INAx191 40-V, Bidirectional, Ultra-Precise Current Sense Amplifier With picoamp IB and ENABLE in WCSP Package

1 Features
- Low power:
 - Supply voltage, V_S: 1.7 V to 5.5 V
 - Shutdown current: 100 nA (max INA191)
 - Quiescent current: 43 μA at 25 °C (INA191)
- Low input bias currents: 100 pA (typical)
 (enables microamp current measurement)
- Bidirectional current measurement (INA2191)
- Accuracy:
 - ±0.25% max gain error (A2 to A5 devices)
 - 7-ppm/°C gain drift (maximum)
 - ±12 μV (maximum) offset voltage
 - 0.13-μV/°C offset drift (maximum)
- Wide common-mode voltage: –0.2 V to +40 V
- Gain options:
 - INA191A1: 25 V/V
 - INA191A2: 50 V/V
 - INA191A3: 100 V/V
 - INA191A4: 200 V/V
 - INA191A5: 500 V/V
- Packages:
 - INA191: 0.895-mm² DSBGA
 - INA2191: 1.79-mm² DSBGA

2 Applications
- Notebook computers
- Cell phones
- Battery-powered devices
- Telecom equipment
- Power management
- Battery chargers

3 Description
The INAx191 is a low-power, voltage-output, current-shunt monitor (also called a current-sense amplifier) that is commonly used for overcurrent protection, precision-current measurement for system optimization, or in closed-loop feedback circuits. This device can sense drops across shunts at common-mode voltages from –0.2 V to +40 V, independent of the supply voltage. The low input bias current of the INAx191 permits the use of larger current-sense resistors, and thus provides accurate current measurements in the μA range. Five fixed gains are available: 25 V/V, 50 V/V, 100 V/V, 200 V/V, or 500 V/V. The low offset voltage of the zero-drift architecture extends the dynamic range of the current measurement, and allows for smaller sense resistors with lower power loss while still providing accurate current measurements.

The INA191 operates from a single 1.7-V to 5.5-V power supply, drawing a maximum of 65 μA of supply current when enabled and only 100 nA when disabled. The device is specified over the operating temperature range of –40 °C to +125 °C, and offered in a DSBGA-6 (INA191) and DSBGA-12 (INA2191) packages.

Device Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>INA191</td>
<td>DSBGA (6)</td>
<td>1.17 mm × 0.765 mm</td>
</tr>
<tr>
<td>INA2191</td>
<td>DSBGA (12)</td>
<td>1.17 mm × 1.53 mm</td>
</tr>
</tbody>
</table>

(1) For all available packages, see the package option addendum at the end of the data sheet.

Simplified Schematic

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.
4 Revision History

Changes from Revision B (February 2021) to Revision C (August 2021) .. 1
• Changed data sheet status from Production Mixed to Production Data ..
• Changed INA191 and INA2191 device status from Advanced Information to Production Data 1
• Added INA191 and INA2191 test conditions to gain error, gain error drift, swing to V_S, and enable logic parameters .. 6
• Changed INA191 and INA2191 test conditions for output leakage disabled parameters 6
• Changed INA2191 values for the quiescent current parameters for production data 6
• Changed the Typical Characteristics section ... 8
• Changed INA2191 information in the Low Quiescent Current With Output Enable section 16
• Changed INA2191 information in the Unidirectional Mode section ... 18
• Changed Figure 8-3 and the filtering information in the Signal Conditioning section 24

Changes from Revision A (April 2019) to Revision B (February 2021) ... 1
• Changed data sheet status from Production Data to Production Mixed ...
• Added Advanced Information INA2191 device to the data sheet ... 1

Changes from Revision * (February 2019) to Revision A (April 2019) .. 1
• Changed device from advanced information to production data (active) ..

Product Folder Links: INA191 INA2191
5 Pin Configuration and Functions

![INA191 YFD Package 6-Pin DSBGA Top View](image)

Table 5-1. Pin Functions (INA191)

<table>
<thead>
<tr>
<th>PIN NAME</th>
<th>PIN NO.</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENABLE</td>
<td>B3</td>
<td>Digital input</td>
<td>Enable pin. When this pin is driven to VS, the device is on and functions as a current sense amplifier. When this pin is driven to GND, the device is off, the supply current is reduced, and the output is placed in a high-impedance state. This pin must be driven externally, or connected to VS if not used.</td>
</tr>
<tr>
<td>GND</td>
<td>B2</td>
<td>Analog</td>
<td>Ground.</td>
</tr>
<tr>
<td>IN+</td>
<td>A1</td>
<td>Analog input</td>
<td>Current-shunt monitor positive input. For high-side applications, connect this pin to the bus voltage side of the sense resistor. For low-side applications, connect this pin to the load side of the sense resistor.</td>
</tr>
<tr>
<td>IN–</td>
<td>B1</td>
<td>Analog input</td>
<td>Current-shunt monitor negative input. For high-side applications, connect this pin to the load side of the sense resistor. For low-side applications, connect this pin to the ground side of the sense resistor.</td>
</tr>
<tr>
<td>OUT</td>
<td>A3</td>
<td>Analog output</td>
<td>This pin provides an analog voltage output that is the amplified voltage difference from the IN+ to the IN– pins.</td>
</tr>
<tr>
<td>VS</td>
<td>A2</td>
<td>Analog</td>
<td>Power supply, 1.7 V to 5.5 V.</td>
</tr>
</tbody>
</table>
Figure 5-2. INA2191 YBJ Package 12-Pin DSBGA Top View

Table 5-2. Pin Functions (INA2191)

<table>
<thead>
<tr>
<th>PIN</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>NO.</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>ENABLE1</td>
<td>B2</td>
<td>Digital input Enable pin for output 1. When this pin is driven to V_S, channel 1 is on and functions as a current sense amplifier. When both enable pins are driven to GND, the device is off and the supply current is reduced. This pin must be driven externally, or connected to V_S if not used.</td>
</tr>
<tr>
<td>ENABLE2</td>
<td>C2</td>
<td>Digital input Enable pin for output 2. When this pin is driven to V_S, channel 2 is on and functions as a current sense amplifier. When both enable pins are driven to GND, the device is off and the supply current is reduced. This pin must be driven externally, or connected to V_S if not used.</td>
</tr>
<tr>
<td>GND</td>
<td>D2</td>
<td>Analog Ground.</td>
</tr>
<tr>
<td>IN+1</td>
<td>A1</td>
<td>Analog input Current-shunt monitor positive input for channel 1. For high-side applications, connect this pin to the bus voltage side of the sense resistor. For low-side applications, connect this pin to the load side of the sense resistor.</td>
</tr>
<tr>
<td>IN+2</td>
<td>D1</td>
<td>Analog input Current-shunt monitor positive input for channel 2. For high-side applications, connect this pin to the bus voltage side of the sense resistor. For low-side applications, connect this pin to the load side of the sense resistor.</td>
</tr>
<tr>
<td>IN–1</td>
<td>B1</td>
<td>Analog input Current-shunt monitor negative input for channel 1. For high-side applications, connect this pin to the load side of the sense resistor. For low-side applications, connect this pin to the ground side of the sense resistor.</td>
</tr>
<tr>
<td>IN–2</td>
<td>C1</td>
<td>Analog input Current-shunt monitor negative input for channel 2. For high-side applications, connect this pin to the load side of the sense resistor. For low-side applications, connect this pin to the ground side of the sense resistor.</td>
</tr>
<tr>
<td>OUT1</td>
<td>A3</td>
<td>Analog output This pin provides an analog voltage output that is the amplified voltage difference from the IN+1 to the IN–1 pins, and is offset by the voltage applied to the REF1 pin.</td>
</tr>
<tr>
<td>OUT2</td>
<td>D3</td>
<td>Analog output This pin provides an analog voltage output that is the amplified voltage difference from the IN+2 to the IN–2 pins, and is offset by the voltage applied to the REF2 pin.</td>
</tr>
<tr>
<td>REF1</td>
<td>B3</td>
<td>Analog input Reference input for channel 1. Enables bidirectional current sensing for channel 1 with an externally applied voltage.</td>
</tr>
<tr>
<td>REF2</td>
<td>C3</td>
<td>Analog input Reference input for channel 2. Enables bidirectional current sensing for channel 2 with an externally applied voltage.</td>
</tr>
<tr>
<td>VS</td>
<td>A2</td>
<td>Analog Power supply. 1.7 V to 5.5 V.</td>
</tr>
</tbody>
</table>
6.1 Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>MAX</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_S (Supply voltage)</td>
<td>6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{IN+}, V_{IN-}</td>
<td>-42</td>
<td>42</td>
<td>V</td>
</tr>
<tr>
<td>Analog inputs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential (V_{IN+} - V_{IN-})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{IN+}, V_{IN-} with respect to GND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{ENABLE} ENABLE</td>
<td>GND – 0.3</td>
<td>6</td>
<td>V</td>
</tr>
<tr>
<td>REF, OUT</td>
<td>GND – 0.3</td>
<td>(V_S + 0.3)</td>
<td>V</td>
</tr>
<tr>
<td>Input current into any pin</td>
<td>5 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_A (Operating temperature)</td>
<td>-55</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>T_J (Junction temperature)</td>
<td>150</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>T_{stg} (Storage temperature)</td>
<td>-65</td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) V_{IN+} and V_{IN-} are the voltages at the IN+ and IN– pins, respectively.

(3) Input voltage at any pin may exceed the voltage shown if the current at that pin is limited to 5 mA.

6.2 ESD Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{ESD} Electrostatic discharge</td>
<td>±2000</td>
<td>V</td>
</tr>
<tr>
<td>Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charged-device model (CDM), per JEDEC specification JESD22-C101</td>
<td>±1000</td>
<td></td>
</tr>
</tbody>
</table>

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CM} (Common-mode input range)</td>
<td>-0.2</td>
<td>40</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{IN+}, V_{IN-} (Input pin voltage range)</td>
<td>-0.2</td>
<td>40</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_S (Operating supply voltage)</td>
<td>1.7</td>
<td>5.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{REF} (Reference pin voltage range)</td>
<td>0</td>
<td>V_S</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>T_A (Operating free-air temperature)</td>
<td>-40</td>
<td>125</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

6.4 Thermal Information

<table>
<thead>
<tr>
<th>THERMAL METRIC(1)</th>
<th>INA191</th>
<th>INA2191</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>YFD (DSBGA)</td>
<td>YBJ (DSBGA)</td>
</tr>
<tr>
<td>R_{JJA} (Junction-to-ambient thermal resistance)</td>
<td>141.4</td>
<td>94.1</td>
</tr>
<tr>
<td>$R_{JJC(top)}$ (Junction-to-case (top) thermal resistance)</td>
<td>11.1</td>
<td>0.6</td>
</tr>
<tr>
<td>R_{JJB} (Junction-to-board thermal resistance)</td>
<td>45.7</td>
<td>23.8</td>
</tr>
<tr>
<td>Ψ_{JT} (Junction-to-top characterization parameter)</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>Ψ_{JB} (Junction-to-board characterization parameter)</td>
<td>45.3</td>
<td>23.8</td>
</tr>
<tr>
<td>$R_{JJC(bot)}$ (Junction-to-case (bottom) thermal resistance)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.
6.5 Electrical Characteristics

at \(T_A = 25°C \), \(V_{\text{SENSE}} = V_{\text{IN+}} - V_{\text{IN–}} \), \(V_S = 1.8 \) V to 5.0 V, \(V_{\text{IN+}} = 12 \) V, \(V_{\text{REF}} = V_S / 2 \) (INA2191), and \(V_{\text{ENABLE}} = V_S \) (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMRR</td>
<td>Common-mode rejection ratio, RTI (^{(1)})</td>
<td>(V_{\text{IN+}} = -0.1) V to 40 V, (T_A = -40°C) to (+125°C)</td>
<td>132</td>
<td>150</td>
<td>dB</td>
</tr>
<tr>
<td>(V_{\text{OS}}) Offset voltage, RTI (^{(1)})</td>
<td>(V_S = 1.8) V</td>
<td>2.5</td>
<td>±12</td>
<td>(\mu V)</td>
<td></td>
</tr>
<tr>
<td>(\text{d}V_{\text{OS}} / \text{d}T) Offset drift, RTI</td>
<td>(T_A = -40°C) to (+125°C)</td>
<td>10</td>
<td>130</td>
<td>nV/°C</td>
<td></td>
</tr>
<tr>
<td>PSRR</td>
<td>Power-supply rejection ratio, RTI</td>
<td>(V_S = 1.7) V to 5.5 V</td>
<td>–1</td>
<td>±5</td>
<td>(\mu V/V)</td>
</tr>
<tr>
<td>(I_{\text{IB}}) Input bias current</td>
<td>(V_{\text{SENSE}} = 0) mV</td>
<td>0.1</td>
<td>3</td>
<td>nA</td>
<td></td>
</tr>
<tr>
<td>(I_{\text{IO}}) Input offset current</td>
<td>(V_{\text{SENSE}} = 0) mV</td>
<td>±0.07</td>
<td>nA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OUTPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(G) Gain</td>
<td>A1 devices</td>
<td>25</td>
<td></td>
<td></td>
<td>V/V</td>
</tr>
<tr>
<td></td>
<td>A2 devices</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A3 devices</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A4 devices</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A5 devices</td>
<td>500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(E_G) Gain error</td>
<td>(V_{\text{OUT}} = 0.1) V to (V_S - 0.1) V</td>
<td>A1 devices, INA191</td>
<td>–0.17%</td>
<td>±0.35%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A1 devices, INA2191</td>
<td>+0.05%</td>
<td>±0.25%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A2, A3, A4, A5 devices</td>
<td>–0.04%</td>
<td>±0.25%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain error drift</td>
<td>(T_A = -40°C) to (+125°C)</td>
<td>2</td>
<td>7</td>
<td>ppm/°C</td>
<td></td>
</tr>
<tr>
<td>Nonlinearity error</td>
<td>(V_{\text{OUT}} = 0.1) V to (V_S - 0.1) V</td>
<td>±0.01%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RVRR</td>
<td>Reference voltage rejection ratio</td>
<td>INA2191 only, (V_{\text{REF}} = 100) mV to (V_S - 100) mV, (T_A = -40°C) to (+125°C)</td>
<td>A1 devices</td>
<td>±2</td>
<td>±12</td>
</tr>
<tr>
<td></td>
<td>A2 devices</td>
<td>±1</td>
<td>±6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A3 devices</td>
<td>±0.5</td>
<td>±4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A4, A5 devices</td>
<td>±0.25</td>
<td>±3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum capacitive load</td>
<td>No sustained oscillation</td>
<td>1</td>
<td></td>
<td></td>
<td>nF</td>
</tr>
<tr>
<td>VOLTAGE OUTPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{SP}) Swing to (V_S) power-supply rail</td>
<td>(V_S = 1.8) V, (R_L = 10) kΩ to GND, (T_A = -40°C) to (+125°C)</td>
<td>((V_S) - 23)</td>
<td>((V_S) - 40)</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>(V_{GN}) Swing to GND</td>
<td>(V_S = 1.8) V, (R_L = 10) kΩ to GND, (T_A = -40°C) to (+125°C), (V_{\text{SENSE}} = -10) mV, (V_{\text{REF}} = 0) V (INA2191)</td>
<td>((V_{\text{GND}}) + 0.05)</td>
<td>((V_{\text{GND}}) + 1)</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>(V_{CL}) Zero current output voltage</td>
<td>(V_S = 1.8) V, (R_L = 10) kΩ to GND, (T_A = -40°C) to (+125°C), (V_{\text{SENSE}} = 0) mV, for INA2191 (V_{\text{REF}} = 0) V</td>
<td>A1, A2, A3 devices</td>
<td>((V_{\text{GND}}) + 1)</td>
<td>((V_{\text{GND}}) + 3)</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>A4 devices</td>
<td>((V_{\text{GND}}) + 2)</td>
<td>((V_{\text{GND}}) + 4)</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A5 devices</td>
<td>((V_{\text{GND}}) + 3)</td>
<td>((V_{\text{GND}}) + 7)</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>FREQUENCY RESPONSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(BW) Bandwidth</td>
<td>(C_{\text{LOAD}} = 10) pF</td>
<td>A1 devices</td>
<td>45</td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td>A2 devices</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A3 devices</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A4 devices</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A5 devices</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(SR) Slew rate</td>
<td>(V_S = 5.0) V, (V_{\text{OUT}} = 0.5) V to 4.5 V</td>
<td>0.3</td>
<td></td>
<td></td>
<td>V/μs</td>
</tr>
<tr>
<td>(t_s) Settling time</td>
<td>From current step to within 1% of final value</td>
<td>30</td>
<td></td>
<td></td>
<td>μs</td>
</tr>
</tbody>
</table>
at $T_A = 25^\circ C$, $V_{\text{SENSE}} = V_{\text{IN+}} - V_{\text{IN-}}$, $V_S = 1.8$ V to 5.0 V, $V_{\text{IN+}} = 12$ V, $V_{\text{REF}} = V_S / 2$ (INA2191), and $V_{\text{ENABLE}} = V_S$ (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOISE, RTI (1)</td>
<td>Voltage noise density</td>
<td>75</td>
<td></td>
<td></td>
<td>nV/√Hz</td>
</tr>
<tr>
<td>ENABLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{EN}</td>
<td>Leakage input current</td>
<td>0 V</td>
<td>1</td>
<td>100</td>
<td>nA</td>
</tr>
<tr>
<td>V_{IH}</td>
<td>High-level input voltage</td>
<td>$T_A = -40^\circ C$ to $+125^\circ C$</td>
<td>1.35</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>V_{IL}</td>
<td>Low-level input voltage</td>
<td>$T_A = -40^\circ C$ to $+125^\circ C$</td>
<td>0</td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>V_{HYS}</td>
<td>Hysteresis</td>
<td></td>
<td>100</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>I_{DIS}</td>
<td>Output leakage disabled</td>
<td>$V_S = 1.8$ V, $V_{\text{OUT}} = 0$ V to 1.8 V, $V_{\text{ENABLE}} = 0$ V</td>
<td>1</td>
<td>5</td>
<td>µA</td>
</tr>
<tr>
<td>I_{DIS}</td>
<td>Output leakage disabled (INA2191)</td>
<td>$V_S = 5$ V, $V_{\text{OUT}} = 0$ V to 5.0 V, $V_{\text{ENABLE}} = 0$ V</td>
<td>1</td>
<td>5</td>
<td>µA</td>
</tr>
<tr>
<td>POWER SUPPLY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_O</td>
<td>Quiescent current (INA191)</td>
<td>$V_S = 1.8$ V, $V_{\text{SENSE}} = 0$ mV</td>
<td>43</td>
<td>65</td>
<td>µA</td>
</tr>
<tr>
<td>I_O</td>
<td>Quiescent current (INA2191)</td>
<td>$V_S = 1.8$ V, $V_{\text{SENSE}} = 0$ mV, $T_A = -40^\circ C$ to $+125^\circ C$</td>
<td>85</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>I_{DIS}</td>
<td>Quiescent current disabled (INA191)</td>
<td>$V_S = 1.8$ V, $V_{\text{SENSE}} = 0$ mV (Dual Channel)</td>
<td>96</td>
<td>130</td>
<td>µA</td>
</tr>
<tr>
<td>I_{DIS}</td>
<td>Quiescent current disabled (INA191)</td>
<td>$V_S = 1.8$ V, $V_{\text{SENSE}} = 0$ mV, $T_A = -40^\circ C$ to $+125^\circ C$</td>
<td>180</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>I_{DIS}</td>
<td>Quiescent current disabled (INA2191)</td>
<td>$V_{\text{ENABLE}} < 0.4$ V, $V_{\text{SENSE}} = 0$ mV (Single Channel)</td>
<td>10</td>
<td>100</td>
<td>nA</td>
</tr>
<tr>
<td>I_{DIS}</td>
<td>Quiescent current disabled (INA2191)</td>
<td>$V_{\text{ENABLE1}} < 0.4$ V, $V_{\text{ENABLE2}} = < 0.4$ V, $V_{\text{SENSE}} = 0$ mV</td>
<td>20</td>
<td>200</td>
<td>nA</td>
</tr>
</tbody>
</table>

(1) RTI = referred-to-input.
6.6 Typical Characteristics

at \(T_A = 25 \, ^\circ C \), \(V_S = 1.8 \, V \), \(V_{IN+} = 12 \, V \), \(V_{ENABLE} = V_S \), \(V_{REF} = \text{GND} \) and all gain options (unless otherwise noted)
Figure 6-7. Gain Error Production Distribution

Figure 6-8. Gain Error vs. Temperature

Figure 6-9. Gain vs. Frequency

Figure 6-10. Power-Supply Rejection Ratio vs. Frequency

Figure 6-11. Common-Mode Rejection Ratio vs. Frequency

Figure 6-12. Output Voltage Swing vs. Output Current
Figure 6-13. Output Voltage Swing vs. Output Current

Figure 6-14. Input Bias Current vs. Common-Mode Voltage

Figure 6-15. Input Bias Current vs. Common-Mode Voltage (Shutdown)

Figure 6-16. Input Bias Current vs. Temperature

Figure 6-17. Quiescent Current vs. Temperature (INA191)

Figure 6-18. Quiescent Current vs. Temperature (INA2191)
Temperature (°C)
Quiescent Current (μA)
-50 -25 0 25 50 75 100 125 150

-50
0
50
100
150

V_S = 1.8V

V_S = 3.3V

V_S = 6V

V_{ENABLE1} = V_{ENABLE2} = V_S

V_{REF} = V_S/2

Figure 6-19. Quiescent Current vs. Temperature (INA2191)

Temperature (°C)
Quiescent Current (μA)
-50 -25 0 25 50 75 100 125 150

-30
0
30
60
90
120
150
180
210
240

V_S = 1.8V

V_S = 3.3V

V_S = 5V

V_{ENABLE} = 0 V

Figure 6-20. Quiescent Current vs. Temperature (INA191 Disabled)

Temperature (°C)
Quiescent Current (μA)
-50 -25 0 25 50 75 100 125 150

-50
0
50
100
150
200
250
300
350

V_S = 1.8V

V_S = 3.3V

V_S = 5V

V_{ENABLE1} = V_{ENABLE2} = 0 V, V_{REF} = V_S/2

Figure 6-21. Quiescent Current vs. Temperature (INA2191 Disabled)

Common-Mode Voltage (V)
Quiescent Current (μA)
-5 0 5 10 15 20 25 30 35 40

30
35
40
45
50
55
60

V_S = 1.8V

V_S = 5V

V_{REF} = V_S/2

Figure 6-22. Quiescent Current vs. Common-Mode Voltage (INA191)

Common-Mode Voltage (V)
Input-Referred Voltage Noise (nV/–Hz)
-5 0 5 10 15 20 25 30 35 40

90
95
100
105
110
115
120

V_S = 1.8V

V_S = 5V

V_{REF} = V_S/2

Figure 6-23. Quiescent Current vs. Common-Mode Voltage (INA2191)

Frequency (Hz)
Input-Referred Voltage Noise (nV/–Hz)
10
100
1k
10k
100k

10
30
50
100
200
300
500

V_S = 1.8V

V_S = 3.3V

V_S = 5.0 V

Figure 6-24. Input-Referred Voltage Noise vs. Frequency
Figure 6-25. 0.1-Hz to 10-Hz Input-Referred Voltage Noise

$V_S = 5.0 \, V$, 10-mV_pp input step

Figure 6-26. Step Response

Figure 6-27. Common-Mode Voltage Transient Response

$V_S = 5.0 \, V$, 10-mV_pp input step

Figure 6-28. Inverting Differential Input Overload Recovery

$V_S = 5.0 \, V$

Figure 6-29. Noninverting Differential Input Overload Recovery

$V_S = 5.0 \, V$, A2 device

Figure 6-30. Start-Up Response

$V_S = 5.0 \, V$, A2 device
Figure 6-31. Brownout Recovery

Figure 6-32. Enable and Disable Response

Figure 6-33. IB+ and IB– vs. Differential Input Voltage (INA191)

Figure 6-34. IB+ and IB– vs. Differential Input Voltage (INA191)

Figure 6-35. IB+ and IB– vs. Differential Input Voltage (INA2191)

Figure 6-36. IB+ and IB– vs. Differential Input Voltage (INA2191)
Figure 6-37. Output Leakage vs. Output Voltage

Output Voltage (V):

Output Leakage Current (µA):

-40°C
-25°C
-125°C

Figure 6-38. Output Leakage vs. Output Voltage

Output Voltage (V):

Output Leakage Current (µA):

-40°C
-25°C
-125°C

Figure 6-39. Output Leakage vs. Output Voltage (INA2191)

Output Voltage (V):

Output Leakage Current (µA):

-40°C
-25°C
-125°C

Figure 6-40. Output Leakage vs. Output Voltage (INA2191)

Output Voltage (V):

Output Leakage Current (µA):

-40°C
-25°C
-125°C

Figure 6-41. Output Impedance vs. Frequency

Output Impedance (Ω):

Frequency (Hz):

Gain Variants:

A1
A2
A3
A4
A5

Figure 6-42. Channel Separation vs. Frequency (INA2191)

Channel Separation (dB):

Frequency (Hz):

-40°C
-25°C
-125°C

V_S = 5.0 V, V_ENABLE = 0 V, V_REF = 2.5 V, A1, A2, A3 devices

V_S = 5.0 V, V_ENABLE = 0 V, A1, A2, A3 devices

V_S = 5.0 V, V_CM = 0 V, V_REF = V_S / 2
7 Detailed Description

7.1 Overview

The INAx191 is a low bias current, 40-V common-mode, current-sensing amplifier with an enable pin. When disabled, the output goes to a high-impedance state, and the supply current draw is reduced to less than 0.1 µA per channel. The INAx191 is intended for use in either low-side and high-side current-sensing configurations where high accuracy and low current consumption are required. The INAx191 is a specially designed current-sensing amplifier, that accurately measure voltages developed across current-sensing resistors on common-mode voltages that far exceed the supply voltage. Current can be measured on input voltage rails as high as 40 V, with a supply voltage \(V_S \) as low as 1.7 V.

7.2 Functional Block Diagram

![INA191 Diagram](image1)

Figure 7-1. INA191 Diagram

![INA2191 Diagram](image2)

Figure 7-2. INA2191 Diagram
7.3 Feature Description

7.3.1 Precision Current Measurement

The INAx191 provides accurate current measurements over a wide dynamic range. The high accuracy of the device is attributable to the low gain error and offset specifications. The offset voltage of the INAx191 is less than 12 µV. In this case, the low offset improves the accuracy at light loads when V_{IN+} approaches V_{IN-}.

Another advantage of low offset is the ability to use a lower-value shunt resistor that reduces the power loss in the current-sense circuit, and improves the power efficiency of the end application.

The maximum gain error of the INAx191 is specified to be within 0.25% for most gain options. As the sensed voltage becomes much larger than the offset voltage, the gain error becomes the dominant source of error in the current-sense measurement. When the device monitors currents near the full-scale output range, the total measurement error approaches the value of the gain error.

7.3.2 Low Input Bias Current

The INAx191 is different from many current-sense amplifiers because this device offers very low input bias current. The low input bias current of the INAx191 has three primary benefits.

The first benefit is the reduction of the current consumed by the device in both the enabled and disabled states. Classical current-sense amplifier topologies typically consume tens of microamps of current at the inputs. For these amplifiers, the input current is the result of the resistor network that sets the gain and additional current to bias the input amplifier. To reduce the bias current to near zero, the INAx191 uses a capacitively coupled amplifier on the input stage, followed by a difference amplifier on the output stage.

The second benefit of low bias current is the ability to use input filters to reject high-frequency noise before the signal is amplified. In a traditional current-sense amplifier, the addition of input filters comes at the cost of reduced accuracy. However, as a result of the low bias currents, input filters have little effect on the measurement accuracy of the INAx191.

The third benefit of low bias current is the ability to use a larger current-sense resistor. This ability allows the device to accurately monitor currents as low as 1 µA.

7.3.3 Low Quiescent Current With Output Enable

The device features low quiescent current (I_Q), while still providing sufficient small-signal bandwidth to be usable in most applications. The quiescent current of the INA191 is only 43 µA (typical), while providing a small-signal bandwidth of 35 kHz in a gain of 100. The low I_Q and good bandwidth allow the device to be used in many portable electronic systems without excessive drain on the battery. Because many applications only need to periodically monitor current, the INAx191 features an enable pin for each output that turns off the device until needed. When in the disabled state, the INAx191 typically draws 10 nA of total supply current per channel.

7.3.4 Bidirectional Current Monitoring (INA2191 Only)

The INA2191 can sense current flow through a sense resistor in both directions. The bidirectional current-sensing capability is achieved by applying a voltage at the REF pin to offset the desired output voltage. A positive differential voltage sensed at the inputs results in an output voltage that is greater than the applied reference voltage. Likewise, a negative differential voltage at the inputs results in output voltage that is less than the applied reference voltage. The output voltage of the current-sense amplifier is shown in Equation 1. Equation variables such as V_{OUT} are valid for either V_{OUT1} or V_{OUT2} depending on which channel used.

$$V_{OUT} = (I_{LOAD} \times R_{SENSE} \times \text{GAIN}) + V_{REF}$$

where

- I_{LOAD} is the load current to be monitored.
- R_{SENSE} is the current-sense resistor.
- GAIN is the gain option of the selected device.
- V_{REF} is the voltage applied to the REF pin.
7.3.5 High-Side and Low-Side Current Sensing

The INAx191 supports input common-mode voltages from –0.2 V to +40 V. Because of the internal topology, the common-mode range is not restricted by the power-supply voltage (V_S). The ability to operate with common-mode voltages greater or less than V_S allows the INAx191 to be used in high-side and low-side current-sensing applications, as shown in Figure 7-3.

![Figure 7-3. High-Side and Low-Side Sensing Connections](image)

7.3.6 High Common-Mode Rejection

The INAx191 uses a capacitively coupled amplifier on the front end. Therefore, dc common-mode voltages are blocked from downstream circuits, resulting in very high common-mode rejection. The common-mode rejection of the INAx191 is 150 dB (typical). The ability to reject changes in the DC common-mode voltage allows the INAx191 to monitor both high- and low-voltage rail currents with very little change in the offset voltage.

7.3.7 Rail-to-Rail Output Swing

The INAx191 supports linear current-sensing operation with the output close to the supply rail and ground. The maximum specified output swing to the positive rail is $V_S - 40$ mV, and the maximum specified output swing to GND is only GND + 1 mV with –10 mV of differential overdrive. For cases where the sense current is zero, the swing to ground is determined by the zero current output specification. The value of the zero current output voltage can differ from the specified value depending on the common-mode voltage, supply voltage, and output load. The close-to-rail output swing maximizes the usable output range, particularly when operating the device from a 1.8-V supply.
7.4 Device Functional Modes

7.4.1 Normal Operation

The INAx191 is in normal operation when the following conditions are met:

- The power-supply voltage \(V_S \) is between 1.7 V and 5.5 V.
- The common-mode voltage \(V_{CM} \) is within the specified range of \(-0.2 \) V to +40 V.
- The maximum differential input signal times the gain plus \(V_{REF} \) is less than the positive output voltage swing \(V_{SP} \). \(V_{REF} = 0 \) V for INA191.
- The ENABLE pin is driven or connected to \(V_S \).
- The minimum differential input signal times the gain plus \(V_{REF} \) is greater than the swing to GND, \(V_ZL \) (see Section 7.3.7). \(V_{REF} = 0 \) V for INA191.

During normal operation, this device produces an output voltage that is the amplified representation of the difference voltage from \(IN+ \) to \(IN– \) plus the voltage applied to the REF pin. For devices without a REF pin the REF voltage is 0 V.

7.4.2 Unidirectional Mode

The INA191 always monitors current flow in a single direction, however, the INA2191 can be configured to monitor current flowing in one direction (unidirectional) or in both directions (bidirectional) depending on how the REF pin is connected. The most common case is unidirectional where the output is set to ground when no current is flowing by connecting the REF pin to ground, as shown in Figure 7-4. When the current flows from the bus supply to the load, the input voltage from \(IN+ \) to \(IN– \) increases and causes the output voltage at the OUT pin to increase. Pin names such as OUT apply to either OUT1 or OUT2 in the diagrams below depending on which channel is used.

![Figure 7-4. Typical Unidirectional Application](image)

The linear range of the output stage is limited by how close the output voltage can approach ground under zero input conditions. The zero current output voltage of the INA2191 is very small and for most unidirectional applications the REF pin is simply grounded. However, if the measured current multiplied by the current sense resistor and device gain is less than the zero current output voltage then bias the REF pin to a convenient value above the zero current output voltage to get the output into the linear range of the device. To limit reference rejection errors, buffer the reference voltage connected to the REF pin.

A less-frequently used output biasing method is to connect the REF pin to the power-supply voltage, \(V_S \). This method results in the output voltage saturating at 40 mV less than the supply voltage when no differential input voltage is present. This method is similar to the output saturated low condition with no differential input voltage.
when the REF pin is connected to ground. The output voltage in this configuration only responds to currents that develop negative differential input voltage relative to the device IN– pin. Under these conditions, when the negative differential input signal increases, the output voltage moves downward from the saturated supply voltage. The voltage applied to the REF pin must not exceed V_S.

Another use for the REF pin in unidirectional operation is to level shift the output voltage. Figure 7-5 shows an application where the device ground is set to a negative voltage so currents biased to negative supplies, as seen in optical networking cards, can be measured. The GND of the INA2191 can be set to negative voltages, as long as the inputs do not violate the common-mode range specification and the voltage difference between V_S and GND does not exceed 5.5 V. In this example, the output of the INA2191 is fed into a positive-biased ADC. By grounding the REF pin, the voltages at the output will be positive and not damage the ADC. To make sure the output voltage never goes negative, the supply sequencing must be the positive supply first, followed by the negative supply.

![Diagram of using the REF Pin to Level-Shift Output Voltage](image)

Figure 7-5. Using the REF Pin to Level-Shift Output Voltage
7.4.3 Bidirectional Mode (INA2191 Only)

The INA2191 is a dual channel bidirectional current-sense amplifier capable of measuring currents through a resistive shunt in two directions. This bidirectional monitoring is common in applications that include charging and discharging operations where the current flowing through the resistor can change directions.

![Diagram](image)

Figure 7-6. Bidirectional Application

The ability to measure this current flowing in both directions is achieved by applying a voltage to the REF pin, as shown in Figure 7-6. The voltage applied to REF (V_{REF}) sets the output state that corresponds to the zero-input level state. The output then responds by increasing above V_{REF} for positive differential signals (relative to the IN– pin) and responds by decreasing below V_{REF} for negative differential signals. This reference voltage applied to the REF pin can be set anywhere between 0 V to V_{S}. For bidirectional applications, V_{REF} is typically set at V_{S}/2 for equal signal range in both current directions. In some cases, V_{REF} is set at a voltage other than V_{S}/2, like when the bidirectional current and corresponding output signal do not need to be symmetrical.

7.4.4 Input Differential Overload

If the differential input voltage (V_{IN+} – V_{IN–}) times gain (plus V_{REF} for INA2191) exceeds the voltage swing specification, the INAx191 drives the output as close as possible to the positive supply or ground, and does not provide accurate measurement of the differential input voltage. If this input overload occurs during normal circuit operation, then reduce the value of the shunt resistor or use a lower-gain version with the chosen sense resistor to avoid this mode of operation. If a differential overload occurs in a fault event, then the output of the INAx191 returns to the expected value approximately 40 µs after the fault condition is removed. When the differential voltage exceeds approximately 300 mV, the differential input impedance reduces to 3.3 kΩ, and results in a rapid increase in bias currents as the differential voltage increases. A 3.3-kΩ resistance exists between IN+ and IN– during a differential overload condition; therefore, currents flowing into the IN+ pin flow out of the IN– pin. An increase in bias currents during a input differential overload occurs even with the device is powered down. Input differential overloads less than the absolute maximum voltage rating do not damage the device or result in an output inversion.

7.4.5 Shutdown

The INAx191 features an active-high ENABLE pin(s) that shuts down the device when pulled to ground. When the device is shut down, the quiescent current is reduced to 10 nA per channel (typical), the input bias currents are further reduced, and the disabled output goes to a high-impedance state. When disabled, the low quiescent and input currents extend the battery lifetime when the current measurement is not needed. When the ENABLE pin is driven above the enable threshold voltage, the device turns back on. When enabled, the typical output settling time is 130 µs.
The output of the INA191 goes to a high-impedance state when disabled; therefore, it is possible to connect multiple outputs of the INA191 together to a single ADC or measurement device, as shown in Figure 7-7. When connected in this way, enable only one INA191 at a time, and make sure both devices have the same supply voltage. Using the INA2191 with the same approach as shown in Figure 7-7 provides the capability to monitor two currents with a single device.

Figure 7-7. Multiplexing Multiple Devices With the ENABLE Pin
8 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

8.1 Application Information

The INA191 amplifies the voltage developed across a current-sensing resistor as current flows through the resistor to the load or ground.

8.1.1 Basic Connections

Figure 8-1 shows the basic connections of the INA191. Connect the input pins (IN+ and IN–) as closely as possible to the shunt resistor to minimize any resistance in series with the shunt resistor. The ENABLE pin must be controlled externally or connected to VS if not used.

![Basic Connections for the INA191](image)

A power-supply bypass capacitor of at least 0.1 µF is required for proper operation. Applications with noisy or high-impedance power supplies may require additional decoupling capacitors to reject power-supply noise. Connect bypass capacitors close to the device pins.
8.1.2 RSENSE and Device Gain Selection

The accuracy of any current-sense amplifier is maximized by choosing the current-sense resistor to be as large as possible. A large sense resistor maximizes the differential input signal for a given amount of current flow and reduces the error contribution of the offset voltage. However, there are practical limits as to how large the current-sense resistor can be in a given application because of the resistor size and maximum allowable power dissipation. Equation 2 gives the maximum value for the current-sense resistor for a given power dissipation budget:

\[R_{\text{SENSE}} < \frac{P_{\text{D\,MAX}}}{I_{\text{MAX}}^2} \]

(2)

where:

- \(P_{\text{D\,MAX}} \) is the maximum allowable power dissipation in \(R_{\text{SENSE}} \).
- \(I_{\text{MAX}} \) is the maximum current that flows through \(R_{\text{SENSE}} \).

An additional limitation on the size of the current-sense resistor and device gain is due to the power-supply voltage, \(V_S \), and device swing-to-rail limitations. In order to make sure that the current-sense signal is properly passed to the output, both positive and negative output swing limitations must be examined. Equation 3 provides the maximum values of \(R_{\text{SENSE}} \) and \(\text{GAIN} \) to keep the device from hitting the positive swing limitation.

\[I_{\text{MAX}} \times R_{\text{SENSE}} \times \text{GAIN} < V_{\text{SP}} - V_{\text{REF}} \]

(3)

where:

- \(I_{\text{MAX}} \) is the maximum current that flows through \(R_{\text{SENSE}} \).
- \(\text{GAIN} \) is the gain of the current-sense amplifier.
- \(V_{\text{SP}} \) is the positive output swing as specified in the data sheet.
- \(V_{\text{REF}} \) is the reference input. This node is internally grounded for the INA191 and a value of 0 V should be used for that device.

To avoid positive output swing limitations when selecting the value of \(R_{\text{SENSE}} \), there is always a trade-off between the value of the sense resistor and the gain of the device under consideration. If the sense resistor selected for the maximum power dissipation is too large, then it is possible to select a lower-gain device in order to avoid positive swing limitations.

The zero current output voltage places a limit on how small of a sense resistor can be used in a given application. Equation 4 provides the limit on the minimum size of the sense resistor.

\[I_{\text{MIN}} \times R_{\text{SENSE}} \times \text{GAIN} > V_{\text{ZL}} - V_{\text{REF}} \]

(4)

where:

- \(I_{\text{MIN}} \) is the minimum current flows through \(R_{\text{SENSE}} \).
- \(\text{GAIN} \) is the gain of the current-sense amplifier.
- \(V_{\text{ZL}} \) is the zero current output voltage of the device (see the Section 7.3.7 section for more information).
- \(V_{\text{REF}} \) is the reference input. This node is internally grounded for the INA191 and a value of 0 V should be used for that device.
8.1.3 Signal Conditioning

When performing accurate current measurements in noisy environments, the current-sensing signal is often filtered. The INAx191 features low input bias currents. Therefore, it is possible to add a differential mode filter to the input without sacrificing the current-sense accuracy. Filtering at the input is advantageous because this action attenuates differential noise before the signal is amplified. Figure 8-2 provides an example of how to use a filter on the input pins of the device.

![Figure 8-2. Filter at the Input Pins](image)

The differential input impedance (R_{DIFF}) shown in Figure 8-2 limits the maximum value for R_F. The value of R_{DIFF} is a function of the device temperature and gain option, as shown in Figure 8-3.

![Figure 8-3. Differential Input Impedance vs. Temperature](image)
As the voltage drop across the sense resistor \(V_{\text{SENSE}}\) increases, the amount of voltage dropped across the input filter resistors \(R_F\) also increases. The increased voltage drop results in additional gain error. The error caused by these resistors is calculated by the resistor divider equation shown in Equation 5.

\[
\text{Error(\%)} = \left(1 - \frac{R_{\text{DIFF}}}{R_{\text{SENSE}} + R_{\text{DIFF}} + (2 \times R_F)}\right) \times 100
\]

where:

- \(R_{\text{SENSE}}\) is the current sense resistor, as defined in Equation 2.
- \(R_{\text{DIFF}}\) is the differential input impedance.
- \(R_F\) is the added value of the series filter resistance.

The input stage of the INAx191 uses a capacitive feedback amplifier topology in order to achieve high DC precision. As a result, periodic high-frequency shunt voltage (or current) transients of significant amplitude (10 mV or greater) and duration (hundreds of nanoseconds or greater) may be amplified by the INAx191, even though the transients are greater than the device bandwidth. Use a differential input filter in these applications to minimize disturbances at the INAx191 output.

The high input impedance and low bias current of the INAx191 provides flexibility in the input filter design without impacting the accuracy of current measurement. For example, set \(R_F = 100 \, \Omega\) and \(C_F = 22 \, \text{nF}\) to achieve a low-pass filter corner frequency of 36.2 kHz. These filter values significantly attenuate most unwanted high-frequency signals at the input without severely impacting the current-sensing bandwidth or precision. If a lower corner frequency is desired, increase the value of \(C_F\).

Filtering at the input reduces differential noise across the sense resistor. If high-frequency, common-mode noise is a concern, add an RC filter from the OUT pin to ground. The RC filter helps filter out both differential and common mode noise, as well as internally generated noise from the device. The value for the resistance of the RC filter is limited by the impedance of the output load. Any current drawn by the load manifests as an external voltage drop from the INAx191 OUT pin to the load input. To select the optimal values for the output filter when driving SAR ADCs or other dynamic loads, use Figure 6-41 and see the Closed-Loop Analysis of Load-Induced Amplifier Stability Issues Using ZOUT Application Report.
8.1.4 Common-Mode Voltage Transients

With a small amount of additional circuitry, the INAx191 can be used in circuits subject to transients that exceed the absolute maximum voltage ratings. The most simple way to protect the inputs from negative transients is to add resistors in series to the IN– and IN+ pins. Use resistors that are 1 kΩ or less, and limit the current in the ESD structures to less than 5 mA. For example, using 1-kΩ resistors in series with the INAx191 allows voltages as low as –5 V, while limiting the ESD current to less than 5 mA. If protection from high-voltage or more-negative, common-voltage transients is needed, use the circuits shown in Figure 8-4 and Figure 8-5. When implementing these circuits, use only Zener diodes or Zener-type transient absorbers (sometimes referred to as transzorbs); any other type of transient absorber has an unacceptable time delay. Start by adding a pair of resistors as a working impedance for the Zener diode, as shown in Figure 8-4. Keep these resistors as small as possible; most often, use around 100 Ω. Larger values can be used with an effect on gain that is discussed in Section 8.1.3. This circuit limits only short-term transients; therefore, many applications are satisfied with a 100-Ω resistor along with conventional Zener diodes of the lowest acceptable power rating. This combination uses the least amount of board space. These diodes can be found in packages as small as SOT-523 or SOD-523.

![Figure 8-4. Transient Protection Using Dual Zener Diodes](image1)

In the event that low-power Zener diodes do not have sufficient transient absorption capability, a higher-power transzorb must be used. The most package-efficient solution involves using a single transzorb and back-to-back diodes between the device inputs, as shown in Figure 8-5. The most space-efficient solutions are dual, series-connected diodes in a single SOT-523 or SOD-523 package. In either of the examples shown in Figure 8-4 and Figure 8-5, the total board area required by the INA191 with all protective components is less than that of an SO-8 package, and only slightly greater than that of an VSSOP-8 package.

![Figure 8-5. Transient Protection Using a Single Transzorb and Input Clamps](image2)

For more information, see Current Shunt Monitor With Transient Robustness Reference Design.
8.2 Typical Application

8.2.1 Microamp Current Measurement

The low input bias current of the INAx191 provides accurate monitoring of small-value currents. To accurately monitor currents in the microamp range, increase the value of the sense resistor to increase the sense voltage so that the error introduced by the offset voltage is small. The circuit configuration to monitor low-value currents is shown in Figure 8-6. As a result of the differential input impedance of the INAx191, limit the value of R_{SENSE} to 1 kΩ or less for best accuracy.

![Figure 8-6. Measuring Microamp Currents](image)

8.2.1.1 Design Requirements

The design requirements for the circuit shown in Figure 8-6, are listed in Table 8-1

<table>
<thead>
<tr>
<th>DESIGN PARAMETER</th>
<th>EXAMPLE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power-supply voltage (V_S)</td>
<td>5 V</td>
</tr>
<tr>
<td>Bus supply rail (V_{CM})</td>
<td>12 V</td>
</tr>
<tr>
<td>Minimum sense current (I_{MIN})</td>
<td>1 µA</td>
</tr>
<tr>
<td>Maximum sense current (I_{MAX})</td>
<td>150 µA</td>
</tr>
<tr>
<td>Device gain (GAIN)</td>
<td>25 V/V</td>
</tr>
<tr>
<td>Unidirectional Application</td>
<td>$V_{\text{REF}} = 0$ V</td>
</tr>
</tbody>
</table>

8.2.1.2 Detailed Design Procedure

The maximum value of the current-sense resistor is calculated based on choice of gain, value of the maximum current the be sensed (I_{MAX}), and the power supply voltage (V_S). When operating at the maximum current, the output voltage must not exceed the positive output swing specification, V_{SP}. For the given design parameters, the maximum value for R_{SENSE} calculated in Equation 6 is 1.321 kΩ.

$$R_{\text{SENSE}} < \frac{V_{SP}}{I_{\text{MAX}} \times \text{GAIN}}$$ (6)

However, because this value exceeds the maximum recommended value for R_{SENSE}, a resistance value of 1 kΩ must be used. When operating at the minimum current value, I_{MIN} the output voltage must be greater than the swing to GND (V_{SN}), specification. For this example, the output voltage at the minimum current (V_{OUTMIN}) calculated in Equation 7 is 25 mV, which is greater than the value for V_{SN}.

$$V_{\text{OUTMIN}} = I_{\text{MIN}} \times R_{\text{SENSE}} \times \text{GAIN}$$ (7)
8.2.1.3 Application Curve

Figure 8-7 shows the output of the device when disabled and enabled while measuring a 40-µA load current. When disabled, the current draw from the device supply and inputs is less than 106 nA.

![Figure 8-7. Output Disable and Enable Response](image)

9 Power Supply Recommendations

The input circuitry of the INA191 accurately measures beyond the power-supply voltage, \(V_S \). For example, \(V_S \) can be 5 V, whereas the bus supply voltage at IN+ and IN– can be as high as 40 V. However, the output voltage range of the OUT pin is limited by the voltage on the VS pin. The INA191 also withstands the full differential input signal range up to 40 V at the IN+ and IN– input pins, regardless of whether or not the device has power applied at the VS pin. There is no sequencing requirement for \(V_S \) and \(V_{IN+} \) or \(V_{IN–} \).
10 Layout

10.1 Layout Guidelines

- Connect the input pins to the sensing resistor using a Kelvin or 4-wire connection. This connection technique makes sure that only the current-sensing resistor impedance is detected between the input pins. Poor routing of the current-sensing resistor commonly results in additional resistance present between the input pins. Given the very low ohmic value of the current resistor, any additional high-current carrying impedance can cause significant measurement errors.

- Place the power-supply bypass capacitor as close as possible to the device power supply and ground pins. The recommended value of this bypass capacitor is 0.1 µF. To compensate for noisy or high-impedance power supplies, add more decoupling capacitance.

- When routing the connections from the current-sense resistor to the device, keep the trace lengths as short as possible. Place input filter capacitor \(C_F \) as close as possible to the input pins of the device.

10.2 Layout Examples

![Figure 10-1. Recommended Layout DSBGA (YFD) Package](image-url)
Figure 10-2. Recommended Layout Dual Channel DSBGA (YBJ) Package
11 Device and Documentation Support

11.1 Documentation Support

11.1.1 Related Documentation

For related documentation see the following:

Texas Instruments, *INA191EVM user's guide*

11.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.3 Support Resources

TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's *Terms of Use*.

11.4 Trademarks

TI E2E™ is a trademark of Texas Instruments. All trademarks are the property of their respective owners.

11.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.6 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
EXAMPLE BOARD LAYOUT

YFD0006-C02

DSBGA - 0.4 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. Refer to Texas Instruments Literature No. SNVA009 (www.ti.com/lit/snva009).
NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
EXAMPLE BOARD LAYOUT

YBJ0012-C01 DSBGA - 0.35 mm max height

NOTES: (continued)

3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. See Texas Instruments Literature No. SNVA009 (www.ti.com/lit/snva009).
NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead finish/ Ball material</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>INA191A1IYFDR</td>
<td>ACTIVE</td>
<td>DSBGA</td>
<td>YFD</td>
<td>6</td>
<td>3000</td>
<td>RoHS & Green</td>
<td>SNAGCU Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>1E3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INA191A2IYFDR</td>
<td>ACTIVE</td>
<td>DSBGA</td>
<td>YFD</td>
<td>6</td>
<td>3000</td>
<td>RoHS & Green</td>
<td>SNAGCU Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>1E2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INA191A3IYFDR</td>
<td>ACTIVE</td>
<td>DSBGA</td>
<td>YFD</td>
<td>6</td>
<td>3000</td>
<td>RoHS & Green</td>
<td>SNAGCU Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>1E4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INA191A4IYFDR</td>
<td>ACTIVE</td>
<td>DSBGA</td>
<td>YFD</td>
<td>6</td>
<td>3000</td>
<td>RoHS & Green</td>
<td>SNAGCU Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>1E5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INA191A5IYFDR</td>
<td>ACTIVE</td>
<td>DSBGA</td>
<td>YFD</td>
<td>6</td>
<td>3000</td>
<td>RoHS & Green</td>
<td>SNAGCU Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>1E6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INA2191A1IYBJR</td>
<td>ACTIVE</td>
<td>DSBGA</td>
<td>YBJ</td>
<td>12</td>
<td>3000</td>
<td>RoHS & Green</td>
<td>SAC396 Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>29J1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INA2191A2IYBJR</td>
<td>ACTIVE</td>
<td>DSBGA</td>
<td>YBJ</td>
<td>12</td>
<td>3000</td>
<td>RoHS & Green</td>
<td>SAC396 Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>29K1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INA2191A3IYBJR</td>
<td>ACTIVE</td>
<td>DSBGA</td>
<td>YBJ</td>
<td>12</td>
<td>3000</td>
<td>RoHS & Green</td>
<td>SAC396 Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>29L1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INA2191A4IYBJR</td>
<td>ACTIVE</td>
<td>DSBGA</td>
<td>YBJ</td>
<td>12</td>
<td>3000</td>
<td>RoHS & Green</td>
<td>SAC396 Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>29M1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INA2191A5IYBJR</td>
<td>ACTIVE</td>
<td>DSBGA</td>
<td>YBJ</td>
<td>12</td>
<td>3000</td>
<td>RoHS & Green</td>
<td>SAC396 Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>29N1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

REEL DIMENSIONS
- Reel Diameter
- Reel Width (W1)

TAPE DIMENSIONS
- K0: Dimension designed to accommodate the component length
- B0: Dimension designed to accommodate the component thickness
- W: Overall width of the carrier tape
- P1: Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE
- Q1
- Q2
- Q3
- Q4

*All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>INA191A1IYFDR</td>
<td>DSBGA</td>
<td>YFD</td>
<td>6</td>
<td>3000</td>
<td>180.0</td>
<td>8.4</td>
<td>0.84</td>
<td>1.25</td>
<td>0.5</td>
<td>4.0</td>
<td>8.0</td>
<td>Q2</td>
</tr>
<tr>
<td>INA191A1IYFDR</td>
<td>DSBGA</td>
<td>YFD</td>
<td>6</td>
<td>3000</td>
<td>178.0</td>
<td>8.4</td>
<td>0.84</td>
<td>1.27</td>
<td>0.46</td>
<td>4.0</td>
<td>8.0</td>
<td>Q2</td>
</tr>
<tr>
<td>INA191A2IYFDR</td>
<td>DSBGA</td>
<td>YFD</td>
<td>6</td>
<td>3000</td>
<td>180.0</td>
<td>8.4</td>
<td>0.84</td>
<td>1.27</td>
<td>0.46</td>
<td>4.0</td>
<td>8.0</td>
<td>Q2</td>
</tr>
<tr>
<td>INA191A3IYFDR</td>
<td>DSBGA</td>
<td>YFD</td>
<td>6</td>
<td>3000</td>
<td>180.0</td>
<td>8.4</td>
<td>0.84</td>
<td>1.27</td>
<td>0.46</td>
<td>4.0</td>
<td>8.0</td>
<td>Q2</td>
</tr>
<tr>
<td>INA191A4IYFDR</td>
<td>DSBGA</td>
<td>YFD</td>
<td>6</td>
<td>3000</td>
<td>180.0</td>
<td>8.4</td>
<td>0.84</td>
<td>1.27</td>
<td>0.46</td>
<td>4.0</td>
<td>8.0</td>
<td>Q2</td>
</tr>
<tr>
<td>INA191A5IYFDR</td>
<td>DSBGA</td>
<td>YFD</td>
<td>6</td>
<td>3000</td>
<td>180.0</td>
<td>8.4</td>
<td>0.84</td>
<td>1.27</td>
<td>0.46</td>
<td>4.0</td>
<td>8.0</td>
<td>Q2</td>
</tr>
<tr>
<td>INA2191A1IYBJR</td>
<td>DSBGA</td>
<td>YBJ</td>
<td>12</td>
<td>3000</td>
<td>180.0</td>
<td>8.4</td>
<td>1.3</td>
<td>1.66</td>
<td>0.47</td>
<td>4.0</td>
<td>8.0</td>
<td>Q1</td>
</tr>
<tr>
<td>INA2191A2IYBJR</td>
<td>DSBGA</td>
<td>YBJ</td>
<td>12</td>
<td>3000</td>
<td>180.0</td>
<td>8.4</td>
<td>1.3</td>
<td>1.66</td>
<td>0.47</td>
<td>4.0</td>
<td>8.0</td>
<td>Q1</td>
</tr>
<tr>
<td>INA2191A3IYBJR</td>
<td>DSBGA</td>
<td>YBJ</td>
<td>12</td>
<td>3000</td>
<td>180.0</td>
<td>8.4</td>
<td>1.3</td>
<td>1.66</td>
<td>0.47</td>
<td>4.0</td>
<td>8.0</td>
<td>Q1</td>
</tr>
<tr>
<td>INA2191A4IYBJR</td>
<td>DSBGA</td>
<td>YBJ</td>
<td>12</td>
<td>3000</td>
<td>180.0</td>
<td>8.4</td>
<td>1.3</td>
<td>1.66</td>
<td>0.47</td>
<td>4.0</td>
<td>8.0</td>
<td>Q1</td>
</tr>
<tr>
<td>INA2191A5IYBJR</td>
<td>DSBGA</td>
<td>YBJ</td>
<td>12</td>
<td>3000</td>
<td>180.0</td>
<td>8.4</td>
<td>1.3</td>
<td>1.66</td>
<td>0.47</td>
<td>4.0</td>
<td>8.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>
TAPE AND REEL BOX DIMENSIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>INA191A1IYFDR</td>
<td>DSBGA</td>
<td>YFD</td>
<td>6</td>
<td>3000</td>
<td>182.0</td>
<td>182.0</td>
<td>20.0</td>
</tr>
<tr>
<td>INA191A1IYFDR</td>
<td>DSBGA</td>
<td>YFD</td>
<td>6</td>
<td>3000</td>
<td>220.0</td>
<td>220.0</td>
<td>35.0</td>
</tr>
<tr>
<td>INA191A2IYFDR</td>
<td>DSBGA</td>
<td>YFD</td>
<td>6</td>
<td>3000</td>
<td>182.0</td>
<td>182.0</td>
<td>20.0</td>
</tr>
<tr>
<td>INA191A3IYFDR</td>
<td>DSBGA</td>
<td>YFD</td>
<td>6</td>
<td>3000</td>
<td>182.0</td>
<td>182.0</td>
<td>20.0</td>
</tr>
<tr>
<td>INA191A3IYFDR</td>
<td>DSBGA</td>
<td>YFD</td>
<td>6</td>
<td>3000</td>
<td>220.0</td>
<td>220.0</td>
<td>35.0</td>
</tr>
<tr>
<td>INA191A4IYFDR</td>
<td>DSBGA</td>
<td>YFD</td>
<td>6</td>
<td>3000</td>
<td>182.0</td>
<td>182.0</td>
<td>20.0</td>
</tr>
<tr>
<td>INA191A4IYFDR</td>
<td>DSBGA</td>
<td>YFD</td>
<td>6</td>
<td>3000</td>
<td>220.0</td>
<td>220.0</td>
<td>35.0</td>
</tr>
<tr>
<td>INA191A5IYFDR</td>
<td>DSBGA</td>
<td>YFD</td>
<td>6</td>
<td>3000</td>
<td>182.0</td>
<td>182.0</td>
<td>20.0</td>
</tr>
<tr>
<td>INA191A5IYFDR</td>
<td>DSBGA</td>
<td>YFD</td>
<td>6</td>
<td>3000</td>
<td>220.0</td>
<td>220.0</td>
<td>35.0</td>
</tr>
<tr>
<td>INA2191A1IYBJR</td>
<td>DSBGA</td>
<td>YBJ</td>
<td>12</td>
<td>3000</td>
<td>182.0</td>
<td>182.0</td>
<td>20.0</td>
</tr>
<tr>
<td>INA2191A1IYBJR</td>
<td>DSBGA</td>
<td>YBJ</td>
<td>12</td>
<td>3000</td>
<td>182.0</td>
<td>182.0</td>
<td>20.0</td>
</tr>
<tr>
<td>INA2191A2IYBJR</td>
<td>DSBGA</td>
<td>YBJ</td>
<td>12</td>
<td>3000</td>
<td>182.0</td>
<td>182.0</td>
<td>20.0</td>
</tr>
<tr>
<td>INA2191A3IYBJR</td>
<td>DSBGA</td>
<td>YBJ</td>
<td>12</td>
<td>3000</td>
<td>182.0</td>
<td>182.0</td>
<td>20.0</td>
</tr>
<tr>
<td>INA2191A4IYBJR</td>
<td>DSBGA</td>
<td>YBJ</td>
<td>12</td>
<td>3000</td>
<td>182.0</td>
<td>182.0</td>
<td>20.0</td>
</tr>
<tr>
<td>INA2191A5IYBJR</td>
<td>DSBGA</td>
<td>YBJ</td>
<td>12</td>
<td>3000</td>
<td>182.0</td>
<td>182.0</td>
<td>20.0</td>
</tr>
</tbody>
</table>

All dimensions are nominal
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated