www.ti.com

LM101AJAN Operational Amplifiers

Check for Samples: LM101AJAN

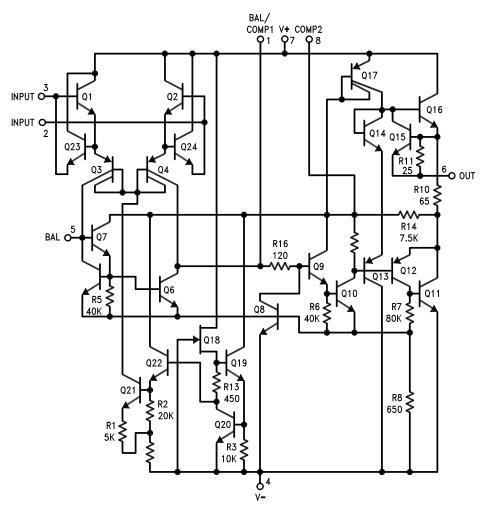
FEATURES

- Offset Voltage 3 mV Maximum Over **Temperature**
- Input Current 100 nA Maximum Over **Temperature**
- Offset Current 20 nA Maximum Over **Temperature**
- **Ensured Drift Characteristics**
- Offsets Ensured Over Entire Common Mode and Supply Voltage Ranges
- Slew Rate of 10 V/µS as a Summing Amplifier

DESCRIPTION

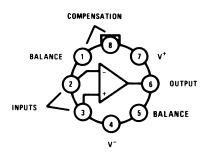
The LM101A is a general purpose operational amplifier which features improved performance over industry standards such as the LM709. Advanced processing techniques make possible an order of magnitude reduction in input currents, and a redesign of the biasing circuitry reduces the temperature drift of input current. Improved specifications include:

- Offset voltage 3 mV maximum over temperature
- Input current 100 nA maximum over temperature
- Offset current 20 nA maximum over temperature
- Ensured drift characteristics
- Offsets ensured over entire common mode and supply voltage ranges
- Slew rate of 10V/µs as a summing amplifier


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

This amplifier offers many features which make its application nearly foolproof: overload protection on the input and output, no latch-up when the common mode range is exceeded, and freedom from oscillations and compensation with a single 30 pF capacitor. It has advantages over internally compensated amplifiers in that the frequency compensation can be tailored to the particular application. For example, in low frequency circuits it can be overcompensated for increased stability margin. Or the compensation can be optimized to give more than a factor of ten improvement in high frequency performance for most applications.

In addition, the device provides better accuracy and lower noise in high impedance circuitry. The low input currents also make it particularly well suited for long interval integrators or timers, sample and hold circuits and low frequency waveform generators. Further, replacing circuits where matched transistor pairs buffer the inputs of conventional IC op amps, it can give lower offset voltage and a drift at a lower cost.


Schematic

Pin connections shown are for 8-pin packages

Connection Diagrams

BALANCE/ 1
COMPENSATION 2
INPUT 3
V - 4

BALANCE

8 COMPENSATION
7 V +
6 OUTPUT
5 BALANCE

Pin 4 connected to case.

Figure 1. (Top View)
TO-99 Package
See Package Number LMC

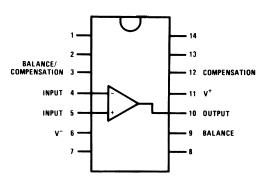


Figure 3. (Top View)
CDIP Package
See NS Package Number J

Figure 2. (Top View)
CDIP Package
See Package Number NAB0008A

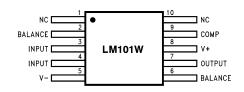
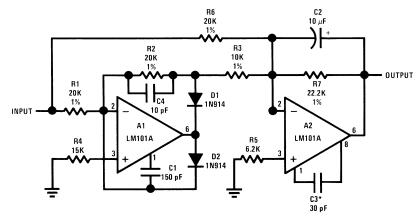



Figure 4. (Top View)
CLGA Package
See NS Package Number NAD0010A

Fast AC/DC Converter

Feedforward compensation can be used to make a fast full wave rectifier without a filter.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings⁽¹⁾

Absolute Maximum	itatings				
Supply Voltage				±22V	
Differential Input Voltage				±30V	
Input Voltage (2)				±15V	
Output Short Circuit Duration	l			Continuous	
Operating Ambient Temp. Ra	ange			-55°C ≤ T _A ≤ +125°C	
T _J Max				150°C	
Power Dissipation at $T_A =$	LMC-Package		Still Air)	750 mW	
25°C ⁽³⁾			(500 LF / Min Air Flow)	1,200 mW	
e, C (3)	NAB0008A-Package)	(Still Air)	1,000 mW	
			(500 LF / Min Air Flow)	1,500 mW	
	J-Package		(Still Air)	1,200mW	
			(500 LF / Min Air Flow)	2,000mW	
	NAD0010A-Package)	(Still Air)		
			(500 LF / Min Air Flow)	800mW	
		LMC Dookege	(Still Air)	165°C/W	
		LMC-Package	(500 LF / Min Air Flow)	89°C/W	
		NAROOOA Baakaaa	(Still Air)	128°C/W	
	0	NAB0008A-Package	(500 LF / Min Air Flow)	75°C/W	
	θ_{JA}	I Doolsons	(Still Air)	98°C/W	
Thermal Resistance		J-Package	(500 LF / Min Air Flow)	59°C/W	
Theimai Resistance		NAD0010A-Package	(Still Air)	233°C/W	
		NADOUTOA-Fackage	(500 LF / Min Air Flow)	155°C/W	
		LMC-Package	·	39°C/W	
	O (Typical)	NAB0008A-Package		26°C/W	
	θ _{JC} (Typical)	J-Package		24°C/W	
		NAD0010A-Package		26°C/W	
Storage Temperature Range				-65°C ≤ T _A ≤ +150°C	
Lead Temperature (Soldering	g, 10 sec.)			300°C	
ESD Tolerance ⁽⁴⁾				3000V	

⁽¹⁾ Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating ratings indicate conditions for which the device is intended to be functional, but do no ensure specific performance limits. For ensured specifications and test conditions, see the Electrical Characteristics. The ensured specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{Jmax} (maximum junction temperature), θ_{JA} (package junction to ambient thermal resistance), and T_A (ambient temperature). The maximum allowable power dissipation at any temperature is $P_{Dmax} = (T_{Jmax} - T_A) / \theta_{JA}$ or the number given in the Absolute Maximum Ratings, whichever is lower. (4) Human body model, 100 pF discharged through 1.5 k Ω .

Quality Conformance Inspection

Mil-Std-883, Method 5005 - Group A

Subgroup	Description	Temp (°C)
1	Static tests at	25
2	Static tests at	125
3	Static tests at	-55
4	Dynamic tests at	25
5	Dynamic tests at	125
6	Dynamic tests at	-55
7	Functional tests at	25
8A	Functional tests at	125
8B	Functional tests at	-55
9	Switching tests at	25
10	Switching tests at	125
11	Switching tests at	-55

LM101JAN Electrical Characteristics DC Parameters

The following conditions apply to all parameters, unless otherwise specified V_{CC} = ±20V, V_{CM} = 0V, R_S = 50Ω

Symbol	Parameters	Conditions	Notes	Min	Max	Unit	Sub- groups
V _{IO}	Input Offset Voltage	+V _{CC} = 35V, -V _{CC} = -5V,		-2.0	+2.0	mV	1
		$V_{CM} = -15V$		-3.0	+3.0	mV	2, 3
		+V _{CC} = 5V, -V _{CC} = -35V,		-2.0	+2.0	mV	1
		$V_{CM} = +15V$		-3.0	+3.0	mV	2, 3
		$V_{CM} = 0V$		-2.0	+2.0	mV	1
				-3.0	+3.0	mV	2, 3
		$+V_{CC} = 5V, -V_{CC} = -5V,$		-2.0	+2.0	mV	1
		$V_{CM} = 0V$		-3.0	+3.0	mV	2, 3
I _{IO}	Input Offset Current	+V _{CC} = 35V, -V _{CC} = -5V,		-10	+10	nA	1, 2
		$V_{CM} = -15V, R_S = 100K\Omega$		-20	+20	nA	3
		$+V_{CC} = 5V, -V_{CC} = -35V,$		-10	+10	nA	1, 2
		$V_{CM} = +15V, R_S = 100K\Omega$		-20	+20	nA	3
		$V_{CM} = 0V$, $R_S = 100K\Omega$		-3.0 +3.0 mV -2.0 +2.0 mV -3.0 +3.0 mV -2.0 +2.0 mV -3.0 +3.0 mV -3.0 +3.0 mV -2.0 +2.0 mV -3.0 +3.0 mV -10 +10 nA -20 +20 nA -10 +10 nA	nA	1, 2	
				-20	+20	nA	3
		+V _{CC} = 5V, -V _{CC} = -5V,		-10	+10	nA	1, 2
		$V_{CM} = 0V, R_S = 100K\Omega$		-20	+20	nA	3
±l _{IB}	Input Bias Current	+V _{CC} = 35V, -V _{CC} = -5V,		-0.1	75	nA	1, 2
		$V_{CM} = -15V$, $R_S = 100K\Omega$		-0.1	100	nA	3
		+V _{CC} = 5V, -V _{CC} = -35V,		-0.1	75	nA	1, 2
		$V_{CM} = +15V, R_S = 100K\Omega$		-0.1	100	nA	3
		$V_{CM} = 0V$, $R_S = 100K\Omega$		-0.1	75	nA	1, 2
				-0.1	100	nA	3
		+V _{CC} = 5V, -V _{CC} = -5V,		-0.1	75	nA	1, 2
		$V_{CM} = 0V$, $R_S = 100K\Omega$		-0.1	100	nA	3
+PSRR	Power Supply Rejection Ratio	+V _{CC} = 10V, -V _{CC} = -20V		-50	+50	μV/V	1
				-100	+100	μV/V	2, 3
-PSRR	Power Supply Rejection Ratio	+V _{CC} = 20V, -V _{CC} = -10V		-50	+50	μV/V	1
				-100	+100	μV/V	2, 3

LM101JAN Electrical Characteristics DC Parameters (continued)

The following conditions apply to all parameters, unless otherwise specified

 $V_{CC} = \pm 20V, V_{CM} = 0V, R_S = 50\Omega$

Symbol	Parameters	Conditions	Notes	Min	Max	Unit	Sub- groups
CMRR	Common Mode Rejection Ratio	$V_{CC} = \pm 35V$ to $\pm 5V$, $V_{CM} = \pm 15V$		80		dB	1, 2, 3
+V _{IO} Adj	Adjustment for Input Offset Voltage			4.0		mV	1, 2, 3
-V _{IO} Adj	Adjustment for Input Offset Voltage				-4.0	mV	1, 2, 3
+I _{OS}	Output Short Circuit Current	$+V_{CC} = 15V, -V_{CC} = -15V,$ t \le 25mS, V _{CM} = -15V		-60		mA	1, 2, 3
-l _{OS}	Output Short Circuit Current	$+V_{CC} = 15V, -V_{CC} = -15V,$ t \le 25mS, $V_{CM} = +15V$			+60	mA	1, 2, 3
Icc	Power Supply Current	+V _{CC} = 15V, -V _{CC} = -15V			3.0	mA	1
					2.32	mA	2
					3.5	mA	3
ΔV_{IO} / ΔT	Temperature Coefficient of Input	-55°C ≤ T _A ≤ +25°C	See ⁽¹⁾	-18	+18	μV/°C	2
	Offset Voltage	+25°C ≤ T _A ≤ +125°C	See ⁽¹⁾	-15	+15	μV/°C	3
Δ Ι _{ΙΟ} / ΔΤ	Temperature Coefficient of Input	-55°C ≤ T _A ≤ +25°C	See ⁽²⁾	-200	+200	pA/°C	2
	Offset Current	+25°C ≤ T _A ≤ +125°C	See ⁽²⁾	-100	+100	pA/°C	3
-A _{VS}	Large Signal (Open Loop) Voltage	$R_L = 2K\Omega$, $V_O = -15V$	See (3)	50		V/mV	4
	Gain		See ⁽³⁾	25		V/mV	5, 6
		$R_L = 10K\Omega$, $V_O = -15V$	See ⁽³⁾	50		V/mV	4
			See ⁽³⁾	25		V/mV	5, 6
+A _{VS}	Large Signal (Open Loop) Voltage	$R_L = 2K\Omega$, $V_O = +15V$	See ⁽³⁾	50		V/mV	4
	Gain		See ⁽³⁾	25		V/mV	5, 6
		$R_L = 10K\Omega, V_O = +15V$	See ⁽³⁾	50		V/mV	4
			See ⁽³⁾	25		V/mV	5, 6
A _{VS}	Large Signal (Open Loop) Voltage Gain	$V_{CC} = \pm 5V$, $R_L = 2K\Omega$, $V_O = \pm 2V$	See ⁽³⁾	10		V/mV	4, 5, 6
		$V_{CC} = \pm 5V$, $R_L = 10K\Omega$, $V_O = \pm 2V$	See ⁽³⁾	10		V/mV	4, 5, 6
+V _{OP}	Output Voltage Swing	$R_L = 10K\Omega$, $V_{CM} = -20V$		+16		V	4, 5, 6
		$R_L = 2K\Omega$, $V_{CM} = -20V$		+15		V	4, 5, 6
-V _{OP}	Output Voltage Swing	$R_L = 10K\Omega$, $V_{CM} = 20V$			-16	V	4, 5, 6
		$R_L = 2K\Omega$, $V_{CM} = 20V$			-15	V	4, 5, 6

Submit Documentation Feedback

⁽¹⁾ Calculated parameter
(2) Calculated parameter
(3) Datalog reading of K = V/mV.

LM101AJAN Electrical Characteristics AC Parameters

The following conditions apply to all parameters, unless otherwise specified $% \left(1\right) =\left(1\right) \left(1$

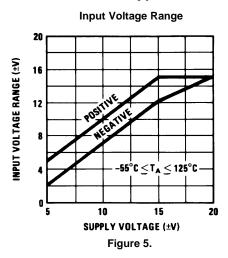
 $V_{CC}=\pm 20V,\ V_{CM}=0V,\ R_S=50\Omega$

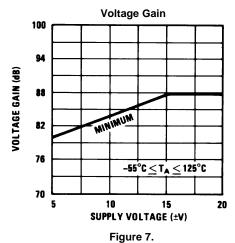
Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
+SR	Slew Rate	$A_V = 1$, $V_I = -5V$ to $+5V$		0.3		V/µS	7
-SR	Slew Rate	$A_V = 1$, $V_I = +5V$ to -5V		0.3		V/µS	7
TR _{TR}	Rise Time	$A_V = 1, V_I = 50 \text{mV}$			800	nS	7
TR _{OS}	Overshoot	$A_V = 1, V_I = 50 \text{mV}$			25	%	7
NI _{BB}	Noise Broadband	BW = 10Hz to 5KHz, $R_S = 0\Omega$			15	μV_{RMS}	7
NI _{PC}	Noise Popcorn	BW = 10Hz to 5KHz, $R_S = 100K\Omega$			80	μV_{PK}	7

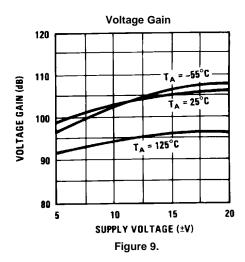
LM101AJAN Electrical Characteristics DC Parameters: Drift Values

The following conditions apply to all parameters, unless otherwise specified $% \left(1\right) =\left(1\right) \left(1$

 $V_{CC}=\pm 20V,\ V_{CM}=0V,\ R_S=50\Omega$


Delta calculations performed on JAN S devices at group B, Subgroup 5 only.


Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
V _{IO}	Input Offset Voltage	$V_{CM} = 0V$		-0.5	0.5	mV	1
± I _{IB}	Input Bias Current	$V_{CM} = 0V$, $R_S = 100K\Omega$		-7.5	7.5	nA	1


Product Folder Links: *LM101AJAN*

Typical Performance Characteristics LM101A

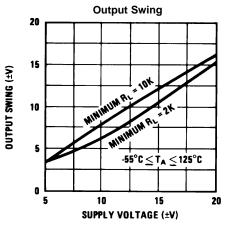
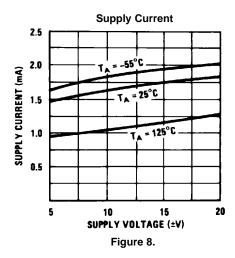
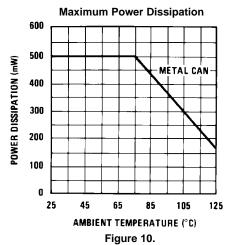




Figure 6.

Typical Performance Characteristics LM101A (continued)

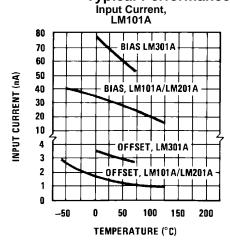


Figure 11.

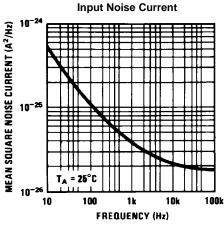


Figure 13.

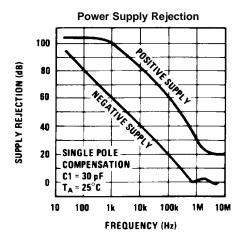
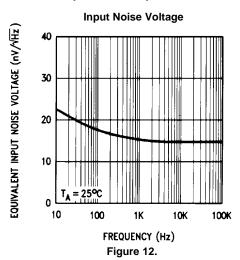
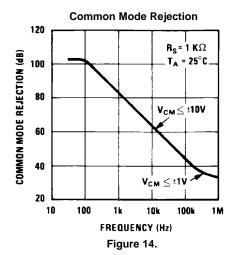
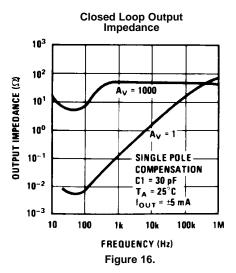
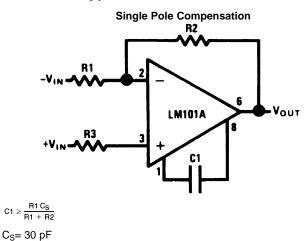
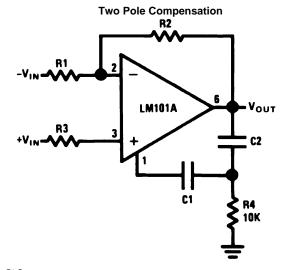





Figure 15.





Typical Performance Characteristics for Various Compensation Circuits⁽¹⁾

 $C1 \ge \frac{R1 C_S}{R1 + R2}$ $C_S = 30 \text{ pF}$ C2 = 10 C1

Figure 17.

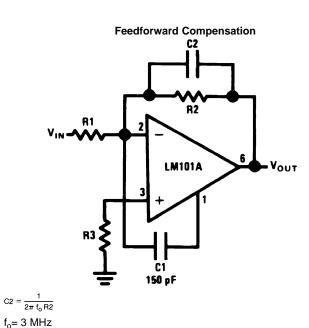
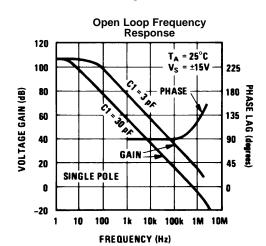
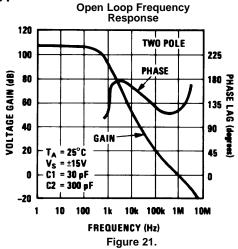
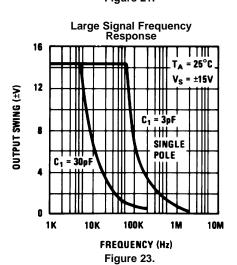
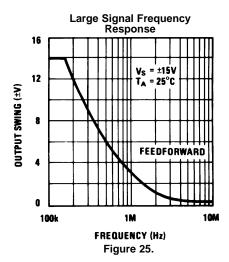


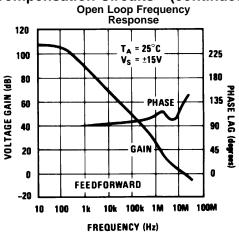
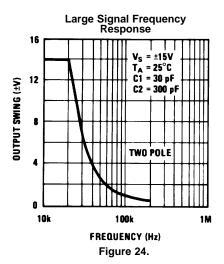
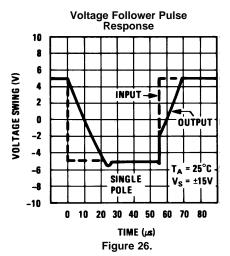
Figure 19.

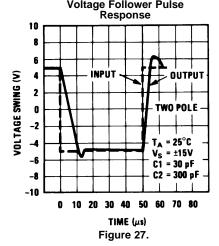



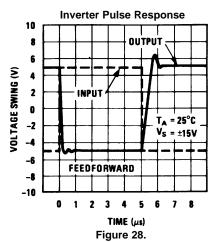

Figure 18.


Figure 20.

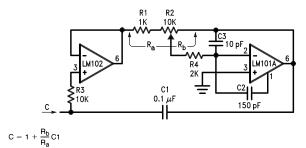
Typical Performance Characteristics for Various Compensation Circuits⁽¹⁾ (continued)

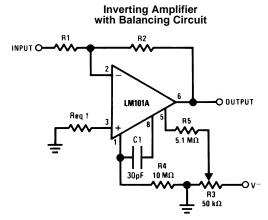





Figure 22.

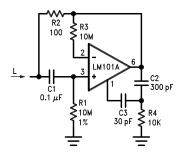


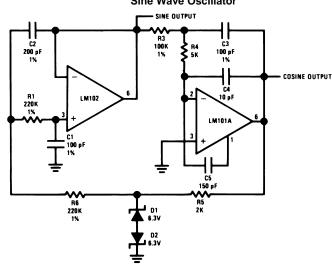
Typical Performance Characteristics for Various Compensation Circuits⁽¹⁾ (continued) Voltage Follower Pulse Response Inverter Pulse Response



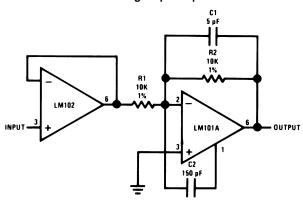


TYPICAL APPLICATIONS(2)

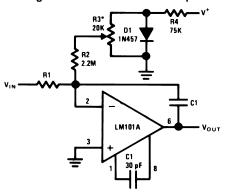

Variable Capacitance Multiplier


†May be zero or equal to parallel combination of R1 and R2 for minimum offset.

Simulated Inductor


L ≃ R1 R2 C1 $R_S = R2$ $R_P = R1$

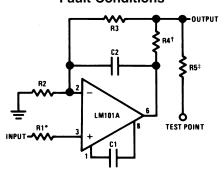
Sine Wave Oscillator



 $f_0 = 10 \text{ kHz}$

Fast Inverting Amplifier with High Input Impedance

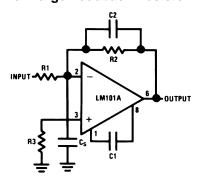
Integrator with Bias Current Compensation


*Adjust for zero integrator drift. Current drift typically 0.1 nA/°C over -55°C to +125°C temperature range.

Pin connections shown are for 8-pin packages.

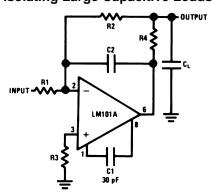
Application Hints⁽²⁾

Protecting Against Gross Fault Conditions



*Protects input

†Protects output


‡Protects output—not needed when R4 is used.

Compensating for Stray Input Capacitances or Large Feedback Resistor

$$C2 = \frac{\text{R1 C}_{\text{S}}}{\text{R2}}$$

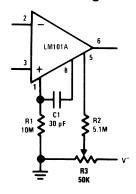
Isolating Large Capacitive Loads

Although the LM101A is designed for trouble free operation, experience has indicated that it is wise to observe certain precautions given below to protect the devices from abnormal operating conditions. It might be pointed out that the advice given here is applicable to practically any IC op amp, although the exact reason why may differ with different devices.

www.ti.com

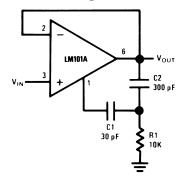
When driving either input from a low-impedance source, a limiting resistor should be placed in series with the input lead to limit the peak instantaneous output current of the source to something less than 100 mA. This is especially important when the inputs go outside a piece of equipment where they could accidentally be connected to high voltage sources. Large capacitors on the input (greater than 0.1 μ F) should be treated as a low source impedance and isolated with a resistor. Low impedance sources do not cause a problem unless their output voltage exceeds the supply voltage. However, the supplies go to zero when they are turned off, so the isolation is usually needed.

The output circuitry is protected against damage from shorts to ground. However, when the amplifier output is connected to a test point, it should be isolated by a limiting resistor, as test points frequently get shorted to bad places. Further, when the amplifier drives a load external to the equipment, it is also advisable to use some sort of limiting resistance to preclude mishaps.

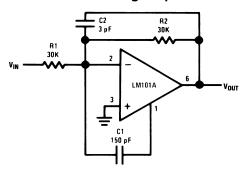

Precautions should be taken to insure that the power supplies for the integrated circuit never become reversed—even under transient conditions. With reverse voltages greater than 1V, the IC will conduct excessive current, fusing internal aluminum interconnects. If there is a possibility of this happening, clamp diodes with a high peak current rating should be installed on the supply lines. Reversal of the voltage between V⁺ and V⁻ will always cause a problem, although reversals with respect to ground may also give difficulties in many circuits.

The minimum values given for the frequency compensation capacitor are stable only for source resistances less than 10 k Ω , stray capacitances on the summing junction less than 5 pF and capacitive loads smaller than 100 pF. If any of these conditions are not met, it becomes necessary to overcompensate the amplifier with a larger compensation capacitor. Alternately, lead capacitors can be used in the feedback network to negate the effect of stray capacitance and large feedback resistors or an RC network can be added to isolate capacitive loads.

Although the LM101A is relatively unaffected by supply bypassing, this cannot be ignored altogether. Generally it is necessary to bypass the supplies to ground at least once on every circuit card, and more bypass points may be required if more than five amplifiers are used. When feed-forward compensation is employed, however, it is advisable to bypass the supply leads of each amplifier with low inductance capacitors because of the higher frequencies involved.

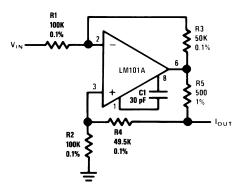

Typical Applications (3)

Standard Compensation and Offset Balancing Circuit


Fast Voltage Follower

Power Bandwidth: 15 kHz

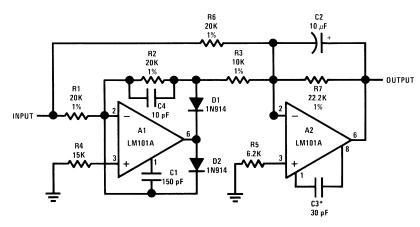
Slew Rate: 1V/µs


Fast Summing Amplifier

Power Bandwidth: 250 kHz Small Signal Bandwiidth: 3.5 MHz

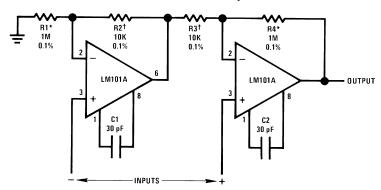
Slew Rate: 10V/µs

Bilateral Current Source


 $I_{OUT} = \frac{R3 \, V_{IN}}{R1 \, R5}$

R3 = R4 + R5

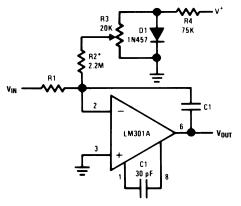
R1 = R2



Fast AC/DC Converter

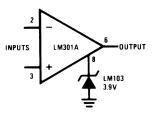
Feedforward compensation can be used to make a fast full wave rectifier without a filter.

Instrumentation Amplifier

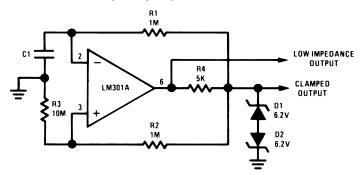


R1 = R4; R2 = R3

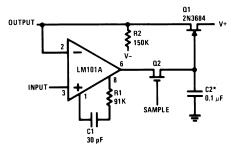
$$A_V = 1 + \frac{R1}{R2}$$


*,† Matching determines CMRR.

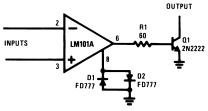
Integrator with Bias Current Compensation


*Adjust for zero integrator drift. Current drift typically 0.1 nA/°C over 0°C to +70°C temperature range.

Voltage Comparator for Driving RTL Logic or High Current Driver



Low Frequency Square Wave Generator



Low Drift Sample and Hold

*Polycarbonate-dielectric capacitor

REVISION HISTORY SECTION

Date Released	Revision	Section	Originator	Changes
01/05/06	A	New Release to corporate format	L. Lytle	1 MDS datasheets converted into one Corp. datasheet format. MJLM101A-X Rev 1A0 datasheet will be archived.
03/20/13	А	All	-	Changed layout of National Data Sheet to TI format

Product Folder Links: LM101AJAN

www.ti.com

23-Dec-2023

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
JL101ABCA	ACTIVE	CDIP	J	14	25	Non-RoHS & Green	Call TI	Level-1-NA-UNLIM	-55 to 125	JL101ABCA JM38510/10103BCA Q	Samples
JL101ABGA	ACTIVE	TO-99	LMC	8	20	RoHS & Green	Call TI	Level-1-NA-UNLIM	-55 to 125	JL101ABGA JM38510/10103BGA Q ACO JM38510/10103BGA Q >T	Samples
JL101ABPA	ACTIVE	CDIP	NAB	8	40	Non-RoHS & Green	Call TI	Level-1-NA-UNLIM	-55 to 125	JL101ABPA Q JM38510/ 10103BPA ACO 10103BPA >T	Samples
JM38510/10103BCA	ACTIVE	CDIP	J	14	25	Non-RoHS & Green	Call TI	Level-1-NA-UNLIM	-55 to 125	JL101ABCA JM38510/10103BCA Q	Samples
JM38510/10103BGA	ACTIVE	TO-99	LMC	8	20	RoHS & Green	Call TI	Level-1-NA-UNLIM	-55 to 125	JL101ABGA JM38510/10103BGA Q ACO JM38510/10103BGA Q >T	Samples
JM38510/10103BPA	ACTIVE	CDIP	NAB	8	40	Non-RoHS & Green	Call TI	Level-1-NA-UNLIM	-55 to 125	JL101ABPA Q JM38510/ 10103BPA ACO 10103BPA >T	Samples
M38510/10103BCA	ACTIVE	CDIP	J	14	25	Non-RoHS & Green	Call TI	Level-1-NA-UNLIM	-55 to 125	JL101ABCA JM38510/10103BCA Q	Samples
M38510/10103BGA	ACTIVE	TO-99	LMC	8	20	RoHS & Green	Call TI	Level-1-NA-UNLIM	-55 to 125	JL101ABGA JM38510/10103BGA Q ACO JM38510/10103BGA Q >T	Samples
M38510/10103BPA	ACTIVE	CDIP	NAB	8	40	Non-RoHS & Green	Call TI	Level-1-NA-UNLIM	-55 to 125	JL101ABPA Q JM38510/ 10103BPA ACO 10103BPA >T	Samples

⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

PACKAGE OPTION ADDENDUM

www.ti.com 23-Dec-2023

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

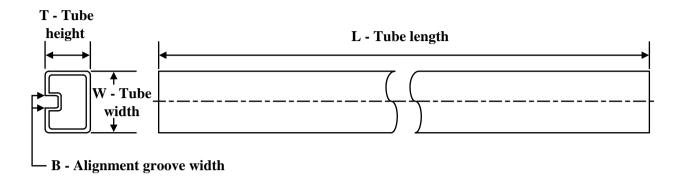
OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

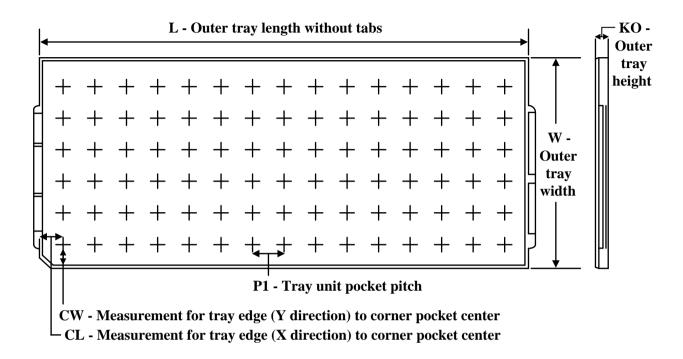

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

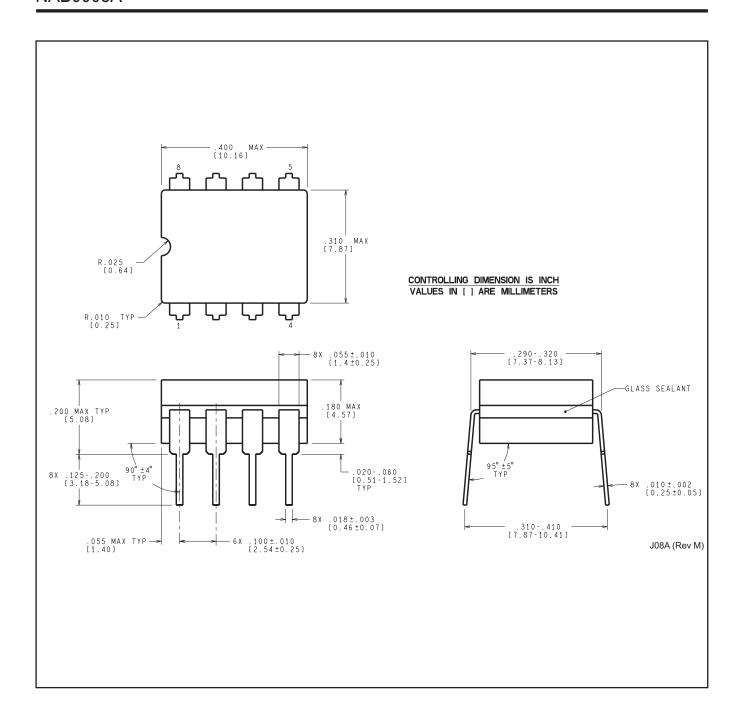
www.ti.com 9-Aug-2022

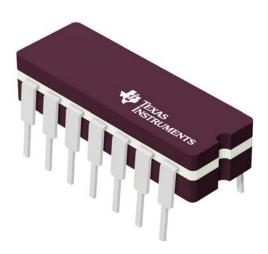
TUBE


*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
JL101ABCA	J	CDIP	14	25	506.98	15.24	13440	NA
JL101ABPA	NAB	CDIP	8	40	506.98	15.24	13440	NA
JM38510/10103BCA	J	CDIP	14	25	506.98	15.24	13440	NA
JM38510/10103BPA	NAB	CDIP	8	40	506.98	15.24	13440	NA
M38510/10103BCA	J	CDIP	14	25	506.98	15.24	13440	NA
M38510/10103BPA	NAB	CDIP	8	40	506.98	15.24	13440	NA

www.ti.com 9-Aug-2022

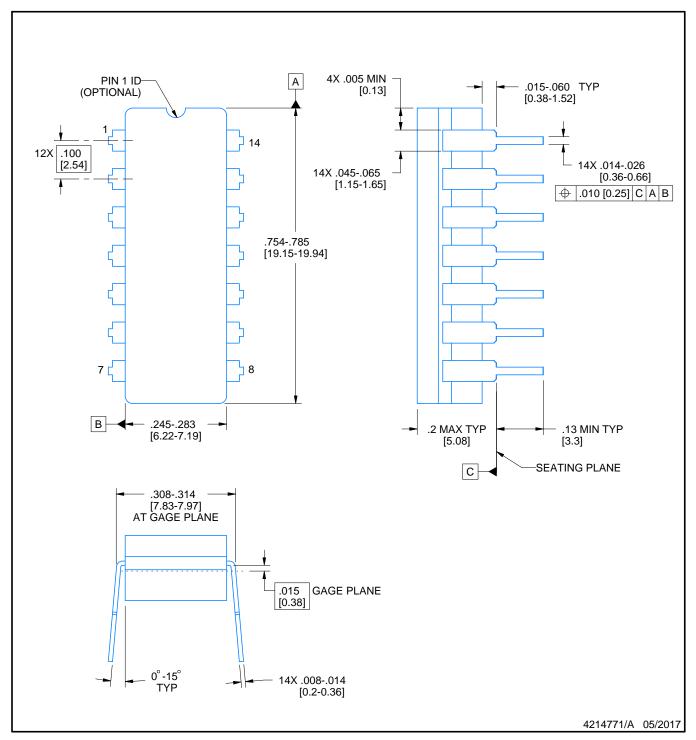

TRAY


Chamfer on Tray corner indicates Pin 1 orientation of packed units.

*All dimensions are nominal

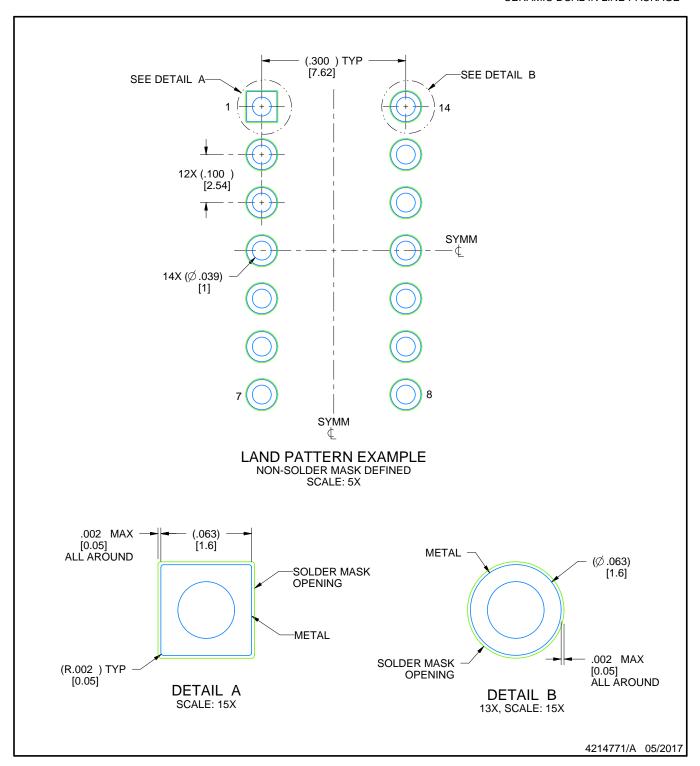
Device	Package Name	Package Type	Pins	SPQ	Unit array matrix	Max temperature (°C)	L (mm)	W (mm)	Κ0 (μm)	P1 (mm)	CL (mm)	CW (mm)
JL101ABGA	LMC	TO-CAN	8	20	2 X 10	150	126.49	61.98	8890	11.18	12.95	18.54
JM38510/10103BGA	LMC	TO-CAN	8	20	2 X 10	150	126.49	61.98	8890	11.18	12.95	18.54
M38510/10103BGA	LMC	TO-CAN	8	20	2 X 10	150	126.49	61.98	8890	11.18	12.95	18.54

CERAMIC DUAL IN LINE PACKAGE


Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

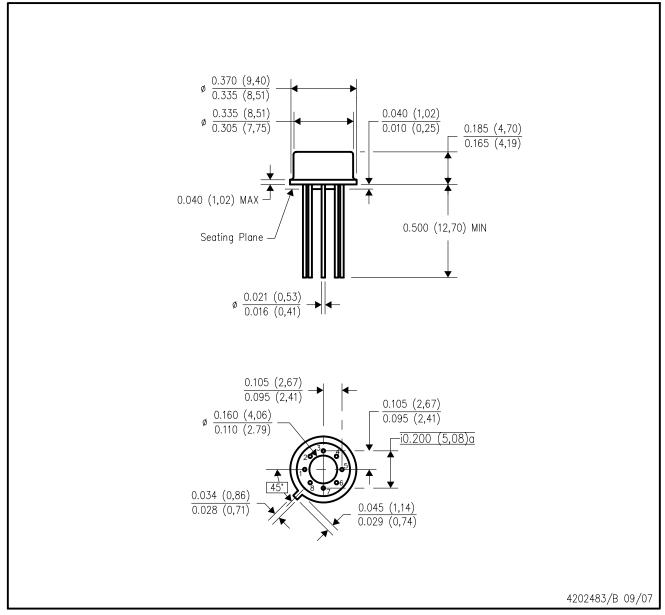
4040083-5/G

CERAMIC DUAL IN LINE PACKAGE



NOTES:

- 1. All controlling linear dimensions are in inches. Dimensions in brackets are in millimeters. Any dimension in brackets or parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This package is hermitically sealed with a ceramic lid using glass frit.
- His package is remitted by sealed with a ceramic its using glass mit.
 Index point is provided on cap for terminal identification only and on press ceramic glass frit seal only.
 Falls within MIL-STD-1835 and GDIP1-T14.



CERAMIC DUAL IN LINE PACKAGE

LMC (O-MBCY-W8)

METAL CYLINDRICAL PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Leads in true position within 0.010 (0,25) R @ MMC at seating plane.
- D. Pin numbers shown for reference only. Numbers may not be marked on package.
- E. Falls within JEDEC MO-002/TO-99.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated