

LM1877 Dual Audio Power Amplifier

Check for Samples: LM1877

FEATURES

- 2W/Channel
- -65 dB Ripple Rejection, Output Referred
- -65 dB Channel Separation, Output Referred
- Wide Supply Range, 6V-24V
- **Very Low Cross-Over Distortion**
- **Low Audio Band Noise**
- **AC Short Circuit Protected**
- Internal Thermal Shutdown

APPLICATIONS

- **Multi-Channel Audio Systems**
- Stereo Phonographs
- **Tape Recorders and Players**
- **AM-FM Radio Receivers**
- **Servo Amplifiers**
- **Intercom Systems**
- Automotive Products

Connection Diagram

DESCRIPTION

The LM1877 is a monolithic dual power amplifier designed to deliver 2W/channel continuous into 8Ω loads. The LM1877 is designed to operate with a low number of external components, and still provide flexibility for use in stereo phonographs, tape recorders and AM-FM stereo receivers. Each power amplifier is biased from a common internal regulator to provide high power supply rejection, and output Q centering. The LM1877 is internally compensated for all gains greater than 10.

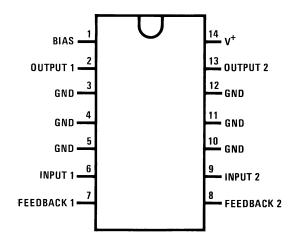
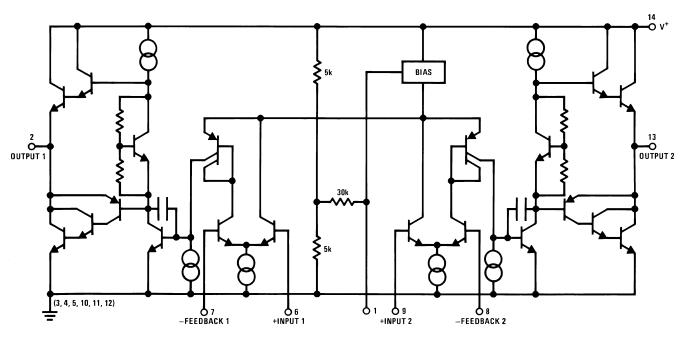



Figure 1. 14-Pin SOIC or PDIP (Top View) See NPA0014B or NFF0014A Package

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

Equivalent Schematic Diagram

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings (1)(2)

Absolute maximum ratings		
Supply Voltage		26V
Input Voltage		±0.7V
Operating Temperature	0°C to +70°C	
Storage Temperature		−65°C to +150°C
Junction Temperature		150°C
Lead Temperature	PDIP Package Soldering (10 sec.)	260°C
	SOIC Package Infrared (15 sec.)	220°C
	SOIC Package Vapor Phase (60 sec.)	215°C
Thermal Resistance	θ _{JC} (PDIP Package)	30°C/W
	θ _{JA} (PDIP Package)	79°C/W
	θ _{JC} (SOIC Package)	27°C/W
	θ _{JA} (SOIC Package)	114°C/W

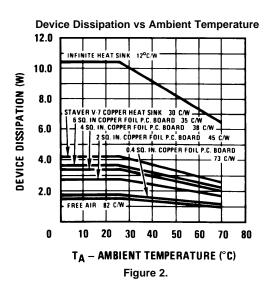
⁽¹⁾ Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits.

Submit Documentation Feedback

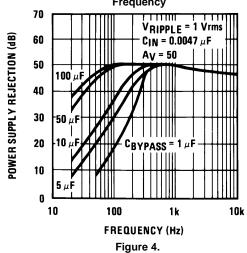
⁽²⁾ If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.

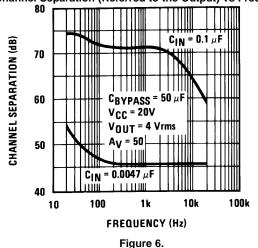
Electrical Characteristics

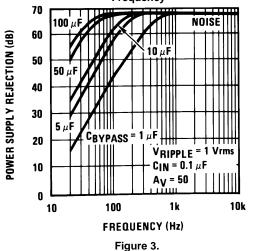
 V_S = 20V, T_A = 25°C⁽¹⁾ R_L = 8 Ω , A_V = 50 (34 dB) unless otherwise specified

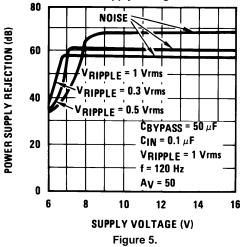

Parameter	Conditions	Min	Тур	Max	Units
Total Supply Current	$P_0 = 0W$		25	50	mA
Output Power	THD = 10%				
LM1877	$V_S = 20V, R_L = 8\Omega$	2.0			W/Ch
	$V_S = 12V$, $R_L = 8\Omega$		1.3		W/Ch
Total Harmonic Distortion	f = 1 kHz, V _S = 14V				
LM1877	P _O = 50 mW/Channel		0.075		%
	P _O = 500 mW/Channel		0.045		%
	P _O = 1 W/Channel		0.055		%
Output Swing	$R_L = 8\Omega$		V _S -6		Vp-p
Channel Separation	$C_F = 50 \mu F, C_{IN} = 0.1 \mu F,$				
	f = 1 kHz, Output Referred				
	$V_S = 20V$, $V_O = 4$ Vrms	-50	-7 0		dB
	$V_S = 7V$, $V_O = 0.5$ Vrms		-60		dB
PSRR Power Supply	$C_F = 50 \mu F, C_{IN} = 0.1 \mu F,$				
Rejection Ratio	f = 120 Hz, Output Referred				
	$V_S = 20V$, $V_{RIPPLE} = 1 Vrms$	-50	-65		dB
	$V_S = 7V$, $V_{RIPPLE} = 0.5 Vrms$		-40		dB
Noise	Equivalent Input Noise				
	$R_S = 0$, $C_{IN} = 0.1 \mu F$,		2.5		μV
	BW = 20 Hz-20 kHz, Output Noise Wideband				
	$R_S = 0$, $C_N = 0.1 \mu F$, $A_V 200$		0.80		mV
Open Loop Gain	$R_S = 0$, $f = 100 \text{ kHz}$, $R_L = 8\Omega$		70		dB
Input Offset Voltage			15		mV
Input Bias Current			50		nA
Input Impedance	Open Loop		4		МΩ
DC Output Level	tput Level $V_S = 20V$ 9 10 11		11	V	
Slew Rate			2.0		V/µs
Power Bandwidth			65		kHz
Current Limit			1.0		Α

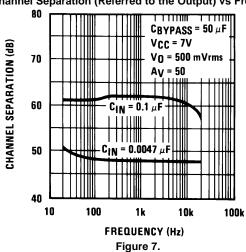
⁽¹⁾ For operation at ambient temperature greater than 25°C, the LM1877 must be derated based on a maximum 150°C junction temperature.

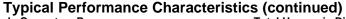

Product Folder Links: LM1877

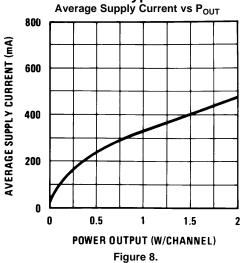

Typical Performance Characteristics

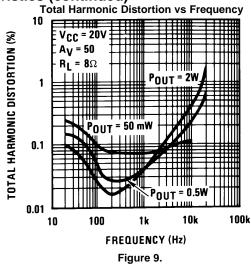

Power Supply Rejection Ratio (Referred to the Output) vs Frequency

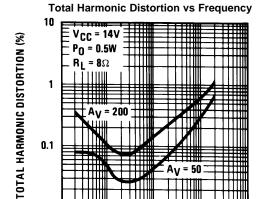

Channel Separation (Referred to the Output) vs Frequency

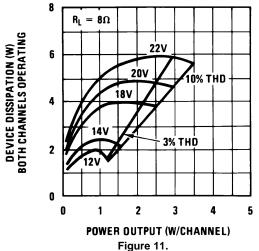

Power Supply Rejection Ratio (Referred to the Output) vs Frequency


Power Supply Rejection Ratio (Referred to the Output) vs Supply Voltage




Channel Separation (Referred to the Output) vs Frequency



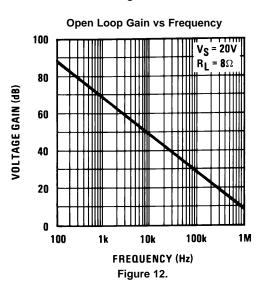


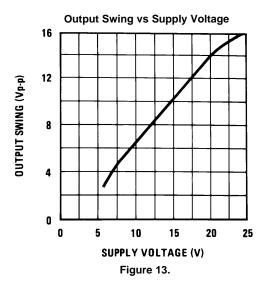
0.01

10

100

Power Dissipation (W) Both Channels Operating





1k

10k

100k

Typical Applications

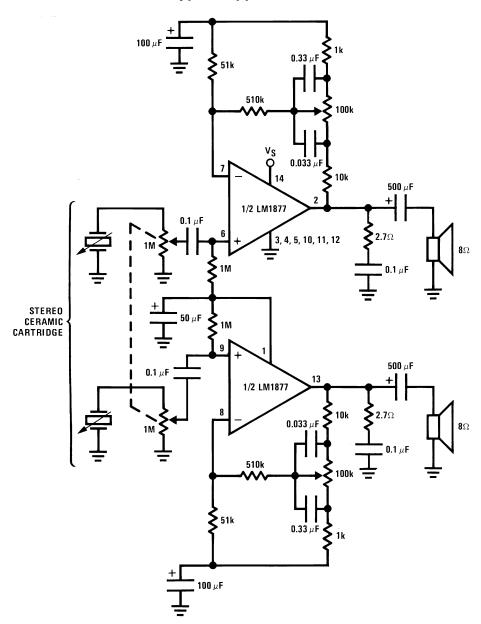
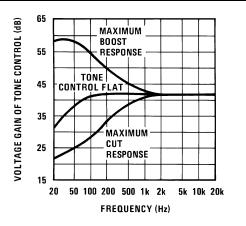



Figure 14. Stereo Phonograph Amplifier with Bass Tone Control

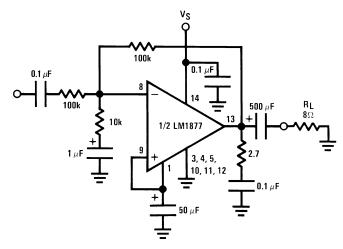


Figure 15. Frequency Response of Bass Tone Control

Figure 16. Inverting Unity Gain Amplifier

Figure 17. Stereo Amplifier with $A_V = 200$

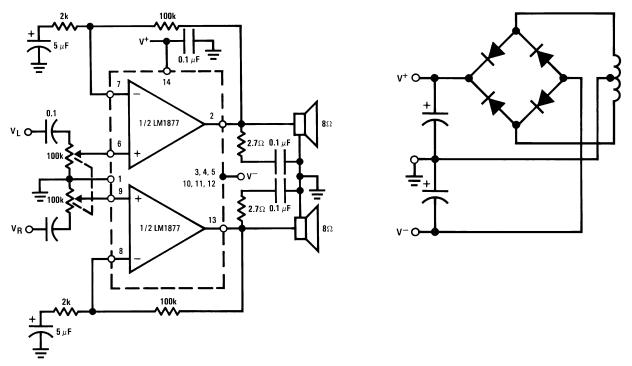


Figure 18. Non-Inverting Amplifier Using Split Supply

Figure 19. Typical Split Supply

REVISION HISTORY

CI	hanges from Revision A (April 2013) to Revision B	Page
•	Changed layout of National Data Sheet to TI format	7

Copyright © 1995–2013, Texas Instruments Incorporated

www.ti.com 11-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
						(4)	(5)		
LM1877MX-9/NOPB	Active	Production	SOIC (NPA) 14	1000 LARGE T&R	Yes	SN	Level-3-260C-168 HR	0 to 70	LM1877M -9
LM1877MX-9/NOPB.B	Active	Production	SOIC (NPA) 14	1000 LARGE T&R	Yes	SN	Level-3-260C-168 HR	0 to 70	LM1877M -9

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

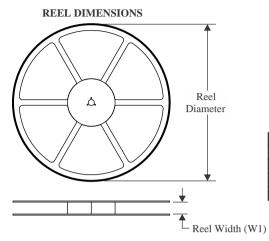
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

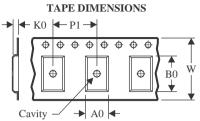
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

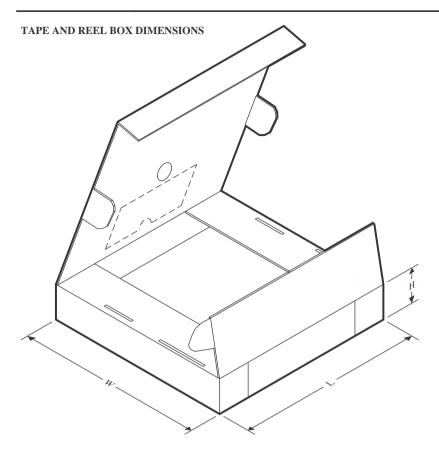

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE MATERIALS INFORMATION

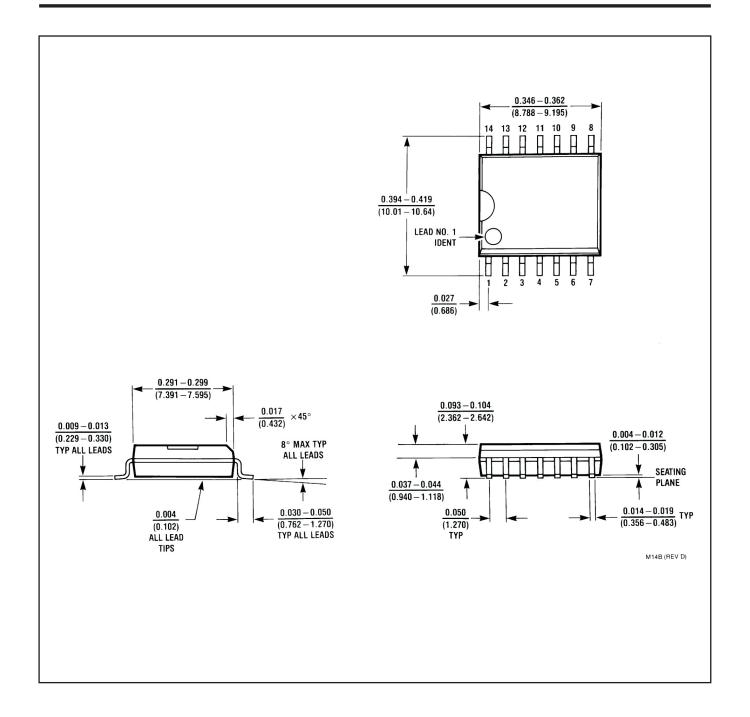
www.ti.com 31-Oct-2024


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal


Device	U	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM1877MX-9/NOPB	SOIC	NPA	14	1000	330.0	16.4	10.9	9.5	3.2	12.0	16.0	Q1

www.ti.com 31-Oct-2024

*All dimensions are nominal

	Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
I	LM1877MX-9/NOPB	SOIC	NPA	14	1000	356.0	356.0	36.0	

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025