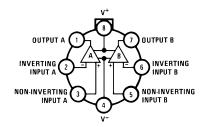

LF442QML Dual Low Power JFET Input Operational Amplifier

Check for Samples: LF442QML

FEATURES

- 1/10 Supply Current of a LM1458: 400 µA (Max)
- Low Input Bias Current: 50 pA (Typ)
- Low Input Offset Voltage: 1 mV (Typ)
- Low Input Offset Voltage Drift: 7 μV/°C (Typ)
- **High Gain Bandwidth: 1 MHz (Typ)**
- High Slew Rate: 1 V/µs (Typ)
- Low Noise Voltage for Low Power: 35 nV/√Hz
- Low Input Noise Current: 0.01 pA/√Hz (Typ)
- High Input Impedance: $10^{12}\Omega$

Typical Connection



DESCRIPTION

The LF442 dual low power operational amplifier provides many of the same AC characteristics as the industry standard LM1458 while greatly improving the DC characteristics of the LM1458. The amplifier has the same bandwidth, slew rate, and gain (10 k Ω load) as the LM1458 and only draws one tenth the supply current of the LM1458. In addition the well matched high voltage JFET input devices of the LF442 reduce the input bias and offset currents by a factor of 10,000 over the LM1458. A combination of careful layout design and internal trimming ensures very low input offset voltage and voltage drift. The LF442 also has a very low equivalent input noise voltage for a low power amplifier.

The LF442 is pin compatible with the LM1458 allowing an immediate 10 times reduction in power drain in many applications. The LF442 should be used where low power dissipation and good electrical characteristics are the major considerations.

Connection Diagram

Pin 4 connected to case

Figure 1. Top View TO-99 Package See Package Number LMC

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

Simplified Schematic

Figure 2. 1/2 Dual

VCC O

INTERNALLY TRIMMED

VCE

INTERNALLY TRIMMED

Detailed Schematic

Figure 3. 1/2 Dual

A

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

019

Absolute Maximum Ratings(1)

Supply Voltage	±18V					
Differential Input Voltage	±30V					
Input Voltage Range (2)	±15V					
Output Short Circuit Duration (3)	Continuous					
Maximum Power Dissipation (4)	900mW					
T _J max	150°C					
	0	Still Air	161°C/W			
Thermal Resistance	θ_{JA}	500LF/Min Air flow	87°C/W			
	θ_{JC}	θ_{JC}				
Operating Temperature Range	-55°C ≤ T _A ≤ 125°C					
Storage Temperature Range	-65°C ≤ T _A ≤ 150°C					
Lead Temperature (Soldering, 1	260°C					
ESD Tolerance ⁽⁵⁾	500V					

- (1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. For ensured specifications and test conditions, see the Electrical Characteristics. The ensured specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
- Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.
- Any of the amplifier outputs can be shorted to ground indefinitely, however, more than one should not be simultaneously shorted as the maximum junction temperature will be exceeded.
- The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{Jmax} (maximum junction temperature), θ_{JA} (package junction to ambient thermal resistance), and T_A (ambient temperature). The maximum allowable power dissipation at any temperature is $P_{Dmax} = (T_{Jmax} - T_A)/\theta_{JA}$ or the number given in the Absolute Maximum Ratings, whichever is lower. Human Body Model, 100pF discharged through 1.5K Ω

Quality Conformance Inspection

Table 1. Mil-Std-883, Method 5005 - Group A

Subgroup	Description	Temp (°C)
1	Static tests at	+25
2	Static tests at	+125
3	Static tests at	-55
4	Dynamic tests at	+25
5	Dynamic tests at	+125
6	Dynamic tests at	-55
7	Functional tests at	+25
8A	Functional tests at	+125
8B	Functional tests at	-55
9	Switching tests at	+25
10	Switching tests at	+125
11	Switching tests at	-55
12	Settling time at	+25
13	Settling time at	+125
14	Settling time at	-55

Product Folder Links: LF442QML

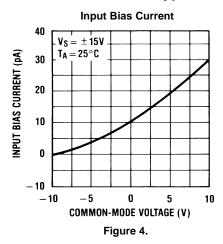
LF442 Electrical Characteristics DC Parameters

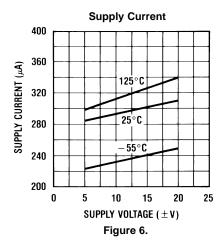
The following conditions apply, unless otherwise specified. $V_S = \pm 15 \text{V}, V_{CM} = 0 \text{V}, R_S = 0 \Omega$

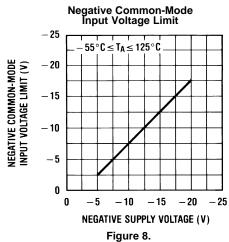
Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups	
Icc	Supply Current				500	μΑ	1, 2, 3	
V	Input Offset Voltage	B = 10KO		-5.0	5.0	mV	1	
V _{IO}	input Onset voltage	$R_S = 10K\Omega$		-7.5	7.5	mV	2, 3	
.1	Input Pigg Current				0.1	nA	1	
±I _{IB}	Input Bias Current				20	nA	2	
ı	Input Offcot Current			-0.05	0.05	nA	1	
I _{IO}	Input Offset Current			-10	10	nA	2	
CMRR	Common Mode Rejection Ratio	$V_{CM} = \pm 11V, R_S = 10K$		70		dB	1, 2, 3	
PSRR	Baura Curaly Bajastian Batia	$V_S^+ = +15V \text{ to } +6V,$ $V_S^- = -15V$		70		dB	1, 2, 3	
	Power Supply Rejection Ratio	$V_S^- = -15V \text{ to } -6V,$ $V_S^+ = +15V$		70		dB	1, 2, 3	
	Large Circal Valtage Cair	$V_{O} = 0V \text{ to } +10V,$	See ⁽¹⁾	25		V/mV	4	
+A _{VS}	Large Signal Voltage Gain	$R_L = 10K\Omega$	See	15		V/mV	5, 6	
^	Large Circal Valtage Cair	$V_{O} = 0V \text{ to -10V},$	See ⁽¹⁾	25		V/mV	4	
-A _{VS}	Large Signal Voltage Gain	$R_L = 10K\Omega$	See	15		V/mV	5, 6	
V _O ⁺	Output Voltage Swing	$V_I = \pm 11V, R_L = 10K$		12		V	4, 5, 6	
V _O -	Output Voltage Swing	$V_I = \pm 11V, R_L = 10K$			-12	V	4, 5, 6	
V _{CM}	Input Common Mode Voltage Range		See ⁽²⁾	11	-11	V	4, 5, 6	

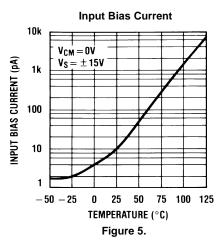
AC Parameters

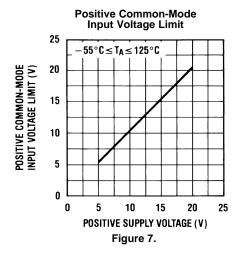
The following conditions apply, unless otherwise specified. $V_S = \pm 15V$, $V_{CM} = 0V$, $R_S = 0\Omega$

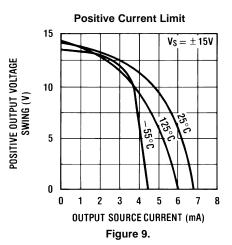

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
SR ⁺	Slew Rate	$V_O = -5V \text{ to } +5V, A_V = 1,$ $R_L = 2K\Omega, C_L - 100pF$		0.6		V/µS	7
SR ⁻	Slew Rate	V_{O} = +5V to -5V, A_{V} = 1, R_{L} = 2K Ω , C_{L} - 100pF		0.6		V/µS	7
GBW	Gain Band Width	$V_{I} = 50 \text{mV}, f = 20 \text{KHz}$		0.6		MHz	7

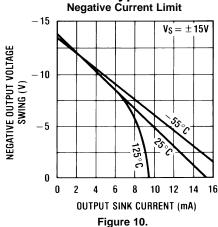

Submit Documentation Feedback

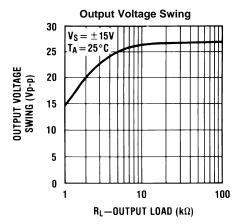

⁽¹⁾ V/mV in units column is equivalent to K in datalog.(2) Parameter tested go-no-go only, specified by CMRR test..

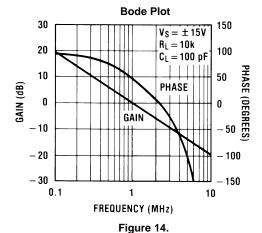


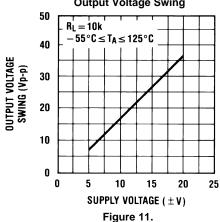

Typical Performance Characteristics










Typical Performance Characteristics (continued) e Current Limit Output Voltage Swing

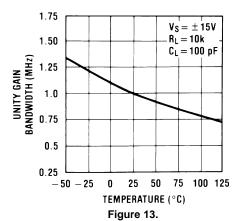


Figure 12.

Gain Bandwidth

Slew Rate

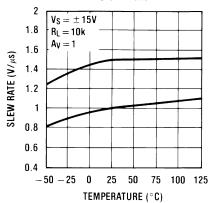


Figure 15.

Typical Performance Characteristics (continued)

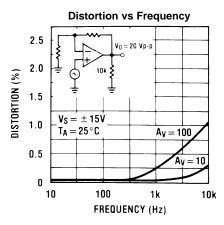


Figure 16.

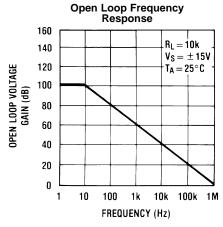
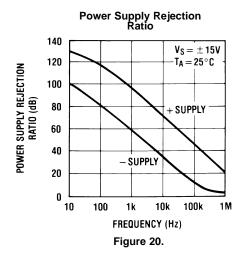



Figure 18.

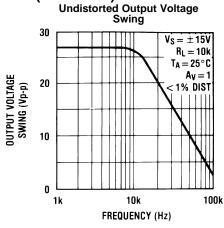
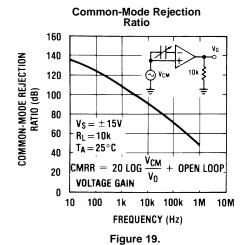



Figure 17.

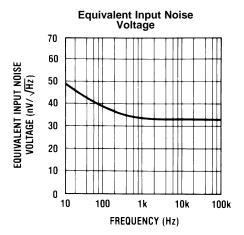
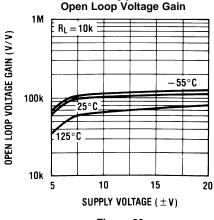
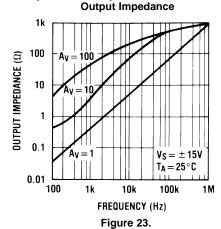
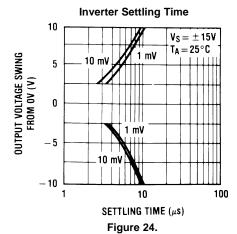
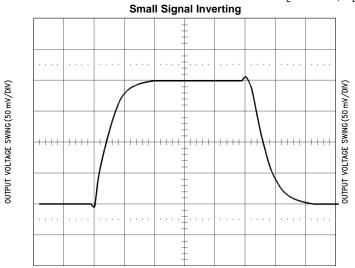
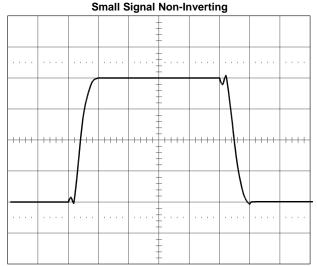




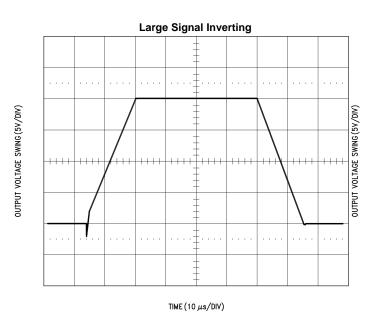
Figure 21.

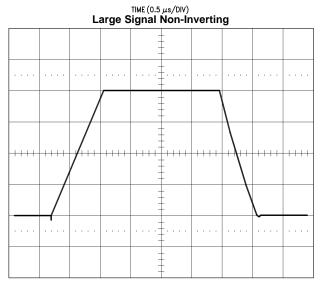


Typical Performance Characteristics (continued) Open Loop Voltage Gain Output Impedance








Pulse Response

 $R_L = 10 \text{ k}\Omega, C_L = 10 \text{ pF}$

TIME (10 μ s/DIV)

Submit Documentation Feedback

APPLICATION HINTS

This device is a dual low power op amp with internally trimmed input offset voltages and JFET input devices (BI-FET II). These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore, large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit.

Exceeding the negative common-mode limit on either input will force the output to a high state, potentially causing a reversal of phase to the output. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.

Exceeding the positive common-mode limit on a single input will not change the phase of the output; however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.

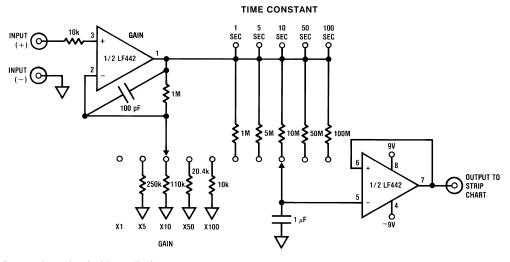
The amplifiers will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within 3V of the negative supply, an increase in input offset voltage may occur.

Each amplifier is individually biased to allow normal circuit operation with power supplies of ±3.0V. Supply voltages less than these may degrade the common-mode rejection and restrict the output voltage swing.

The amplifiers will drive a 10 k Ω load resistance to \pm 10V over the full temperature range.

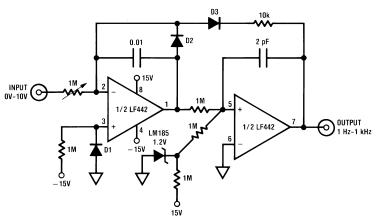
Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit

As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pick-up" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.


A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequenty there is negligible effect on stability margin. However, if the feedback pole is less than approximately 6 times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

0 Submit Documentation Feedback

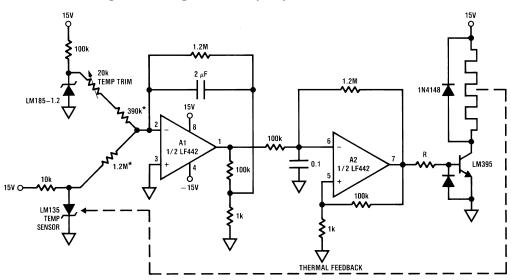
Typical Applications


Figure 25. Battery Powered Strip Chart Preamplifier

Runs from 9v batteries (±9V supplies) Fully settable gain and time constant

Battery powered supply allows direct plug-in interface to strip chart recorder without common-mode problems

Figure 26. "No FET" Low Power V→F Converter



Trim 1M pot for 1 kHz full-scale output 15 mW power drain No integrator reset FET required Mount D1 and D2 in close proximity 1% linearity to 1 kHz

Submit Documentation Feedback Product Folder Links: LF442QML

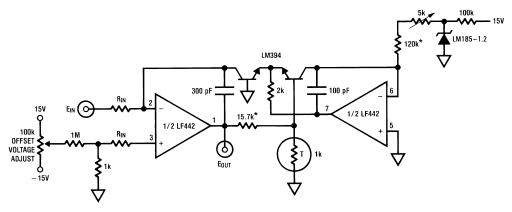


Figure 27. High Efficiency Crystal Oven Controller

- T_{control}= 75°C
- A1's output represents the amplified difference between the LM335 temperature sensor and the crystal oven's temperature
- A2, a free running duty cycle modulator, drives the LM395 to complete a servo loop
- Switched mode operation yields high efficiency
- 1% metal film resistor

Figure 28. Conventional Log Amplifier

$$E_{OUT} = -\left[\log 10 \left(\frac{E_{IN}}{R_{IN}}\right) + 5\right]$$

R_T = Tel Labs type Q81

Trim 5k for 10 μA through the 5k–120k combination

*1% film resistor

Figure 29. Unconventional Log Amplifier

- Q1, Q2, Q3 are included on LM389 amplifier chip which is temperature-stabilized by the LM389 and Q2-Q3, which act as a heater-sensor pair.
- Q1, the logging transistor, is thus immune to ambient temperature variation and requires no temperature compensation at all.

Table 2. Revision History

Date Released	Revision	Section	Changes
12/16/2010	Α	New release to corporate format	1 MDS datasheet converted into one corporate datasheet format. MNLF442M-X Rev 0A1 will be archived.
03/26/2013	А	All Sections	Changed layout of National Data Sheet to TI format

Product Folder Links: LF442QML

www.ti.com 5-Apr-2023

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LF442MH/883	OBSOLETE	TO-99	LMC	8		TBD	Call TI	Call TI		LF442MH/883 5962-9763301QGA Q ACO 5962-9763301QGA Q >T	

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

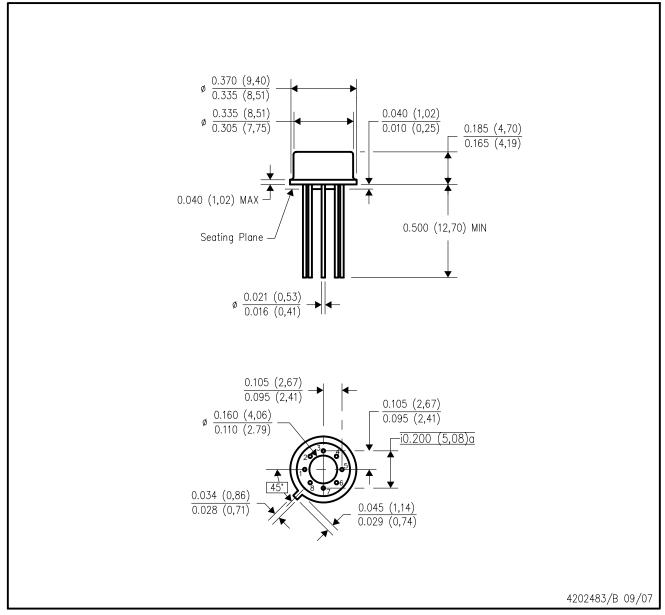
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


PACKAGE OPTION ADDENDUM

www.ti.com 5-Apr-2023

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

LMC (O-MBCY-W8)

METAL CYLINDRICAL PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Leads in true position within 0.010 (0,25) R @ MMC at seating plane.
- D. Pin numbers shown for reference only. Numbers may not be marked on package.
- E. Falls within JEDEC MO-002/TO-99.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated