description

This device is a low-cost, high-speed, JFET-input operational amplifier with very low input offset voltage and a maximum input offset voltage drift. It requires low supply current, yet maintains a large gain-bandwidth product and a fast slew rate. In addition, the matched high-voltage JFET input provides very low input bias and offset currents.

The LF411 can be used in applications such as high-speed integrators, digital-to-analog converters, sample-and-hold circuits, and many other circuits.

The LF411C is characterized for operation from 0°C to 70°C. The LF411I is characterized for operation from –40°C to 85°C.

symbol

The D packages are available taped and reeled. Add the suffix R to the device type (i.e., LF411CDR).
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

- Supply voltage, V_{CC+}: -18 V
- Supply voltage, V_{CC-}: $+18$ V
- Differential input voltage, V_{ID}: ±30 V
- Input voltage, V_i (see Note 1): ±15 V
- Duration of output short circuit: Unlimited
- Continuous total power dissipation: 500 mW
- Package thermal impedance, θ_JA (see Note 2): D package 197°C/W, P package 104°C/W
- Storage temperature range, T_{stg}: -65°C to 150°C
- Lead temperature: 260°C for 1.6 mm (1/16 inch) from case for 10 seconds

NOTES:
1. Unless otherwise specified, the absolute maximum negative input voltage is equal to the negative power supply voltage.
2. The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace length of zero.

recommended operating conditions

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>C SUFFIX</th>
<th>I SUFFIX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage, V_{CC+}</td>
<td>3.5</td>
<td>18</td>
<td>V</td>
</tr>
<tr>
<td>Supply voltage, V_{CC-}</td>
<td>-3.5</td>
<td>-18</td>
<td>V</td>
</tr>
<tr>
<td>Operating free-air temperature, T_A</td>
<td>0</td>
<td>70</td>
<td>°C</td>
</tr>
</tbody>
</table>

electrical characteristics over operating free-air temperature range, $V_{CC\pm}=\pm15$ V (unless otherwise specified)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>T_A</th>
<th>LF411C</th>
<th>LF411I</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IO}</td>
<td>$V_{IC} = 0$, $R_S = 10$ kΩ</td>
<td>25°C</td>
<td>25°C</td>
<td>0.8</td>
<td>2</td>
<td>mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>αV_{IO}</td>
<td>$V_{IC} = 0$, $R_S = 10$ kΩ</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>20†</td>
<td>μV/$^\circ$C</td>
<td></td>
</tr>
<tr>
<td>I_{IO}</td>
<td>$V_{IC} = 0$</td>
<td>25°C</td>
<td>25°C</td>
<td>25</td>
<td>100</td>
<td>pA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$T_A = 70^\circ$C</td>
<td>85°C</td>
<td></td>
<td>2</td>
<td></td>
<td>nA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{IB}</td>
<td>$V_{IC} = 0$</td>
<td>25°C</td>
<td>25°C</td>
<td>50</td>
<td>200</td>
<td>nA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$T_A = 70^\circ$C</td>
<td>85°C</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{ICR}</td>
<td>Common-mode input voltage range</td>
<td></td>
<td></td>
<td>-11.5 to 14.5</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OM}</td>
<td>$R_L = 10$ kΩ</td>
<td></td>
<td></td>
<td>±12</td>
<td>±13.5</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_{VD}</td>
<td>$V_O = \pm10$ V, $R_L = 2$ kΩ</td>
<td>25°C</td>
<td>25°C</td>
<td>25</td>
<td>200</td>
<td>V/mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r_i</td>
<td>$T_J = 25^\circ$C</td>
<td></td>
<td></td>
<td></td>
<td>10^{12}</td>
<td>Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMR</td>
<td>$R_G \leq 10$ kΩ</td>
<td></td>
<td></td>
<td>70</td>
<td>100</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>k_{SVR}</td>
<td>See Note 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICC</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>3.4</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

† At least 90% of the devices meet this limit for αV_{IO}.
‡ Input bias currents of an FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive. Pulse techniques must be used that will maintain the junction temperatures as close to the ambient temperature as possible.
NOTE 3: Supply-voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously.
operating characteristics, $V_{CC\pm} = \pm 15\ V$, $T_A = 25^\circ C$

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR Slew rate</td>
<td></td>
<td>8</td>
<td>13</td>
<td></td>
<td>V/\mu s</td>
</tr>
<tr>
<td>B_1 Unity-gain bandwidth</td>
<td></td>
<td>2.7</td>
<td>3</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>V_n Equivalent input noise voltage</td>
<td>$f = 1\ kHz, R_S = 20\ \Omega$</td>
<td>18</td>
<td></td>
<td></td>
<td>nV/\sqrt{Hz}</td>
</tr>
<tr>
<td>I_n Equivalent input noise current</td>
<td>$f = 1\ kHz$</td>
<td>0.01</td>
<td></td>
<td></td>
<td>pA/\sqrt{Hz}</td>
</tr>
</tbody>
</table>
PACKAGING INFORMATION

| Orderable Device | Status (1) | Package Type | Package Drawing | Pins | Package Qty | Lead finish/
Ball material (2)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples							
LF411CD	ACTIVE	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LF411C	Samples
LF411CDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LF411C	Samples
LF411CDRG4	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LF411C	Samples
LF411CP	ACTIVE	PDIP	P	8	50	RoHS & Green	N / A for Pkg Type	0 to 70	LF411CP	Samples	
LF411CPE4	ACTIVE	PDIP	P	8	50	RoHS & Green	N / A for Pkg Type	0 to 70	LF411CP	Samples	

(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBsolete: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF411CDR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.4</td>
<td>5.2</td>
<td>2.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>

All dimensions are nominal.
TAPE AND REEL BOX DIMENSIONS

All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF411CDR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>340.5</td>
<td>336.1</td>
<td>25.0</td>
</tr>
</tbody>
</table>
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
4. This dimension does not include interlead flash.
5. Reference JEDEC registration MS-012, variation AA.
NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate
design recommendations.

9. Board assembly site may have different recommendations for stencil design.
NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001 variation BA.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,
costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either
on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's
applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2021, Texas Instruments Incorporated