 Hz to 500 kHz, sinusoidal ¹			100	mVpp
N _{VCC}	Supply noise tolerance	500 kHz to 2.5 MHz, sinusoidal ¹			33	mVpp
		Supply noise, >2.5 MHz, sinusoidal ¹			10	mVpp
T _{RampVCC}	VCC supply ramp time	From 0 V to 3.0 V	0.150		100	ms
TJ	Operating junction temperature		-40		120	°C
PW _{LVCMOS}	Minimum pulse width required for the device to detect a valid signal on LVCMOS inputs	PD1/0, and READ_EN_N	200			μs
VCC _{SMBUS}	SMBus/I ² C SDA and SCL Open Drain Termination Voltage	Supply voltage for open drain pull-up resistor			3.6	V
F _{SMBus}	SMBus/I ² C clock (SCL) frequency in secondary mode		10		400	kHz

6.3 Recommended Operating Conditions (continued)

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM MAX	UNIT
VID _{LAUNCH}	Source differential launch amplitude	800	1200	mVpp
DR	Data rate	1	16	Gbps

6.4 Thermal Information

		DSPR16	
	THERMAL METRIC ⁽¹⁾	NJX, 64 Pins	UNIT
R _{0JA-High K}	Junction-to-ambient thermal resistance	17.4	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	6.5	°C/W
R _{θJB}	Junction-to-board thermal resistance	6.1	°C/W
Ψ _{JT}	Junction-to-top characterization parameter	3.6	°C/W
Ψ _{JB}	Junction-to-board characterization parameter	5.9	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	°C/W

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report.

6.5 DC Electrical Characteristics

over operating free-air temperature and voltage range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
Power							
P _{ACT}	Device active power	32-channels (16-lanes), EQ = 0-3		4.7	6.0	W	
P _{ACT}	Device active power	32-channels (16-lanes), EQ = 4-19		5.8	7.0	W	
P _{RXDET}	Device power consumption while waiting for far end receiver terminations	All channels enabled but no far end receiver detected		660		mW	
P _{STBY}	Device power consumption in standby power mode	All channels disabled		92		mW	
Control IO					I		
V _{OH}	High level output voltage	$R_{pull-up}$ = 4.7 kΩ (SDA, SCL, ALL_DONE_N pins)	2.1			V	
V _{OL}	Low level output voltage	I _{OL} = –4 mA (SDA, SCL, ALL_DONE_N pins)			0.4	V	
I _{IH}	Input high leakage current	V _{Input} = VCC, (SCL, SDA, PD, READ_EN_N pins)			40	μA	
IIL	Input low leakage current	V _{Input} = 0 V, (SCL, SDA, PD, READ_EN_N pins)	-40			μA	
I _{IH,FS}	Input high leakage current for fail safe input pins	V _{Input} = 3.6 V, VCC = 0 V, (SCL, SDA, PD, READ_EN_N pins)			800	μA	
C _{IN-CTRL}	Input capacitance	SDA, SCL, PD, READ_EN_Npins		1.2		pF	
5 Level IOs	(MODE, A/B_ADDR pins)				Ŀ		
I _{IH_5L}	Input high leakage current, 4 level IOs	VIN = 2.5 V			40	μA	
I _{IL_5L}	Input low leakage current for all 4 level IOs except MODE.	VIN = GND	-40			μA	
I _{IL_5L,MODE}	Input low leakage current for MODE pin	VIN = GND	-800			μA	
Receiver					I		
V _{RX-DC-CM}	RX DC Common Mode Voltage	Device is in active or standby state		1.4		V	

6.5 DC Electrical Characteristics (continued)

over operating free-air temperature and voltage range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Z _{RX-DC}	Rx DC Single-Ended Impedance			50		Ω
Z _{RX-HIGH-IMP-} DC-POS	DC input CM input impedance during Reset or power-down	Inputs are at $V_{RX-DC-CM}$ voltage	15			kΩ
Transmitter						
Z _{TX-DIFF-DC}	DC Differential Tx Impedance	Impedance of Tx during active signaling, VID,diff = 1Vpp		100		Ω
V _{TX-DC-CM}	Tx DC common mode Voltage			1.0		V
I _{TX-SHORT}	Tx Short Circuit Current	Total current the Tx can supply when shorted to GND		70		mA

6.6 High Speed Electrical Characteristics

over operating free-air temperature and voltage range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN T	YP MAX	UNIT
Receiver		1			
		50 MHz to 1.25 GHz		-20	dB
		1.25 GHz to 2.5 GHz	•	-19	dB
RL _{RX-DIFF}	Input differential return loss	2.5 GHz to 4.0 GHz		-16	dB
		4.0 GHz to 8.0 GHz		-12	dB
		50 MHz to 2.5 GHz		-15	dB
RL _{RX-CM}	Input common-mode return loss	2.5 GHz to 8.0 GHz		-15	dB
XT _{RX}	Receive-side pair-to-pair isolation	Pair-to-pair isolation (SDD21) between two adjacent receiver pairs from 10 MHz to 8 GHz.	-	-50	dB
Transmitter					
V _{TX-AC-CM-PP}	Tx AC Peak-to-Peak Common Mode Voltage	Measured with lowest EQ, flat_gain = 101		50	mVpp
V _{TX-RCV-} DETECT	Amount of Voltage change allowed during Receiver Detection	Measured while Tx is sensing whether a low-impedance Receiver is present. No load is connected to the driver output	0	600	mV
	Output differential return loss	50 MHz to 1.25 GHz	-	-19	dB
		1.25 GHz to 2.5 GHz		-17	dB
RL _{TX-DIFF}		2.5 GHz to 4.0 GHz		-12	dB
		4.0 GHz to 8.0 GHz	•	-10	dB
וח	Output Common mode return loss	50 MHz to 2.5 GHz	•	-14	dB
RL _{TX-CM}	Output Common-mode return loss	2.5 GHz to 8.0 GHz		-12	dB
XT _{TX}	Transmit-side pair-to-pair isolation	Minimum pair-to-pair isolation (SDD21) between two adjacent transmitter pairs from 10 MHz to 8 GHz.		-50	dB
C _{AC,TX}	AC coupling capacitors on transmit pins		2	220	nF
Device Datap	path	· J			
T _{PLHD/PHLD}	Input-to-output latency (propagation delay) through a data channel	For either Low-to-High or High-to-Low transition.	1	30 170	ps
L _{TX-SKEW}	Lane-to-Lane Output Skew	Between any two lanes within a single transmitter.		24	ps

6.6 High Speed Electrical Characteristics (continued)

over operating free-air temperature and voltage range (unless otherwise noted)

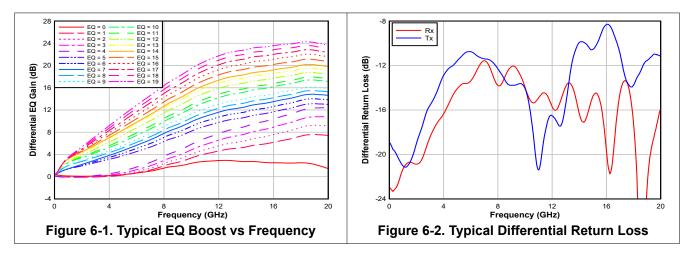
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
T _{RJ-DATA}	Additive Random Jitter with data	Jitter through redriver minus the calibration trace. 16 Gbps PRBS15. 800 mVpp-diff input swing.		100		fs
T _{RJ-INTRINSIC}	Intrinsic additive Random Jitter with clock	Jitter through redriver minus the calibration trace. 8 Ghz CK. 800 mVpp-diff input swing.		100		fs
JITTER _{TOTAL-} DATA	Additive Total Jitter with data	Jitter through redriver minus the calibration trace. 16 Gbps PRBS15. 800 mVpp-diff input swing.		2.0		ps
JITTER _{TOTAL} - INTRINSIC	Intrinsic additive Total Jitter with clock	Jitter through redriver minus the calibration trace. 8 Ghz CK. 800 mVpp-diff input swing.		1.3		ps
EQ-MIN _{8G}	EQ boost at min setting (EQ INDEX = 0)	AC gain at 8 GHz relative to gain at 100 MHz.		1.7		dB
EQ-MAX _{8G}	EQ boost at max setting (EQ INDEX = 19)	AC gain at 8 GHz relative to gain at 100 MHz.		16		dB
FLAT- GAIN _{VAR}	Flat gain variation across PVT measured at DC	Flat_gain = 000, 001, 011, 101 or 111, at minimum EQ setting. Max-Min for a single channel.	-1.0		1.0	dB
EQ- GAIN _{VAR,8G}	EQ boost variation across PVT	At 8 Ghz. Flat_gain = 101, maximum EQ setting. Max-Min for a single channel.	-1.5		1.5	dB
LINEARITY- DC	Output DC Linearity	Flat_gain = 101. 128T pattern at 2.5 Gbps.		1800		mVpp
LINEARITY- AC	Output AC Linearity	Flat_gain = 101. 1T pattern at 16 Gbps.		1000		mVpp

6.7 SMBUS/I2C Timing Charateristics

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP MA	X UNIT			
Secondary Mode								
t _{SP}	Pulse width of spikes which must be suppressed by the input filter			ţ	i0 ns			
t _{HD-STA}	Hold time (repeated) START condition. After this period, the first clock pulse is generated		0.6		μs			
t _{LOW}	LOW period of the SCL clock		1.3		μs			
T _{HIGH}	HIGH period of the SCL clock		0.6		μs			
t _{SU-STA}	Set-up time for a repeated START condition		0.6		μs			
t _{HD-DAT}	Data hold time		0		μs			
T _{SU-DAT}	Data setup time		0.1		μs			
t _r	Rise time of both SDA and SCL signals	Pull-up resistor = 4.7 k Ω , Cb = 10pF		120	ns			
t _f	Fall time of both SDA and SCL signals	Pull-up resistor = 4.7 k Ω , Cb = 10pF		2	ns			
t _{SU-STO}	Set-up time for STOP condition		0.6		μs			
t _{BUF}	Bus free time between a STOP and START condition		1.3		μs			
t _{VD-DAT}	Data valid time			0	.9 µs			
t _{VD-ACK}	Data valid acknowledge time			0	.9 µs			
C _b	Capacitive load for each bus line			40	00 pF			

6.7 SMBUS/I2C Timing Charateristics (continued)


over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Primary Mo	de					
f _{SCL-M}	SCL clock frequency	MODE = L1 (Primary Mode)		303		kHz
t _{LOW-M}	SCL low period			1.90		μs
T _{HIGH-M}	SCL high period			1.40		μs
t _{SU-STA-M}	Set-up time for a repeated START condition			2		μs
t _{HD-STA-M}	Hold time (repeated) START condition. After this period, the first clock pulse is generated			1.5		μs
T _{SU-DAT-M}	Data setup time			1.4		μs
t _{HD-DAT-M}	Data hold time			0.5		μs
t _{R-M}	Rise time of both SDA and SCL signals	Pull-up resistor = 4.7 k Ω , Cb = 10pF		120		ns
T _{F-M}	Fall time of both SDA and SCL signals	Pull-up resistor = 4.7 k Ω , Cb = 10pF		2		ns
t _{su-sто-м}	Stop condition setup time			1.5		μs
EEPROM T	iming					
T _{EEPROM}	EEPROM configuration load time	Time to assert ALL_DONE_N after READ_EN_N has been asserted.		30		ms
T _{POR}	Time to first SMBus access	Power supply stable after initial ramp. Includes initial power-on reset time.		50		ms

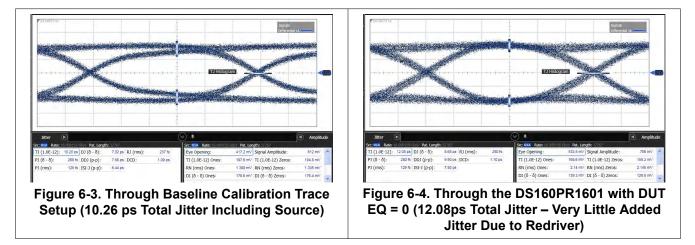
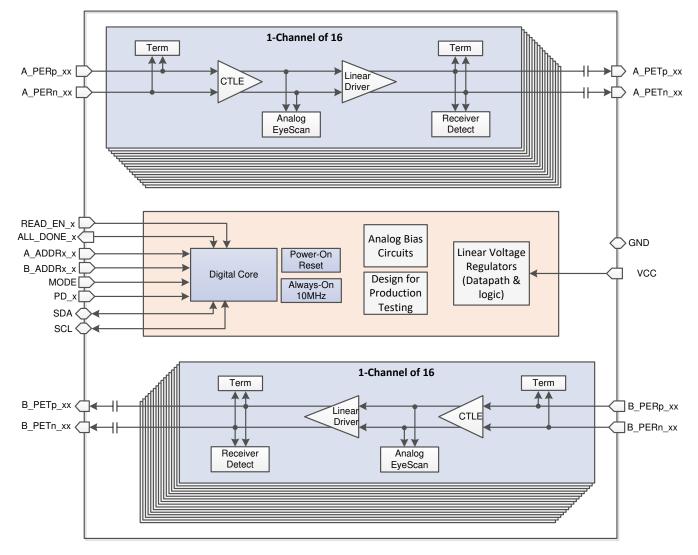

6.8 Typical Characteristics

Figure 6-1 shows typical EQ gain curves versus frequency for different EQ settings for the DS160PR1601. Figure 6-2 shows typical differential return loss for Rx and Tx pins.

6.9 Typical Jitter Characteristics

Figure 6-3 and Figure 6-4 show eye diagrams through calibration traces, and through the DS160PR1601 respectively. Note: DS160PR1601 adds little to no random or deterministic jitter.

7 Detailed Description


7.1 Overview

The DS160PR1601 is a 16-lane multi-rate linear repeater with integrated signal conditioning. The device's signal channels operate independently from one another. Each channel includes a continuous-time linear equalizer (CTLE) and a linear output driver, which together compensate for a lossy transmission channel between the source transmitter and the final receiver. The linearity of the data path is specifically designed to preserve any transmit equalization while keeping receiver equalization effective.

The DS160PR1601 can be configured two different ways:

SMBus/I²C Primary mode – device control configuration is read from external EEPROM. When the DS160PR1601 has finished reading from the EEPROM successfully, it will drive the ALL_DONE_N pin LOW. SMBus/I²C secondary operation is available in this mode before, during or after EEPROM reading. Note during EEPROM reading if the external SMBus/I²C primary wants to access DS160PR1601 registers it must support arbitration. The mode is prefferred when software implementation is not desired.

SMBus/I²C Secondary mode – provides most flexibility. Requires a SMBus/I²C primary device to configure DS160PR1601 though writing to its secondary address.

7.2 Functional Block Diagram

7.3 Control and Configuration Interface

7.3.1 Pin Configurations for Lanes

The DS160PR1601 has 16 data lanes with 16-Tx channels and 16-Rx channels. The data channels are grouped for I2C configurations and PCIe state machine grouping as shown in Figure 7-1 using xADDRx and PDx pins. Table 7-1 defines the channel grouping.

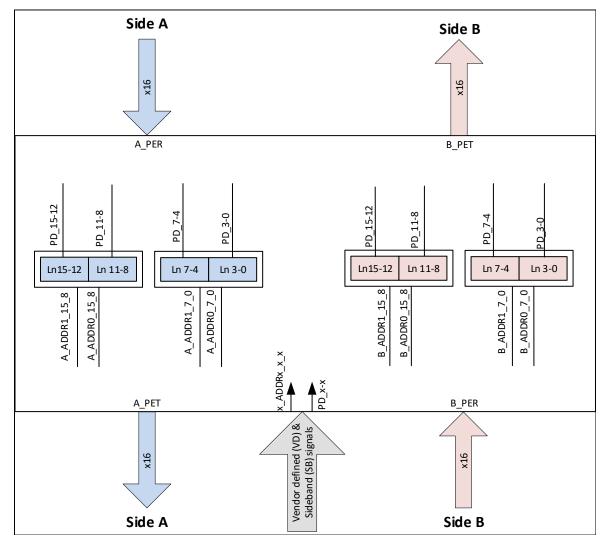


Figure 7-1. Pin Configurations for Lanes

Pin Name	Description
PD_15-12 PD_11-8 PD_7-4 PD_3-0	 Active in all device control modes. The pin has internal 1-MΩ weak pulldown resistor. The pin triggers PCIe RX detect state machine when toggled. High: power down Low: power up normal operation. Each PD pin sets control for a bank of 8 lanes (4 from Side A and 4 from Side B) to provide flexibility for x4 and x8 bifurcation: PD_15-12: Lanes 15-12, both Side A and B
	 PD_11-8: Lanes 11-8, both Side A and B PD_7-4: Lanes 7-4, both Side A and B PD_3-0: Lanes 3-0, both Side A and B PCIe hot plug insertion implementation varies from system to system. One way to implement will be to use CEM interface PRSNT# signal. For PCIe x16 application all four PD signals can be shorted together and connect to CEM interface PRSNT# signal.
A_ADDR1_15-8 A_ADDR0_15-8 A_ADDR1_7-0 A_ADDR0_7-0 B_ADDR1_15-8 B_ADDR0_15-8 B_ADDR1_7-0 B_ADDR0_7-0	 5-level input pins as implemented by pull-down resistor on the pin according to Table 7-2. These pins are sampled at device power-up only. Sets SMBus / I2C secondary address according to Table 7-3. Each set of ADDR1 and ADDR0 pins defines the addresses for bank of 8 lanes: A_ADDR1_15-8, A_ADDR0_15-8: Lanes 15-8 of Side A A_ADDR1_7-0, A_ADDR0_7-0: Lanes 7-0 of Side A B_ADDR1_15-8, B_ADDR0_15-8: Lanes 15-8 of Side B B_ADDR1_7-0, B_ADDR0_7-0: Lanes 7-0 of Side B

Definition of DDy and yADDDy

Table 7 4

7.3.1.1 Five-Level Control Inputs

The has 5-level inputs pins that are used to control the configuration of the device. These 5-level inputs use a resistor divider to help set the 5 valid levels and provide a wider range of control settings. External resistors must be of 10% tolerance or better. The pins are sampled at power-up only.

LEVEL	SETTING						
LO	1 kΩ to GND						
L1	8.25 kΩ to GND						
L2	24.9 kΩ to GND						
L3	75 kΩ to GND						
L4	F (Float)						

Table 7-2. 5-level Control Pin Settings

7.3.2 SMBUS/I²C Register Control Interface

If MODE = L2 (SMBus / I^2C secondary control mode), the DS160PR1601 is configured through a standard I^2C or SMBus interface that may operate up to 400 kHz. The device also can be configured through loading settings from EEPROM. The SMBus / I^2C primary / secondary address of the DS160PR1601 is determined by the pin strap settings on the xADDRx pins. Note addresses to access differental channels are different. To illustrate A_ADDR1_15_8 and A_ADDR0_15_8 sets the primary / secondary address for bank of lanes 15-12 and 11-8 of Side A, while A_ADDR1_7_0 and A_ADDR0_7_0 sets for bank of lanes 7-4 and 3-0 of Side A. B side address is also set similarly. Table 7-3 show SMBus / I^2C primary / secondary addresses.

x_ADDR1_x x_ADDR0_x		7-bit address Upper (for Side A) / Lower (for Side B) 4 Lanes of each Bank	7-bit address Lower (for Side A) / Upper (for Side B) 4 Lanes of each Bank				
LO	LO	0x19	0x18				
LO	L1	0x1B	0x1A				
LO	L2	0x1D	0x1C				
LO	L3	0x1F	0x1E				
LO	L4	Reserved	Reserved				
L1	LO	0x21	0x20				
L1	L1	0x23	0x22				
L1	L2	0x25	0x24				
L1	L3	0x27	0x26				
L1	L4	Reserved	Reserved				
L2	LO	0x29	0x28				
L2	L1	0x2B	0x2A				
L2	L2	0x2D	0x2C				
L2	L3	0x2F	0x2E				
L2	L4	Reserved	Reserved				
L3	LO	0x31	0x30				
L3	L1	0x33	0x32				
L3	L2	0x35	0x34				
L3	L3	0x37	0x36				
L3	L4	Reserved	Reserved				

Table 7-3. SMBus / I²C Primary / Secondary Address

In SMBus/l²C modes the SCL, SDA pins must be pulled up to a 3.3 V supply with a pull-up resistor. The value of the resistor depends on total bus capacitance. 4.7 k Ω is a good first approximation for a bus capacitance of 50 pF.

Refer to the DS160PR1601 Programming Guide for detail register sets and control configuration procedures.

7.3.3 SMBus/I²C Primary Mode Configuration (EEPROM Self Load)

The DS160PR1601 can also be configured by reading from EEPROM. To enter into this mode MODE pin must be set to L1. The EEPROM load operation only happens once after device's initial power-up. If the DS160PR1601 is configured for SMBus primary mode, it will remain in the SMBus IDLE state until the READ_EN_N pin is asserted to LOW. After the READ_EN_N pin is driven LOW, the DS160PR1601 becomes an SMBus primary and attempts to self-configure by reading device settings stored in an external EEPROM (SMBus 8-bit address 0xA0). When the DS160PR1601 has finished reading from the EEPROM successfully, it will drive the ALL_DONE_N pin LOW. SMBus/I²C secondary operation is available in this mode before, during or after EEPROM reading. Note during EEPROM reading if the external SMBus/I²C primary wants to access DS160PR1601 registers it must support arbitration.

When designing a system for using the external EEPROM, the user must follow these specific guidelines:

- EEPROM size of 2 kb (256 × 8-bit) is recommended.
- Set MODE = L1, configure for SMBus primary mode
- The external EEPROM device address byte must be 0xA0 and capable of 400 kHz operation at 3.3 V supply
- In SMBus/I²C modes the SCL, SDA pins must be pulled up to a 3.3 V supply with a pull-up resistor. The value
 of the resistor depends on total bus capacitance. 4.7 kΩ is a good first approximation for a bus capacitance of
 10 pF.

Refer to the DS160PR1601 Programming Guide for detail register sets and control configuration procedures.

7.4 Feature Description

7.4.1 Linear Equalization

The DS160PR1601 receivers feature a continuous-time linear equalizer (CTLE) that applies high-frequency boost and low-frequency attenuation to help equalize the frequency-dependent insertion loss effects of the passive channel. The device has 20 available equalization boost settings that can be set though SMBus/I²C registers. Table 7-4 shows the device EQ settings.

Refer to the *DS160PR1601 Programming Guide* for detail register sets and control configuration procedures. **Table 7-4. Equalization Control Settings**

	Equalization Control Settings
EQ INDEX	TYPICAL EQ BOOST (dB) at 8 GHz
0	2.0
1	3.5
2	5.0
3	7.0
4	8.0
5	9.0
6	9.8
7	10.2
8	10.8
9	11.2
10	11.8
11	12.2
12	12.8
13	13.2
14	13.8
15	14.2
16	14.8
17	15.2
18	15.6
19	16.0

7.4.2 Flat-Gain

The overall datapath Flat-Gain (DC and AC) of the DS160PR1601 can be programmed through SMBus/I²C registers. Table 7-5 shows five available flat gain settings to configure the DS160PR1601 datapaths.

Table 7-5. Flat Gain Settings

Flat_gain	SETTING
000	-6 dB
001	-4 dB
011	-2 dB
101	0 dB (default and recommended)
111	+2dB

The default recommendation for most systems will be 0 dB.

The Flat-Gain and equalization of the DS160PR1601 must be set such that the output signal swing at DC and high frequency does not exceed the DC and AC linearity ranges of the devices, respectively.

Refer to the DS160PR1601 Programming Guide for detail register sets and control configuration procedures.

7.4.3 Analog EyeScan

The DS160PR1601 implements Analog EyeScan feature that enables monitoring of the internal eye for each data channel after the receiver CTLE stage. It provides a measure of vertical eye opening estimation using signal statistics. The Analog EyeScan feature is useful for redriver tuning to choose CTLE and Flat-Gain settings to optimize an electrical link between a transmitter and a receiver. This is also useful for hardware engineers for initial system bring-up and at field system diagnostics. The EyeScan feature can be invoked by I²C or SMBus interface.

7.4.4 Receiver Detect State Machine

The DS160PR1601 deploys an RX detect state machine that governs the RX detection cycle as defined in the PCI express specifications. At power up, after a manually triggered event through PDx pins, or writing to the relevant I²C/SMBus register, the redriver determines whether or not a valid PCI express termination is present at the far end of the link. The Rx Detect Registers provide additional flexibility for system designers to appropriately set the device in desired mode through SMBus/I²C control interface.

7.4.5 Integrated Capacitors

The DS160PR1601 has intergrated AC coupling caps for all TX pins (64 count). The capacitors are 220 nF each with 2.5 V voltage rating and 20% tolerance.

7.5 Device Functional Modes

7.5.1 Active PCIe Mode

The device is in normal operation with PCIe state machine enabled through SMBus/I²C registers. In this mode PDx pins are driven low in a system (for example by PCIE connector "PRSNT" or inverted "PERST" signal). In this mode, the DS160PR1601 redrives and equalizes PCIe RX or TX signals to provide better signal integrity.

7.5.2 Active Buffer Mode

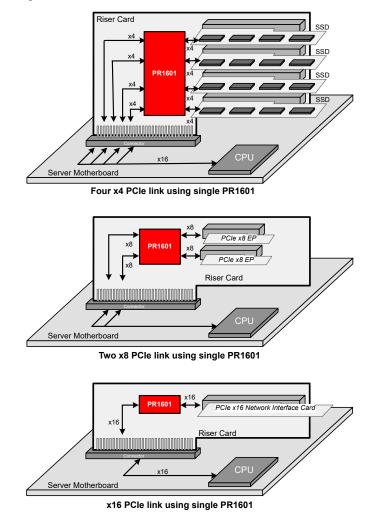
The device is in normal operation with PCIe state machine disabled through I²C registers. This mode is recommended for non-PCIe use cases. In this mode the device is working as a buffer to provide linear equalization to improve signal integrity.

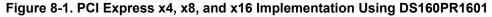
7.5.3 Standby Mode

The device is in standby mode invoked by PDx pins. In this mode, the device is in standby mode conserving power.

8 Application and Implementation

Note


Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.


8.1 Application Information

The DS160PR1601 is a high-speed linear repeater which extends the reach of differential channels impaired by loss from transmission media like PCBs and cables. It can be deployed in a variety of different systems. The following sections outline typical applications and their associated design considerations.

8.2 Typical Applications

The DS160PR1601 is a 16-lane protocol agnostic PCI Express linear redriver. Its protocol agnostic nature allows it to be used in PCI Express x4, x8, and x16 applications. Figure 8-1 shows how single DS160PR1601 can be used in four x4, two x8 or single x16 links.

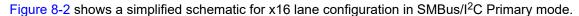
8.2.1 PCIe x16 Lane Configuration

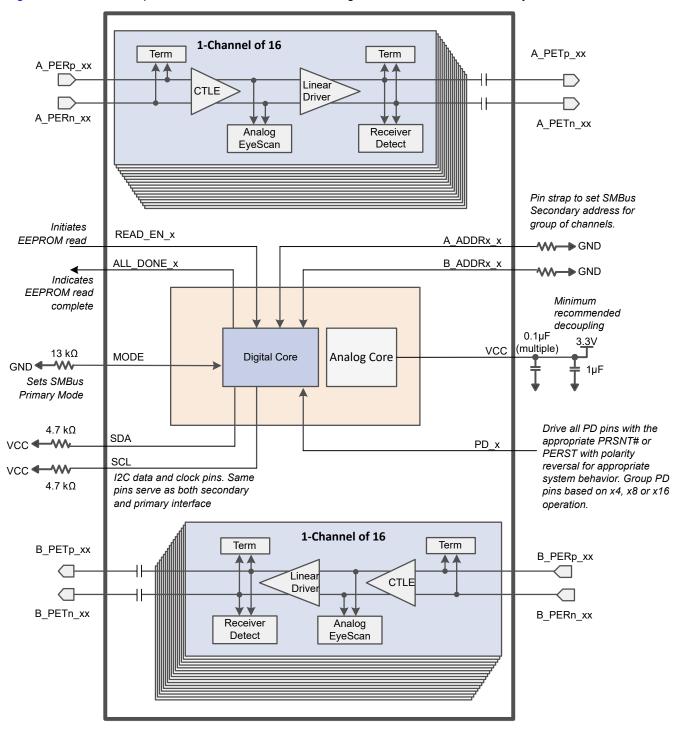
The DS160PR1601 can be used in server or motherboard applications to boost transmit and receive signals to increase the reach of the host or root complex processor to PCI Express slots or connectors. The section outlines detailed procedure and design requirement for a typical PCIe x16 lane confuration. However, the design recommendations can also be used in x4 or x8 lane configuration.

8.2.1.1 Design Requirements

As with any high-speed design, there are many factors which influence the overall performance. The following list indicates critical areas for consideration during design.

- Use 85 Ω impedance traces when interfacing with PCIe CEM connectors. Length matching on the P and N traces should be done on the single-end segments of the differential pair.
- Use a uniform trace width and trace spacing for differential pairs.
- Back-drill connector vias and signal vias to minimize stub length.
- Use reference plane vias to ensure a low inductance path for the return current.


8.2.1.2 Detailed Design Procedure


In PCIe Gen 3.0 and 4.0 applications, the specification requires Rx-Tx (of root-complex and endpoint) link training to establish and optimize signal conditioning settings. In link training, the Rx partner requests a series of FIR – preshoot and deemphasis coefficients (10 Presets) from the Tx partner. The Rx partner includes 7-levels of CTLE followed by a single tap DFE. The link training would pre-condition the signal, with an equalized link between the root-complex and endpoint resulting an optimized link. Note that there is no link training in PCIe Gen 1.0 (2.5 Gbps) or PCIe Gen 2.0 (5.0 Gbps) applications.

The DS160PR1601 is designed with linear datapth to pass the Tx Preset signaling (by root complex and end point) onto the Rx (of root complex and end point) for a PCIe link to train and optimize for the Rx equalization settings. The linear redriver helps extend the PCB trace reach distance by boosting the attenuated signals with its own equalization, which allows the Rx to recover signals more easily. The device must be placed in between the Tx and Rx (of root complex and end point) such a way that signal swing of both upstream and downstream signals stays within the linearity range of the device. Adjustments to the DS160PR1601 EQ setting should be performed based on the channel loss to optimize the eye opening in the Rx partner. The available EQ gain settings are provided in Table 7-4. For most PCIe systems the default Flat gain setting of 0 dB (flat_gain = 101) would be sufficient.

The DS160PR1601 can be optimized for a given system utilizing its two configuration modes – SMBus/I²C Primary mode and SMBus/I²C Secondary mode. In SMBus/I²C modes the SCL, SDA pins must be pulled up to a 3.3 V supply with a pull-up resistor. The value of the resistor depends on total bus capacitance. 4.7 k Ω is a good first approximation for a bus capacitance of 10 pF.

8.2.1.3 Application Curves

The DS160PR1601 is a linear redriver that can be used to extend channel reach of a PCIe link. Normally, PCIe-compliant Tx and Rx are equipped with signal-conditioning functions and can handle channel losses of up to 28 dB at 16 Gbps (8 GHz) PCIe 4.0. With the DS160PR1601, the total channel loss between a PCIe root complex and an end point can be extended up to 42 dB (16 dB additional) at 8 GHz.

To demonstrate the reach extension capability of the DS160PR1601, two comparative setups are constructed. In first setup as shown in Figure 8-3 there is no redriver in the PCIe 5.0 link. Figure 8-4 shows eye diagram at the end of the link using SigTest. In second setup as shown in Figure 8-5, the DS160PR1601 is inserted in the middle to extend link reach. Figure 8-6 shows SigTest eye diagram.

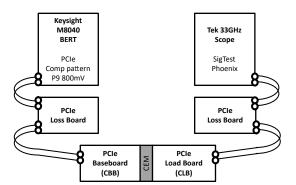
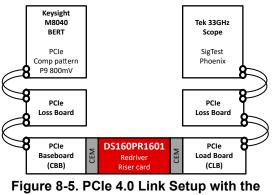



Figure 8-3. PCIe 4.0 Link Baseline Setup Without Redriver – Link Elements

DS160PR1601 – the Link Elements

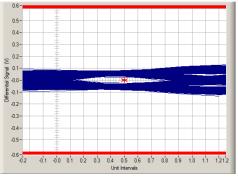


Figure 8-4. PCIe 4.0 link Baseline Setup Without Redriver – Eye Diagram Using SigTest

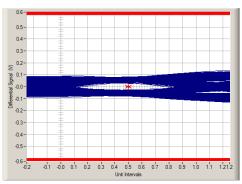


Figure 8-6. PCIe 4.0 Link Setup with the DS160PR1601 – Eye Diagram Using SigTest

Table 8-1 summarizes the PCIe 4.0 links without and with the DS160PR1601. The illustration shows that redriver is capable of \cong 16 dB (additional) reach extension at PCIe 4.0 speed with EQ = 15 and flat_gain = 101. Note: actual reach extension depends on various signal integrity factors. It is recommended to run signal integrity simulations with all the components in the link to get any guidance.

Setup	Pre Channel Loss	Post Channel Loss	Total Loss	Eye at BER 1E-12	SigTest Pass?						
Baseline – no DUT	—	—	≅27 dB	29 ps, 48 mV	Pass						
With DUT (DS160PR1601)	≅25 dB	≅18 dB	≅43 dB	30 ps, 55 mV	Pass						

Table 8-1. PCIe 4.0 Reach Extension Using the DS160PR1601

8.3 Power Supply Recommendations

Follow these general guidelines when designing the power supply:

- 1. The power supply should be designed to provide the operating conditions outlined in the recommended operating conditions section in terms of DC voltage, AC noise, and start-up ramp time.
- 2. The DS160PR1601 does not require any special power supply filtering, such as ferrite beads, provided that the recommended operating conditions are met. Only standard supply decoupling is required. Typical supply decoupling consists of adequate numbers of 0.1 μF capacitors near device VCC pins, several 1.0 μF and 10.0 bulk capacitors on VCC power plane. The local decoupling (0.1 μF) capacitors must be connected as close to the VCC pins as possible and with minimal path to the DS160PR1601 ground pad. For more specific guidance, refer to DS320PR1601RSC-EVM User's Guide.

8.4 Layout

8.4.1 Layout Guidelines

The following guidelines should be followed when designing the layout:

- 1. Decoupling capacitors should be placed as close to the VCC pins as possible. Placing the decoupling capacitors directly underneath the device is recommended if the board design permits.
- 2. High-speed differential signals TXnP/TXnN and RXnP/RXnN should be tightly coupled, skew matched, and impedance controlled.
- 3. Vias should be avoided when possible on the high-speed differential signals. When vias must be used, take care to minimize the via stub, either by transitioning through most/all layers or by back drilling.
- 4. GND relief can be used (but is not required) beneath the high-speed differential signal pads to improve signal integrity by counteracting the pad capacitance.
- 5. GND vias should be placed directly beneath the device connecting the GND plane attached to the device to the GND planes on other layers. This has the added benefit of improving thermal conductivity from the device to the board.

8.4.2 Layout Example

Figure 8-7. Top Layer View of TI PCIe Riser Card Using DS160PR1601 with CEM Connectors

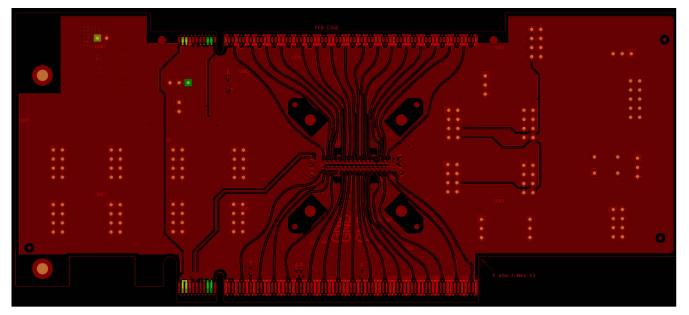


Figure 8-8. Bottom Layer View of TI PCIe Riser Card Using DS160PR1601 with CEM Connectors

9 Device and Documentation Support

9.1 Documentation Support

9.1.1 Related Documentation

For related documentation, see the following:

• Texas Instruments, DS320PR1601RSC-EVM User's Guide

9.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

9.3 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

9.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments. All trademarks are the property of their respective owners.

9.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

9.6 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

10 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
DS160PR1601ZDGR	ACTIVE	NFBGA	ZDG	354	1000	RoHS & Green	SNAGCU	Level-3-260C-168 HR	-40 to 85	PR16X	Samples
DS160PR1601ZDGT	ACTIVE	NFBGA	ZDG	354	250	RoHS & Green	SNAGCU	Level-3-260C-168 HR	-40 to 85	PR16X	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

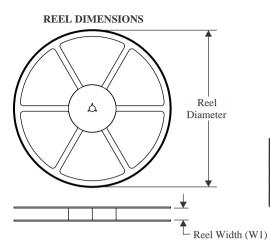
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

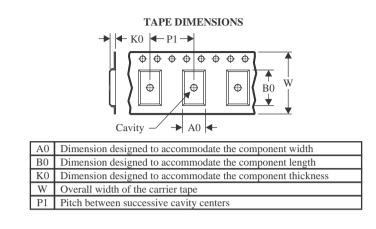
⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

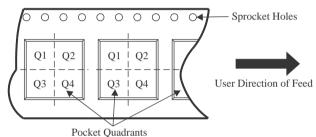
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com

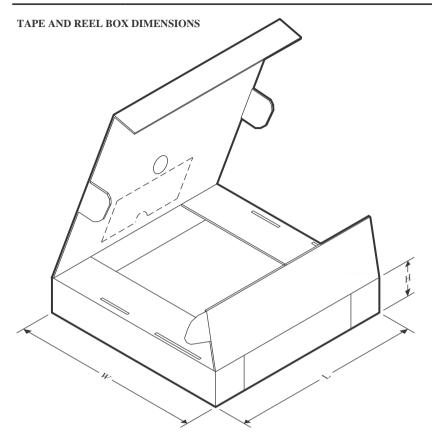

PACKAGE OPTION ADDENDUM


10-Feb-2023


www.ti.com

TAPE AND REEL INFORMATION

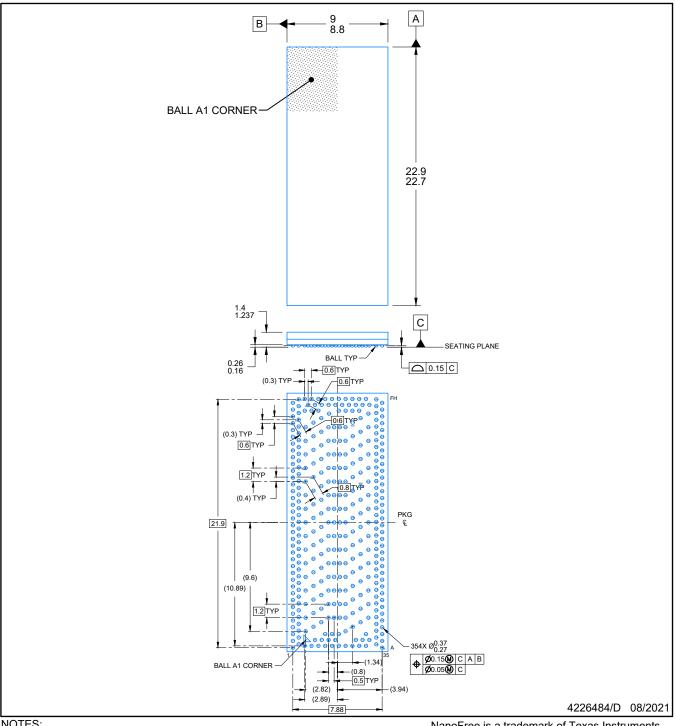
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
DS160PR1601ZDGR	NFBGA	ZDG	354	1000	330.0	44.4	9.5	23.4	2.0	16.0	44.0	Q1
DS160PR1601ZDGT	NFBGA	ZDG	354	250	330.0	44.4	9.5	23.4	2.0	16.0	44.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

23-Jun-2023


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
DS160PR1601ZDGR	NFBGA	ZDG	354	1000	336.6	336.6	53.2
DS160PR1601ZDGT	NFBGA	ZDG	354	250	336.6	336.6	53.2

ZDG0354A

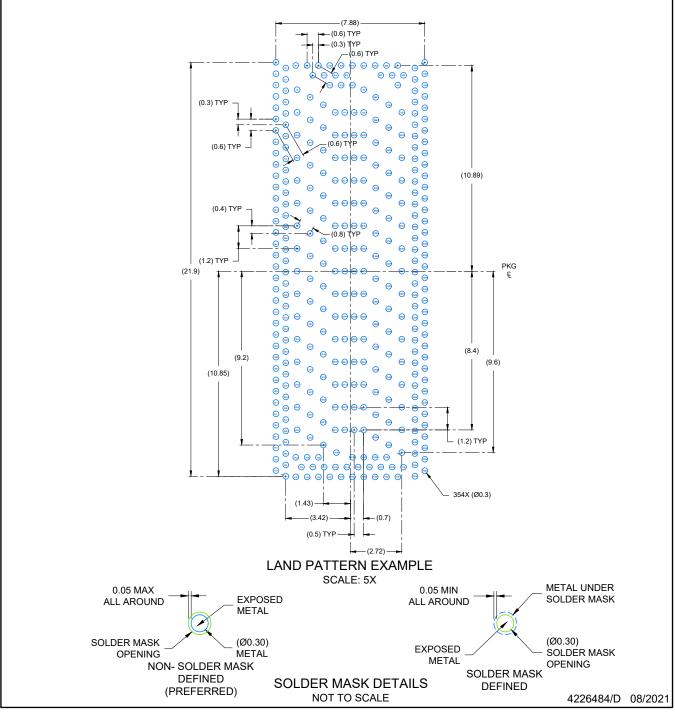
PACKAGE OUTLINE NFBGA - 1.4 mm max height

PLASTIC BALL GRID ARRAY

NOTES:

NanoFree is a trademark of Texas Instruments.

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing 1. per ASME Y14.5M.
- 2. This drawing is subject to change without notice.



ZDG0354A

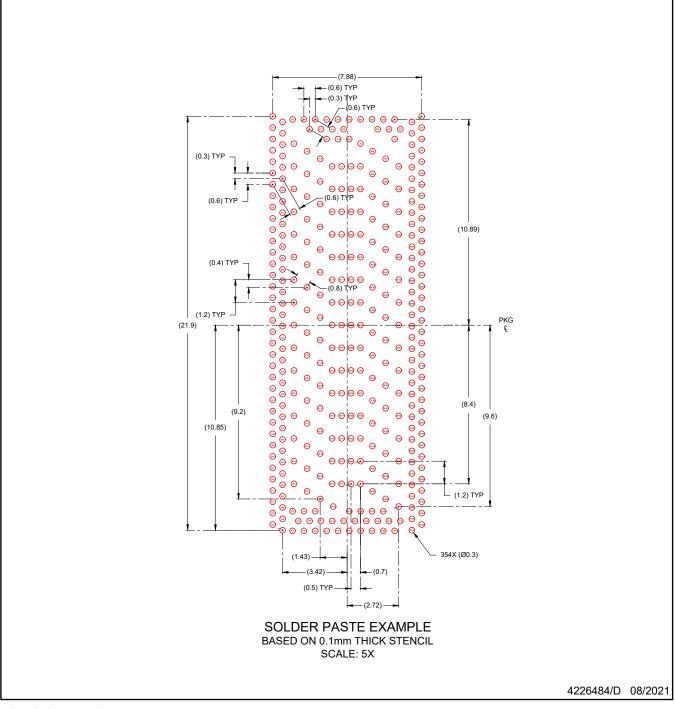
EXAMPLE BOARD LAYOUT

NFBGA - 1.4 mm max height

PLASTIC BALL GRID ARRAY

NOTES: (continued)

3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. Refer to Texas Instruments Literature number SNVA009 (www.ti.com/lit/snva009).



ZDG0354A

EXAMPLE STENCIL DESIGN

NFBGA - 1.4 mm max height

PLASTIC BALL GRID ARRAY

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated