Documents InSTRUMENTS

LM2585 4-V to 40-V, 3-A Step-Up Wide $\mathrm{V}_{\text {IN }}$ Flyback Converter

1 Features

- Requires Few External Components
- Family of Standard Inductors and Transformers
- NPN Output Switches 3 A, Can Stand Off 65 V
- Wide Input Voltage Range: 4 V to 40 V
- Current-mode Operation for Improved Transient Response, Line Regulation, and Current Limit
- $100-\mathrm{kHz}$ Switching Frequency
- Internal Soft-Start Function Reduces In-rush Current During Start-up
- Output Transistor Protected by Current Limit, Undervoltage Lockout, and Thermal Shutdown
- System Output Voltage Tolerance of $\pm 4 \%$ Maximum Over Line and Load Conditions
- Create a Custom Design Using the LM2585 With the WEBENCH ${ }^{\circledR}$ Power Designer

2 Applications

- Flyback Regulator
- Multiple-output Regulator
- Simple Boost Regulator
- Forward Converter

3 Description

The LM2585 series of regulators are monolithic integrated circuits specifically designed for flyback, step-up (boost), and forward converter applications. The device is available in 4 different output voltage versions: $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$, and adjustable.
Requiring a minimum number of external components, these regulators are cost effective and simple to use. Included in the datasheet are typical circuits of boost and flyback regulators. Also listed are selector guides for diodes and capacitors and a family of standard inductors and flyback transformers designed to work with these switching regulators.
The power switch is a 3-A NPN device that can stand off 65 V . Protecting the power switch are current and thermal limiting circuits, and an undervoltage lockout circuit. This IC contains a $100-\mathrm{kHz}$ fixed-frequency internal oscillator that permits the use of small magnetics. Other features include soft start mode to reduce in-rush current during start-up, current mode control for improved rejection of input voltage and output load transients and cycle-by-cycle current limiting. An output voltage tolerance of $\pm 4 \%$, within specified input voltages and output load conditions, is specified for the power supply system.

Device Information ${ }^{(1)}$

PART NUMBER	PACKAGE	BODY SIZE (NOM)
LM2585	DDPAK/ TO-263 (5)	$10.16 \mathrm{~mm} \times 8.42 \mathrm{~mm}$
	TO-220 (5)	$14.986 \mathrm{~mm} \times 10.16 \mathrm{~mm}$

(1) For all available packages, see the orderable addendum at the end of the data sheet.

12-V Flyback Regulator Design Example

Table of Contents

1 Features 1
2 Applications 1
3 Description 1
4 Revision History 2
5 Pin Configurations 3
6 Specifications 4
6.1 Absolute Maximum Ratings 4
6.2 ESD Ratings 4
6.3 Recommended Operating Ratings 4
6.4 Thermal Information 5
6.5 Electrical Characteristics: 3.3 V 5
6.6 Electrical Characteristics: 5 V 6
6.7 Electrical Characteristics: 12-V 6
6.8 Electrical Characteristics: Adjustable 7
6.9 Electrical Characteristics: All Versions 8
6.10 Typical Characteristics 9
7 Detailed Description 11
7.1 Overview 11
7.2 Functional Block Diagram 13
7.3 Feature Description 13
8 Application and Implementation 15
8.1 Application Information 15
8.2 Typical Applications 15
8.3 Additional Application Examples 27
9 Layout 29
9.1 Layout Guidelines 29
9.2 Heat Sink/Thermal Considerations 29
10 Device and Documentation Support 31
10.1 Device Support. 31
10.2 Receiving Notification of Documentation Updates 31
10.3 Community Resources. 31
10.4 Trademarks 31
10.5 Electrostatic Discharge Caution. 31
10.6 Glossary 32
11 Mechanical, Packaging, and Orderable Information 32

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Revision F (April 2013) to Revision G Page

- Editorial changes only, no technical revisions; add links for WEBENCH 1
Changes from Revision E (April 2013) to Revision F Page
- Changed layout of National Semiconductor data sheet to TI format 30

5 Pin Configurations

KTT Package
5-Pin DDPAK/TO-263
Top View

NDH Package

5-Pin TO-220
Side View

KTT Package
5-Pin DDPAK/TO-263
Side View

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) ${ }^{(1)(2)}$

Input Voltage	$-0.4 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 45 \mathrm{~V}$
Switch Voltage	$-0.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{SW}} \leq 65 \mathrm{~V}$
Switch Current ${ }^{(3)}$	Internally Limited
Compensation Pin Voltage	$-0.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{COMP}} \leq 2.4 \mathrm{~V}$
Feedback Pin Voltage	$-0.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{FB}} \leq 2 \mathrm{~V}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature	$260^{\circ} \mathrm{C}$
Maximum Junction Temperature ${ }^{(4)}$ (Soldering, 10 sec.)	$150^{\circ} \mathrm{C}$
Power Dissipation ${ }^{(4)}$	Internally Limited

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating ratings indicate conditions the device is intended to be functional, but device parameter specifications may not be specified under these conditions. For specifications and test conditions see Electrical Characteristics: All Versions .
(2) If Military/Aerospace specified devices are required, contact the Texas Instruments Sales Office/ Distributors for availability and specifications.
(3) Note that switch current and output current are not identical in a step-up regulator. Output current cannot be internally limited when the LM2585 is used as a step-up regulator. To prevent damage to the switch, the output current must be externally limited to 3 A . However, output current is internally limited when the LM2585 is used as a flyback regulator (see Typical Flyback Regulator Applications for more information).
(4) The junction temperature of the device $\left(T_{J}\right)$ is a function of the ambient temperature $\left(T_{A}\right)$, the junction-to-ambient thermal resistance $\left(\theta_{\mathrm{JA}}\right)$, and the power dissipation of the device $\left(\mathrm{P}_{\mathrm{D}}\right)$. A thermal shutdown will occur if the temperature exceeds the maximum junction temperature of the device: $\mathrm{P}_{\mathrm{D}} \times \theta_{\mathrm{JA}}+\mathrm{T}_{\mathrm{A}(\text { MAX })} \geq \mathrm{T}_{\mathrm{J}(\mathrm{MAX})}$. For a safe thermal design, check that the maximum power dissipated by the device is less than: $\left.P_{D} \leq\left[T_{J(M A X)}-T_{A(M A X)}\right)\right] / \theta_{J A}$. When calculating the maximum allowable power dissipation, derate the maximum junction temperature-this ensures a margin of safety in the thermal design.

6.2 ESD Ratings

		VALUE	UNIT	
$\mathrm{V}_{(\mathrm{ESD})}$	Electrostatic discharge (minimum)	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ${ }^{(1)}$ $(\mathrm{C}=100 \mathrm{pF}, \mathrm{R}=1.5 \mathrm{k} \Omega)$	2000	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Ratings

Supply Voltage	$4 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}$
Output Switch Voltage	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{SW}} \leq 60 \mathrm{~V}$
Output Switch Current	$\mathrm{I}_{\mathrm{SW}} \leq 3 \mathrm{~A}$
Junction Temperature Range	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$

6.4 Thermal Information

THERMAL METRIC ${ }^{(1)}$		LM2585		UNIT
		KTT (DDPAK/TO-263	NDH (TO-220)	
		5 PINS	5 PINS	
$\mathrm{R}_{\text {өJA }}$	Junction-to-ambient thermal resistance	$56^{(2)}$	$65^{(3)}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		$35^{(4)}$	$45^{(5)}$	
		$26^{(6)}$	-	
$\mathrm{R}_{\theta \text { JC }}$	Junction-to-case thermal resistance	2	2	${ }^{\circ} \mathrm{C} / \mathrm{W}$

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC package thermal metrics application report.
(2) Junction-to-ambient thermal resistance for the 5-lead TO-263 mounted horizontally against a PC board area of 0.136 square inches (the same size as the DDPAK/TO-263 package) of 1 oz . (0.0014 in . thick) copper.
(3) Junction-to-ambient thermal resistance (no external heat sink) for the 5-lead TO-220 package mounted vertically, with $1 / 2$ inch leads in a socket, or on a PC board with minimum copper area.
(4) Junction-to-ambient thermal resistance for the 5-lead TO-263 mounted horizontally against a PC board area of 0.4896 square inches (3.6 times the area of the DDPAK/TO-263 package) of 1 oz. (0.0014 in. thick) copper.
(5) Junction-to-ambient thermal resistance (no external heat sink) for the 5-lead TO-220 package mounted vertically, with $1 / 2$ inch leads soldered to a PC board containing approximately 4 square inches of (1 oz.) copper area surrounding the leads.
(6) Junction-to-ambient thermal resistance for the 5-lead TO-263 mounted horizontally against a PC board copper area of 1.0064 square inches (7.4 times the area of the DDPAK/TO-2633 package) of 1 oz . (0.0014 in . thick) copper. Additional copper area reduces thermal resistance further.

6.5 Electrical Characteristics: 3.3 V

Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those in bold type face apply over full Operating Temperature Range. Unless otherwise specified, $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$.

PARAMETER		TEST CONDITIONS	TYP	MIN	MAX	UNIT
SYSTEM PARAMETERS Test Circuit of Figure $47{ }^{(1)}$						
$\mathrm{V}_{\text {OUT }}$	Output Voltage	$\begin{aligned} & \mathrm{V}_{\text {IN }}=4 \mathrm{~V} \text { to } 12 \mathrm{~V} \\ & \mathrm{I}_{\text {LOAD }}=0.3 \mathrm{~A} \text { to } 1.2 \mathrm{~A} \end{aligned}$	3.3	3.17/3.14	3.43/3.46	V
$\Delta \mathrm{V}_{\text {OUT }} /$ $\Delta \mathrm{V}_{\mathrm{IN}}$	Line Regulation	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=4 \mathrm{~V} \text { to } 12 \mathrm{~V} \\ & \mathrm{I}_{\text {LOAD }}=0.3 \mathrm{~A} \end{aligned}$	20		50/100	mV
$\Delta \mathrm{V}_{\text {OUT }} /$ $\Delta I_{\text {LOAD }}$	Load Regulation	$\begin{aligned} & \mathrm{V}_{\text {IN }}=12 \mathrm{~V} \\ & \mathrm{I}_{\text {LOAD }}=0.3 \mathrm{~A} \text { to } 1.2 \mathrm{~A} \end{aligned}$	20		50/100	mV
η	Efficiency	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.3 \mathrm{~A}$	76\%			
UNIQUE DEVICE PARAMETERS ${ }^{(2)}$						
$\mathrm{V}_{\text {REF }}$	Output Reference Voltage	Measured at Feedback Pin $V_{\text {COMP }}=1.0 \mathrm{~V}$	3.3	3.242/3.234	3.358/3.366	V
$\Delta \mathrm{V}_{\text {REF }}$	Reference Voltage Line Regulation	$\mathrm{V}_{\mathrm{IN}}=4 \mathrm{~V}$ to 40 V	2.0			mV
G_{M}	Error Amp Transconductance	$\begin{aligned} & \mathrm{I}_{\mathrm{COMP}}=-30 \mu \mathrm{~A} \text { to }+30 \mu \mathrm{~A} \\ & \mathrm{~V}_{\text {COMP }}=1.0 \mathrm{~V} \end{aligned}$	1.193	0.678	2.259	mmho
Avol	Error Amp Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{COMP}}=0.5 \mathrm{~V} \text { to } 1.6 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{COMP}}=1.0 \mathrm{M} \Omega \end{aligned}$	260	151/75		V/V

[^0]
6.6 Electrical Characteristics: 5 V

PARAMETER		TEST CONDITIONS	TYP	MIN	MAX	UNIT
SYSTEM PARAMETERS Test Circuit of Figure $47{ }^{(1)}$						
$\mathrm{V}_{\text {OUT }}$	Output Voltage	$\begin{aligned} & \mathrm{V}_{\text {IN }}=4 \mathrm{~V} \text { to } 12 \mathrm{~V} \\ & \mathrm{I}_{\text {LOAD }}=0.3 \mathrm{~A} \text { to } 1.1 \mathrm{~A} \end{aligned}$	5.0	4.80/4.75	5.20/5.25	V
$\Delta \mathrm{V}_{\text {OUT }} /$ $\Delta \mathrm{V}_{\mathrm{IN}}$	Line Regulation	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=4 \mathrm{~V} \text { to } 12 \mathrm{~V} \\ & \mathrm{I}_{\text {LOAD }}=0.3 \mathrm{~A} \end{aligned}$	20		50/100	mV
$\Delta \mathrm{V}_{\text {OUT }} /$ $\Delta I_{\text {LOAD }}$	Load Regulation	$\begin{aligned} & \mathrm{V}_{I N}=12 \mathrm{~V} \\ & \mathrm{I}_{\text {LOAD }}=0.3 \mathrm{~A} \text { to } 1.1 \mathrm{~A} \end{aligned}$	20		50/100	mV
η	Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.6 \mathrm{~A}$	80			\%
UNIQUE DEVICE PARAMETERS ${ }^{(2)}$						
$\mathrm{V}_{\text {REF }}$	Output Reference Voltage	Measured at Feedback Pin $\mathrm{V}_{\text {COMP }}=1.0 \mathrm{~V}$	5.0	4.913/4.900	5.088/5.100	V
$\Delta \mathrm{V}_{\text {REF }}$	Reference Voltage Line Regulation	$\mathrm{V}_{\mathrm{IN}}=4 \mathrm{~V}$ to 40 V	3.3			mV
G_{M}	Error Amp Transconductance	$\begin{aligned} & \mathrm{I}_{\mathrm{COMP}}=-30 \mu \mathrm{~A} \text { to }+30 \mu \mathrm{~A} \\ & \mathrm{~V}_{\text {COMP }}=1.0 \mathrm{~V} \end{aligned}$	0.750	0.447	1.491	mmho
Avol	Error Amp Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{COMP}}=0.5 \mathrm{~V} \text { to } 1.6 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{COMP}}=1.0 \mathrm{M} \Omega{ }^{(3)} \end{aligned}$	165	99/49		V/V

(1) External components such as the diode, inductor, input and output capacitors can affect switching regulator performance. When the LM2585 is used as shown in Figure 47 and Figure 48, system performance will be as specified by the system parameters.
(2) All room temperature limits are 100% production tested, and all limits at temperature extremes are specified via correlation using standard Statistical Quality Control (SQC) methods.
(3) A $1-\mathrm{M} \Omega$ resistor is connected to the compensation pin (which is the error amplifier output) to ensure accuracy in measuring $A_{V o l}$.

6.7 Electrical Characteristics: 12-V

	PARAMETER	TEST CONDITIONS	TYP	MIN	MAX	UNIT
SYSTEM PARAMETERS Test Circuit of Figure $48{ }^{(1)}$						
$\mathrm{V}_{\text {OUT }}$	Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=4 \mathrm{~V} \text { to } 10 \mathrm{~V} \\ & \mathrm{I}_{\text {LOAD }}=0.2 \mathrm{~A} \text { to } 0.8 \mathrm{~A} \end{aligned}$	12.0	11.52/11.40	12.48/12.60	V
$\Delta \mathrm{V}_{\text {OUT }} /$	Line Regulation	$\mathrm{V}_{\text {IN }}=4 \mathrm{~V}$ to 10 V	20		100/200	mV
$\Delta \mathrm{V}_{\mathrm{IN}}$ $\Delta \mathrm{V}_{\text {OUT }}$	Load Regulation	$\begin{aligned} & \mathrm{I}_{\mathrm{LOAD}}=0.2 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=10 \mathrm{~V} \end{aligned}$	20		100/200	mV
$\begin{aligned} & \Delta I_{\text {LOAD }} \\ & \eta \end{aligned}$	Efficiency	$\begin{aligned} & \mathrm{I}_{\text {LOAD }}=0.2 \mathrm{~A} \text { to } 0.8 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=10 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.6 \mathrm{~A} \end{aligned}$	93\%			
UNIQUE DEVICE PARAMETERS ${ }^{(2)}$						
$\mathrm{V}_{\text {REF }}$	Output Reference Voltage	Measured at Feedback Pin $V_{\text {COMP }}=1.0 \mathrm{~V}$	12.0	11.79/11.76	12.21/12.24	V
$\Delta \mathrm{V}_{\text {REF }}$	Reference Voltage Line Regulation	$\mathrm{V}_{\mathrm{IN}}=4 \mathrm{~V}$ to 40 V	7.8			mV
G_{M}	Error Amp Transconductance	$\begin{aligned} & \mathrm{I}_{\text {COMP }}=-30 \mu \mathrm{~A} \text { to }+30 \mu \mathrm{~A} \\ & \mathrm{~V}_{\text {COMP }}=1.0 \mathrm{~V} \end{aligned}$	0.328	0.186	0.621	mmho
$\mathrm{A}_{\mathrm{VOL}}$	Error Amp Voltage Gain	$\begin{aligned} & \mathrm{V}_{\text {COMP }}=0.5 \mathrm{~V} \text { to } 1.6 \mathrm{~V} \\ & \mathrm{R}_{\text {COMP }}=1.0 \mathrm{M} \Omega \end{aligned}$	70	41/21		V/V

[^1]
6.8 Electrical Characteristics: Adjustable

PARAMETER		TEST CONDITIONS	TYP	MIN	MAX	UNIT
SYSTEM PARAMETERS Test Circuit of Figure $48{ }^{(1)}$						
$\mathrm{V}_{\text {OUT }}$	Output Voltage	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{IN}}=4 \mathrm{~V} \text { to } 10 \mathrm{~V} \\ \mathrm{I}_{\text {LOAD }}=0.2 \mathrm{~A} \text { to } 0.8 \mathrm{~A} \\ \hline \end{array}$	12.0	11.52/11.40	12.48/12.60	V
$\Delta \mathrm{V}_{\text {OUT }} /$ $\Delta V_{\text {IN }}$	Line Regulation	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=4 \mathrm{~V} \text { to } 10 \mathrm{~V} \\ & \mathrm{I}_{\text {LOAD }}=0.2 \mathrm{~A} \end{aligned}$	20		100/200	mV
$\Delta V_{\text {OUT/ }}$ $\Delta l_{\text {LOAD }}$	Load Regulation	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V} \\ & \mathrm{I}_{\text {LOAD }}=0.2 \mathrm{~A} \text { to } 0.8 \mathrm{~A} \end{aligned}$	20		100/200	mV
η	Efficiency	$\mathrm{V}_{\text {IN }}=10 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.6 \mathrm{~A}$	93\%			
UNIQUE DEVICE PARAMETERS ${ }^{(2)}$						
$\mathrm{V}_{\text {REF }}$	Output Reference Voltage	Measured at Feedback Pin $V_{\text {COMP }}=1.0 \mathrm{~V}$	1.230	1.208/1.205	1.252/1.255	V
$\Delta \mathrm{V}_{\text {REF }}$	Reference Voltage Line Regulation	$\mathrm{V}_{\text {IN }}=4 \mathrm{~V}$ to 40 V	1.5			mV
G_{M}	Error Amp Transconductance	$\begin{aligned} & \mathrm{I}_{\text {COMP }}=-30 \mu \mathrm{~A} \text { to }+30 \mu \mathrm{~A} \\ & \mathrm{~V}_{\text {COMP }}=1.0 \mathrm{~V} \end{aligned}$	3.200	1.800	6.000	mmho
Avol	Error Amp Voltage Gain	$\begin{aligned} & \mathrm{V}_{\text {COMP }}=0.5 \mathrm{~V} \text { to } 1.6 \mathrm{~V} \\ & \mathrm{R}_{\text {COMP }}=1.0 \mathrm{M} \Omega \end{aligned}$	670	400/200		V/V
I_{B}	Error Amp Input Bias Current	$\mathrm{V}_{\text {COMP }}=1.0 \mathrm{~V}$	125		425/600	nA

(1) External components such as the diode, inductor, input and output capacitors can affect switching regulator performance. When the LM2585 is used as shown in Figure 47 and Figure 48, system performance will be as specified by the system parameters.
(2) All room temperature limits are 100% production tested, and all limits at temperature extremes are specified via correlation using standard Statistical Quality Control (SQC) methods.
(3) $\mathrm{A} 1-\mathrm{M} \Omega$ resistor is connected to the compensation pin (which is the error amplifier output) to ensure accuracy in measuring $A_{\text {vol }}$

6.9 Electrical Characteristics: All Versions

PARAMETER		TEST CONDITIONS	TYP	MIN	MAX	UNIT
COMMON DEVICE PARAMETERS for all versions ${ }^{(1)}$						
Is	Input Supply Current	(Switch Off) ${ }^{(2)}$	11		15.5/16.5	mA
		$\mathrm{I}_{\text {SWITCH }}=1.8 \mathrm{~A}$	50		100/115	mA
V_{UV}	Input Supply Undervoltage Lockout	$\mathrm{R}_{\text {LOAD }}=100 \Omega$	3.30	3.05	3.75	V
f_{0}	Oscillator Frequency	Measured at Switch Pin $\begin{aligned} & R_{\text {LOAD }}=100 \Omega \\ & \mathrm{~V}_{\text {COMP }}=1.0 \mathrm{~V} \end{aligned}$	100	85/75	115/125	kHz
f_{Sc}	Short-Circuit Frequency	Measured at Switch Pin $R_{\text {LOAD }}=100 \Omega$ $V_{\text {FEEDBACK }}=1.15 \mathrm{~V}$	25			kHz
$\mathrm{V}_{\text {EAO }}$	Error Amplifier Output Swing	Upper Limit ${ }^{(3)}$	2.8	2.6/2.4		V
		Lower Limit ${ }^{(2)}$	0.25		0.40/0.55	V
$l_{\text {eao }}$	Error Amp Output Current (Source or Sink)	See ${ }^{(4)}$	165	110/70	260/320	$\mu \mathrm{A}$
ISS	Soft Start Current	$\begin{aligned} & \mathrm{V}_{\text {FEEDBACK }}=0.92 \mathrm{~V} \\ & \mathrm{~V}_{\text {COMP }}=1.0 \mathrm{~V} \end{aligned}$	11.0	8.0/7.0	17.0/19.0	$\mu \mathrm{A}$
D	Maximum Duty Cycle	$\mathrm{R}_{\text {LOAD }}=100 \Omega^{(3)}$	98	93/90		\%
I_{L}	Switch Leakage Current	Switch Off $\mathrm{V}_{\text {SWITCH }}=60 \mathrm{~V}$	15		300/600	$\mu \mathrm{A}$
$\mathrm{V}_{\text {Sus }}$	Switch Sustaining Voltage	$\mathrm{dV} / \mathrm{dT}=1.5 \mathrm{~V} / \mathrm{ns}$		65		V
$\mathrm{V}_{\text {SAT }}$	Switch Saturation Voltage	$\mathrm{I}_{\text {SWITCH }}=3.0 \mathrm{~A}$	0.45		0.65/0.9	V
I_{CL}	NPN Switch Current Limit		4	3	7.0	A

(1) All room temperature limits are 100% production tested, and all limits at temperature extremes are specified via correlation using standard Statistical Quality Control (SQC) methods.
(2) To measure this parameter, the feedback voltage is set to a high value, depending on the output version of the device, to force the error amplifier output low. Adj: $\mathrm{V}_{\mathrm{FB}}=1.41 \mathrm{~V} ; 3.3 \mathrm{~V}: \mathrm{V}_{\mathrm{FB}}=3.8 \mathrm{~V} ; 5 \mathrm{~V}: \mathrm{V}_{\mathrm{FB}}=5.75 \mathrm{~V} ; 12 \mathrm{~V}: \mathrm{V}_{\mathrm{FB}}=13.8 \mathrm{~V}$.
(3) To measure this parameter, the feedback voltage is set to a low value, depending on the output version of the device, to force the error amplifier output high. Adj: $\mathrm{V}_{\mathrm{FB}}=1.05 \mathrm{~V} ; 3.3 \mathrm{~V}: \mathrm{V}_{\mathrm{FB}}=2.81 \mathrm{~V} ; 5 \mathrm{~V}: \mathrm{V}_{\mathrm{FB}}=4.25 \mathrm{~V} ; 12 \mathrm{~V}: \mathrm{V}_{\mathrm{FB}}=10.2 \mathrm{~V}$.
(4) To measure the worst-case error amplifier output current, the LM2585 is tested with the feedback voltage set to its low value (specified in Tablenote 3) and at its high value (specified in Tablenote 2).

6.10 Typical Characteristics

Figure 1. Supply Current vs Temperature

Figure 3. Δ Reference Voltage vs Supply Voltage

Figure 5. Feedback Pin Bias Current vs Temperature

Figure 2. Reference Voltage vs Temperature

Figure 4. Current Limit vs Temperature

Figure 6. Switch Saturation Voltage vs Temperature

Typical Characteristics (continued)

Figure 7. Switch Transconductance vs Temperature

Figure 9. Error Amp Transconductance vs Temperature

Figure 8. Oscillator Frequency vs Temperature

Figure 10. Error Amp Voltage Gain vs Temperature

Figure 11. Short Circuit Frequency vs Temperature

7 Detailed Description

7.1 Overview

The LM2585 is ideally suited for use in the flyback regulator topology. The flyback regulator can produce a single output voltage, such as the one shown in Figure 12, or multiple output voltages. In Figure 12, the flyback regulator generates an output voltage that is inside the range of the input voltage. This feature is unique to flyback regulators and cannot be duplicated with buck or boost regulators.

The operation of a flyback regulator is as follows (refer to Figure 12): when the switch is on, current flows through the primary winding of the transformer, T1, storing energy in the magnetic field of the transformer. Note that the primary and secondary windings are out of phase, so no current flows through the secondary when current flows through the primary. When the switch turns off, the magnetic field collapses, reversing the voltage polarity of the primary and secondary windings. Now rectifier D1 is forward biased and current flows through it, releasing the energy stored in the transformer. This produces voltage at the output.
The output voltage is controlled by modulating the peak switch current. This is done by feeding back a portion of the output voltage to the error amp, which amplifies the difference between the feedback voltage and a $1.23-\mathrm{V}$ reference. The error amp output voltage is compared to a ramp voltage proportional to the switch current (in other words, inductor current during the switch on time). The comparator terminates the switch on time when the two voltages are equal, thereby controlling the peak switch current to maintain a constant output voltage.

Figure 12. 12-V Flyback Regulator Design Example
As shown in Figure 12, the LM2585 can be used as a flyback regulator by using a minimum number of external components. The switching waveforms of this regulator are shown in Figure 13. Typical characteristics observed during the operation of this circuit are shown in Figure 14.

Overview (continued)

A: Switch Voltage, $20 \mathrm{~V} / \mathrm{div}$
B: Switch Current, 2 A/div
C: Output Rectifier Current, 2 A/div
D: Output Ripple Voltage, $50 \mathrm{mV} / \mathrm{div}$
AC-Coupled
Horizontal: $\mathbf{2 \mu s} / \mathbf{d i v}$
Figure 13. Switching Waveforms

Figure 14. $\mathrm{V}_{\text {out }}$ Load Current Step Response

7.2 Functional Block Diagram

For Fixed Versions
$3.3 \mathrm{~V}, \mathrm{R} 1=3.4 \mathrm{k}, \mathrm{R} 2=2 \mathrm{k}$
$5 \mathrm{~V}, \mathrm{R} 1=6.15 \mathrm{k}, \mathrm{R} 2=2 \mathrm{k}$
$12 \mathrm{~V}, \mathrm{R} 1=8.73 \mathrm{k}, \mathrm{R} 2=1 \mathrm{k}$
For Adj. Version
R1 $=$ Short $(0 \Omega), R 2=$ Open

7.3 Feature Description

7.3.1 Step-Up (Boost) Regulator Operation

Figure 15 shows the LM2585 used as a step-up (boost) regulator. This is a switching regulator that produces an output voltage greater than the input supply voltage.
A brief explanation of how the LM2585 boost regulator works is as follows (refer to Figure 15). When the NPN switch turns on, the inductor current ramps up at the rate of $\mathrm{V}_{\mathbb{I}} / \mathrm{L}$, storing energy in the inductor. When the switch turns off, the lower end of the inductor flies above $\mathrm{V}_{\mathbb{I}}$, discharging its current through diode (D) into the output capacitor ($\mathrm{C}_{\text {OUT }}$) at a rate of $\left(\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {IN }}\right) / \mathrm{L}$. Thus, energy stored in the inductor during the switch on time is transferred to the output during the switch off time. The output voltage is controlled by adjusting the peak switch current, as described in .

Figure 15. 12-V Boost Regulator

Feature Description (continued)

By adding a small number of external components (as shown in Figure 15), the LM2585 can be used to produce a regulated output voltage that is greater than the applied input voltage. The switching waveforms observed during the operation of this circuit are shown in Figure 16. Typical performance of this regulator is shown in Figure 17.

A: Switch Voltage, $10 \mathrm{~V} /$ div
B: Switch Current, 2 A/div
C: Inductor Current, 2 A/div
D: Output Ripple Voltage,
100 mV/div, AC-Coupled
Horizontal: $\mathbf{2 \mu s} /$ div
Figure 16. Switching Waveforms

Figure 17. $\mathrm{V}_{\text {out }}$ Response To Load Current Step

LM2585
www.ti.com

8 Application and Implementation

8.1 Application Information

The LM2585 series of regulators are monolithic integrated circuits specifically designed for flyback, step-up (boost), and forward converter applications. Requiring a minimum number of external components, these regulators are cost effective and simple to use.

8.2 Typical Applications

8.2.1 Typical Boost Regulator Applications

Figure 18 through Figure 21 show four typical boost applications)—one fixed and three using the adjustable version of the LM2585. Each drawing contains the part number(s) and manufacturer(s) for every component. For the fixed $12-\mathrm{V}$ output application, the part numbers and manufacturers' names for the inductor are listed in Table 3. For applications with different output voltages, refer to the Switchers Made Simple software.

Figure 18. 5-V to 12-V Boost Regulator

Figure 19. 12-V to 24-V Boost Regulator

Figure 20. 24-V to 36-V Boost Regulator

Typical Applications (continued)

*The LM2585 will require a heat sink in these applications. The size of the heat sink will depend on the maximum ambient temperature. To calculate the thermal resistance of the IC and the size of the heat sink needed, see Heat Sink/Thermal Considerations

Figure 21. 24-V to 48-V Boost Regulator

8.2.2 Typical Flyback Regulator Applications

Figure 22 through Figure 27 show six typical flyback applications, varying from single output to triple output. Each drawing contains the part number(s) and manufacturer(s) for every component except the transformer. For the transformer part numbers and manufacturers names, the table in Table 1.

Figure 22. Single-Output Flyback Regulator

Typical Applications (continued)

Figure 23. Single-Output Flyback Regulator

Figure 24. Single-Output Flyback Regulator

Typical Applications (continued)

Figure 25. Dual-Output Flyback Regulator

Figure 26. Dual-Output Flyback Regulator

Typical Applications (continued)

Figure 27. Triple-Output Flyback Regulator

Typical Applications (continued)

8.2.2.1 Transformer Selection (T)

Table 1 lists the standard transformers available for flyback regulator applications. Included in the table are the turns ratio(s) for each transformer, as well as the output voltages, input voltage ranges, and the maximum load currents for each circuit.

Table 1. Transformer Selection Table

Applications	Figure 22	Figure 23	Figure 24	Figure 25	Figure 26	Figure 27
Transformers	T7	T7	T7	T6	T6	T5
$\mathrm{V}_{\text {IN }}$	$4 \mathrm{~V}-6 \mathrm{~V}$	$4 \mathrm{~V}-6 \mathrm{~V}$	$8 \mathrm{~V}-16 \mathrm{~V}$	$4 \mathrm{~V}-6 \mathrm{~V}$	$18 \mathrm{~V}-36 \mathrm{~V}$	$18 \mathrm{~V}-36 \mathrm{~V}$
$\mathrm{~V}_{\text {OUT1 }}$	3.3 V	5 V	12 V	12 V	12 V	5 V
$\mathrm{l}_{\text {OUT1 }}(\mathrm{Max})$	1.4 A	1 A	0.8 A	0.15 A	0.6 A	1.8 A
$\mathrm{~N}_{1}$	1	1	1	1.2	1.2	0.5
$\mathrm{~V}_{\text {OUT2 }}$				-12 V	-12 V	12 V
$\mathrm{l}_{\text {OUT2 }}$ (Max)				0.15 A	0.6 A	0.25 A
$\mathrm{~N}_{2}$				1.2	1.2	1.15
$\mathrm{~V}_{\text {OUT3 }}$						-12 V
lout3 Max)						0.25 A
$\mathrm{~N}_{3}$					1.15	

Table 2. Transformer Manufacturer Guide

Transform er Type	Coilcraft (1)	Coilcraft (1) Surface Mount	Pulse (2) Surface Mount	Pulse $(\mathbf{2})$	Renco $(\mathbf{3})$	Schott (4)
	Q4338-B	Q4437-B	PE-68413	-	RL-5532	67140890
T6	Q4339-B	Q4438-B	PE-68414	-	RL-5533	67140900
T7	S6000-A	S6057-A	-	PE-68482	RL-5751	26606

(1) Coilcraft Inc. Phone: (800) 322-2645 www.coilcraft.com
(2) Pulse Engineering Inc. Phone: (619) 674-8100 www.digikey.com
(3) Renco Electronics Inc. Phone: (800) 645-5828 www.cdiweb.com/renco
(4) Schott Corp. Phone: (612) 475-1173 www.schottcorp.com/

8.2.2.2 Transformer Footprints

Figure 28 through Figure 42 show the footprints of each transformer, listed in Table 1.

Figure 30. Coilcraft Q4437-B (Top View) (Surface Mount)

Figure 32. Coilcraft S6057-A (Top View) (Surface Mount)

Figure 34. Pulse PE-68482 (Top View)

Figure 36. Pulse PE-68413 (Top View) (Surface Mount)

Figure 31. Coilcraft Q4338-B (Top View)

Figure 33. Coilcraft Q4438-B (Top View) (Surface Mount)

Figure 35. Pulse Pe-68414 (Top View) (Surface Mount)

Figure 37. Renco RI-5751 (Top View)

Figure 40. Schott 26606 (Top View)
Figure 41. Schott 67140900 (Top View)

Figure 42. Schott 67140890

LM2585
www.ti.com

8.2.3 Design Requirements

Table 3 contains a table of standard inductors, by part number and corresponding manufacturer, for the fixed output regulator of Figure 18.

Table 3. Inductor Selection Table

Coilcraft $^{(1)}$	Pulse $^{(2)}$	Renco $^{(3)}$	Schott $^{(4)}$	Schott (Surface Mount)
${ }^{(4)}$				
D03316-153	PE-53898	RL-5471-7	67146510	67146540

(1) Coilcraft Inc. Phone: (800) 322-2645 1102 Silver Lake Road, Cary, IL 60013 Fax: (708) 639-1469
(2) Pulse Engineering Inc. Phone: (619) 674-8100 12220 World Trade Drive, San Diego, CA 92128 Fax: (619) 674-8262
(3) Renco Electronics Inc. Phone (800) 645-5828 60 Jeffryn Blvd. East, Deer Park, NY 11729 Fax: (516) 586-5562
(4) Schott Corp. Phone: (612) 475-1173 1000 Parkers Lane Road, Wayzata, MN 55391 Fax: (612) 475-1786

8.2.4 Detailed Design Procedure

8.2.4.1 Custom Design With WEBENCH® Tools

Click here to create a custom design using the LM2585 device with the WEBENCH® Power Designer.

1. Start by entering the input voltage $\left(\mathrm{V}_{\mathbb{I N}}\right)$, output voltage $\left(\mathrm{V}_{\text {OUT }}\right)$, and output current ($\mathrm{l}_{\mathrm{OUT}}$) requirements.
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.
3. Compare the generated design with other possible solutions from Texas Instruments.

The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time pricing and component availability.

In most cases, these actions are available:

- Run electrical simulations to see important waveforms and circuit performance
- Run thermal simulations to understand board thermal performance
- Export customized schematic and layout into popular CAD formats
- Print PDF reports for the design, and share the design with colleagues

Get more information about WEBENCH tools at www.ti.com/WEBENCH.

8.2.4.2 Programming Output Voltage (Selecting R_{1} And R_{2})

Referring to the adjustable regulator in Figure 50, the output voltage is programmed by the resistors R_{1} and R_{2} by the following formula:
$V_{\text {OUT }}=V_{\text {REF }}\left(1+R_{1} / R_{2}\right)$
where

$$
\begin{equation*}
\text { - } V_{\text {REF }}=1.23 \mathrm{~V} \tag{1}
\end{equation*}
$$

Resistors R_{1} and R_{2} divide the output voltage down so that it can be compared with the $1.23-\mathrm{V}$ internal reference. With R_{2} between $1 k$ and $5 k, R_{1}$ is:

$$
\mathrm{R}_{1}=\mathrm{R}_{2}\left(\mathrm{~V}_{\text {OUT }} / V_{\text {REF }}-1\right)
$$

where

$$
\begin{equation*}
\text { - } V_{\text {REF }}=1.23 \mathrm{~V} \tag{2}
\end{equation*}
$$

For best temperature coefficient and stability with time, use 1\% metal film resistors.

8.2.4.3 Short Circuit Condition

Due to the inherent nature of boost regulators, when the output is shorted (Figure 50), current flows directly from the input, through the inductor and the diode, to the output, bypassing the switch. The current limit of the switch does not limit the output current for the entire circuit. To protect the load and prevent damage to the switch, the current must be externally limited, either by the input supply or at the output with an external current limit circuit. The external limit should be set to the maximum switch current of the device, which is 3 A .

In a flyback regulator application (Figure 43), using the standard transformers, the LM2585 will survive a short circuit to the main output. When the output voltage drops to 80% of its nominal value, the frequency drops to 25 kHz . With a lower frequency, off times are larger. With the longer off times, the transformer can release all of its stored energy before the switch turns back on. Hence, the switch turns on initially with zero current at its collector. In this condition, the switch current limit will limit the peak current, saving the device.

Figure 43. Flyback Regulator

8.2.4.4 Flyback Regulator Input Capacitors

A flyback regulator draws discontinuous pulses of current from the input supply. Therefore, there are two input capacitors needed in a flyback regulator; one for energy storage and one for filtering (Figure 43). Both are required due to the inherent operation of a flyback regulator. To keep a stable or constant voltage supply to the LM2585, a storage capacitor ($\geq 100 \mu \mathrm{~F}$) is required. If the input source is a rectified DC supply and/or the application has a wide temperature range, the required rms current rating of the capacitor might be very large. This means a larger value of capacitance or a higher voltage rating will be needed of the input capacitor. The storage capacitor will also attenuate noise which may interfere with other circuits connected to the same input supply voltage.

In addition, a small bypass capacitor is required due to the noise generated by the input current pulses. To eliminate the noise, insert a $1.0 \mu \mathrm{~F}$ ceramic capacitor between $\mathrm{V}_{\mathbb{I N}}$ and ground as close as possible to the device.

8.2.4.5 Switch Voltage Limits

In a flyback regulator, the maximum steady-state voltage appearing at the switch, when it is off, is set by the transformer turns ratio, N , the output voltage, $\mathrm{V}_{\mathrm{OUT}}$, and the maximum input voltage, V_{IN} (maximum):

$$
\mathrm{V}_{\text {SW(OFF) }}=\mathrm{V}_{\text {IN }}(\mathrm{Max})+\left(\mathrm{V}_{\text {OUT }}+\mathrm{V}_{F}\right) / \mathrm{N}
$$

where

- V_{F} is the forward biased voltage of the output diode and is 0.5 V for Schottky diodes and 0.8 V for ultra-fast recovery diodes (typically).
In certain circuits, there exists a voltage spike, V_{LL}, superimposed on top of the steady-state voltage (Figure 13, waveform A). Usually, this voltage spike is caused by the transformer leakage inductance and/or the output rectifier recovery time. To "clamp" the voltage at the switch from exceeding its maximum value, a transient suppressor in series with a diode is inserted across the transformer primary (as shown in the circuit on the front page and other flyback regulator circuits throughout the datasheet). The schematic in Figure 43 shows another method of clamping the switch voltage. A single voltage transient suppressor (the SA51A) is inserted at the switch pin. This method clamps the total voltage across the switch, not just the voltage across the primary.
If poor circuit layout techniques are used (see Layout Guidelines), negative voltage transients may appear on the Switch pin (pin 4). Applying a negative voltage (with respect to the IC's ground) to any monolithic IC pin causes erratic and unpredictable operation of that IC. This holds true for the LM2585 IC as well. When used in a flyback regulator, the voltage at the Switch pin (pin 4) can go negative when the switch turns on. The "ringing" voltage at the switch pin is caused by the output diode capacitance and the transformer leakage inductance forming a resonant circuit at the secondary(ies). The resonant circuit generates the "ringing" voltage, which gets reflected back through the transformer to the switch pin. There are two common methods to avoid this problem. One is to add an RC snubber around the output rectifier(s), as in Figure 43. The values of the resistor and the capacitor must be chosen so that the voltage at the Switch pin does not drop below -0.4 V . The resistor may range in value between 10Ω and $1 \mathrm{k} \Omega$, and the capacitor will vary from $0.001 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$. Adding a snubber will (slightly) reduce the efficiency of the overall circuit.
The other method to reduce or eliminate the "ringing" is to insert a Schottky diode clamp between pins 4 and 3 (ground), also shown in Figure 43. This prevents the voltage at pin 4 from dropping below -0.4 V . The reverse voltage rating of the diode must be greater than the switch off voltage.

8.2.4.6 Output Voltage Limitations

The maximum output voltage of a boost regulator is the maximum switch voltage minus a diode drop. In a flyback regulator, the maximum output voltage is determined by the turns ratio, N , and the duty cycle, D , by the equation:

$$
\begin{equation*}
V_{\text {OUT }} \approx N \times V_{\mathbb{I N}} \times D /(1-D) \tag{4}
\end{equation*}
$$

The duty cycle of a flyback regulator is determined by the following equation:

$$
\begin{equation*}
D=\frac{V_{O U T}+V_{F}}{N\left(V_{I N}-V_{S A T}\right)+V_{O U T}+V_{F}} \approx \frac{V_{\text {OUT }}}{N\left(V_{\text {IN }}\right)+V_{O U T}} \tag{5}
\end{equation*}
$$

Theoretically, the maximum output voltage can be as large as desired-just keep increasing the turns ratio of the transformer. However, there exists some physical limitations that prevent the turns ratio, and thus the output voltage, from increasing to infinity. The physical limitations are capacitances and inductances in the LM2585 switch, the output diode(s), and the transformer-such as reverse recovery time of the output diode (mentioned above).

Figure 44. Input Line Filter

8.2.4.7 Noisy Input Line Condition

A small, low-pass RC filter should be used at the input pin of the LM2585 if the input voltage has an unusual large amount of transient noise, such as with an input switch that bounces. The circuit in Figure 44 demonstrates the layout of the filter, with the capacitor placed from the input pin to ground and the resistor placed between the input supply and the input pin. Note that the values of $\mathrm{R}_{\mathbb{N}}$ and $\mathrm{C}_{\mathbb{N}}$ shown in the schematic are good enough for most applications, but some readjusting might be required for a particular application. If efficiency is a major concern, replace the resistor with a small inductor (say $10 \mu \mathrm{H}$ and rated at 100 mA).

8.2.4.8 Stability

All current-mode controlled regulators can suffer from an instability, known as subharmonic oscillation, if they operate with a duty cycle above 50%. To eliminate subharmonic oscillations, a minimum value of inductance is required to ensure stability for all boost and flyback regulators. The minimum inductance is given by:
$L($ Min $)=\frac{2.92\left[\left(\mathrm{~V}_{\text {IN }}(\text { Min })-\mathrm{V}_{\text {SAT }}\right) \times(2 \mathrm{D}(\text { Max })-1)\right]}{1-\mathrm{D}(\text { Max })}(\mu \mathrm{H})$
where

- $\mathrm{V}_{\text {SAT }}$ is the switch saturation voltage and can be found in the Characteristic Curves.

Figure 45. Circuit Board Layout

8.2.5 Application Curve

Figure 46. Supply Current vs Switch Current

8.3 Additional Application Examples

8.3.1 Test Circuits

$\mathrm{C}_{\mathrm{IN} 1}-100 \mu \mathrm{~F}, 25 \mathrm{~V}$ Aluminum Electrolytic
$\mathrm{C}_{\mathrm{IN} 2}-0.1 \mu \mathrm{~F}$ Ceramic
T-22 $\mu \mathrm{H}, 1: 1$ Schott \#67141450
D-1N5820
Cout-680 $\mu \mathrm{F}, 16 \mathrm{~V}$ Aluminum Electrolytic
$\mathrm{C}_{\mathrm{C}}-0.47 \mu \mathrm{~F}$ Ceramic
$\mathrm{R}_{\mathrm{C}}-2 \mathrm{k}$
Figure 47. Lm2585-3.3 And Lm2585-5.0

Additional Application Examples (continued)

$\mathrm{C}_{\mathrm{IN} 1}-100 \mu \mathrm{~F}, 25 \mathrm{~V}$ Aluminum Electrolytic
$\mathrm{C}_{\mathrm{IN} 2}-0.1 \mu \mathrm{~F}$ Ceramic
L-15 $\mu \mathrm{H}$, Renco \#RL-5472-5
D—1N5820
CouT-680 $\mu \mathrm{F}$, 16 V Aluminum Electrolytic
$\mathrm{C}_{\mathrm{C}}-0.47 \mu \mathrm{~F}$ Ceramic
$\mathrm{R}_{\mathrm{C}}-2 \mathrm{k}$
For 12 V Devices: $\mathrm{R}_{1}=$ Short (0Ω) and $\mathrm{R}_{2}=$ Open
For ADJ Devices: $R_{1}=48.75 k, \pm 0.1 \%$ and R2 $=5.62 k, \pm 1 \%$
Figure 48. Lm2585-12 And Lm2585-Adj

Figure 49. Flyback Regulator

Figure 50. Boost Regulator

9 Layout

9.1 Layout Guidelines

As in any switching regulator, layout is very important. Rapidly switching currents associated with wiring inductance generate voltage transients which can cause problems. For minimal inductance and ground loops, keep the length of the leads and traces as short as possible. Use single point grounding or ground plane construction for best results. Separate the signal grounds from the power grounds (as indicated in Figure 45). When using the Adjustable version, physically locate the programming resistors as near the regulator IC as possible, to keep the sensitive feedback wiring short.

9.2 Heat Sink/Thermal Considerations

In many cases, no heat sink is required to keep the LM2585 junction temperature within the allowed operating range. For each application, to determine whether or not a heat sink will be required, the following must be identified:

1) Maximum ambient temperature (in the application).
2) Maximum regulator power dissipation (in the application).
3) Maximum allowed junction temperature $\left(125^{\circ} \mathrm{C}\right.$ for the LM2585). For a safe, conservative design, a temperature approximately $15^{\circ} \mathrm{C}$ cooler than the maximum junction temperature should be selected $\left(110^{\circ} \mathrm{C}\right)$.
4) LM2585 package thermal resistances θ_{JA} and θ_{JC} (given in Thermal Information).

Total power dissipated $\left(\mathrm{P}_{\mathrm{D}}\right)$ by the LM2585 can be estimated as follows:
Boost:

$$
P_{D}=0.15 \Omega \times\left(\frac{I_{\text {LOAD }}}{1-D}\right)^{2} \times D+\frac{I_{\text {LOAD }}}{50 \times(1-D)} \times D \times V_{I N}
$$

Flyback:

$$
\begin{aligned}
\mathrm{P}_{\mathrm{D}}= & 0.15 \Omega \times\left(\frac{\mathrm{N} \times \Sigma \mathrm{I}_{\text {LOAD }}}{1-\mathrm{D}}\right)^{2} \times \mathrm{D} \\
& +\frac{N \times\left.\Sigma\right|_{\text {LOAD }}}{50 \times(1-\mathrm{D})} \times \mathrm{D} \times V_{I N}
\end{aligned}
$$

where

- V_{IN} is the minimum input voltage
- $\mathrm{V}_{\text {OUT }}$ is the output voltage
- N is the transformer turns ratio
- D is the duty cycle
- $\mathrm{I}_{\text {LOAD }}$ is the maximum load current (and $\sum \mathrm{I}_{\text {LOAD }}$ is the sum of the maximum load currents for multiple-output flyback regulators)
The duty cycle is given by:
Boost:

$$
\mathrm{D}=\frac{\mathrm{V}_{\text {OUT }}+\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\text {IN }}}{\mathrm{V}_{\text {OUT }}+\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\text {SAT }}} \approx \frac{\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {IN }}}{V_{\text {OUT }}}
$$

Flyback:

$$
\mathrm{D}=\frac{\mathrm{V}_{\text {OUT }}+\mathrm{V}_{\mathrm{F}}}{\mathrm{~N}\left(\mathrm{~V}_{\text {IN }}-V_{S A T}\right)+\mathrm{V}_{\text {OUT }}+\mathrm{V}_{\mathrm{F}}} \approx \frac{\mathrm{~V}_{\text {OUT }}}{N\left(V_{I N}\right)+V_{\text {OUT }}}
$$

where

- V_{F} is the forward biased voltage of the diode and is typically 0.5 V for Schottky diodes and 0.8 V for fast recovery diodes
- $\mathrm{V}_{\mathrm{SAT}}$ is the switch saturation voltage and can be found in the Characteristic Curves

When no heat sink is used, the junction temperature rise is:

$$
\begin{equation*}
\Delta T_{J}=P_{D} \times \theta_{\mathrm{JA}} . \tag{9}
\end{equation*}
$$

Adding the junction temperature rise to the maximum ambient temperature gives the actual operating junction temperature:

$$
\begin{equation*}
\mathrm{T}_{J}=\Delta \mathrm{T}_{\mathrm{J}}+\mathrm{T}_{\mathrm{A}} \tag{10}
\end{equation*}
$$

Heat Sink/Thermal Considerations (continued)

If the operating junction temperature exceeds the maximum junction temperatue in item 3 above, then a heat sink is required. When using a heat sink, the junction temperature rise can be determined by the following:

$$
\begin{equation*}
\Delta T_{J}=P_{D} \times\left(\theta_{\mathrm{JC}}+\theta_{\text {Interface }}+\theta_{\text {Heat Sink }}\right) \tag{11}
\end{equation*}
$$

Again, the operating junction temperature will be:

$$
\begin{equation*}
\mathrm{T}_{J}=\Delta \mathrm{T}_{\mathrm{J}}+\mathrm{T}_{\mathrm{A}} \tag{12}
\end{equation*}
$$

As before, if the maximum junction temperature is exceeded, a larger heat sink is required (one that has a lower thermal resistance).
Included in the Switchers Made Simple design software is a more precise (non-linear) thermal model that can be used to determine junction temperature with different input-output parameters or different component values. It can also calculate the heat sink thermal resistance required to maintain the regulator junction temperature below the maximum operating temperature.

LM2585
www.ti.com

10 Device and Documentation Support

10.1 Device Support

10.1.1 Third-Party Products Disclaimer

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

10.1.2 Development Support

10.1.2.1 Custom Design With WEBENCH $®$ Tools

Click here to create a custom design using the LM2585 device with the WEBENCH® Power Designer.

1. Start by entering the input voltage $\left(\mathrm{V}_{\mathbb{I}}\right)$, output voltage ($\mathrm{V}_{\mathrm{OUT}}$), and output current ($\mathrm{l}_{\text {OUT }}$) requirements.
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.
3. Compare the generated design with other possible solutions from Texas Instruments.

The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time pricing and component availability.
In most cases, these actions are available:

- Run electrical simulations to see important waveforms and circuit performance
- Run thermal simulations to understand board thermal performance
- Export customized schematic and layout into popular CAD formats
- Print PDF reports for the design, and share the design with colleagues

Get more information about WEBENCH tools at www.ti.com/WEBENCH.

10.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

10.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E ${ }^{\text {TM }}$ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

10.4 Trademarks

E2E is a trademark of Texas Instruments.
WEBENCH is a registered trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

10.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

10.6 Glossary

SLYZ022 - TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

INSTRUMENTS

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
LM2585S-12/NOPB	ACTIVE	$\begin{array}{r} \hline \text { DDPAK/ } \\ \text { TO-263 } \end{array}$	KTT	5	45	RoHS-Exempt \& Green	SN	Level-3-245C-168 HR	-40 to 125	$\begin{aligned} & \text { LM2585S } \\ & -12 P_{+} \end{aligned}$	Samples
LM2585S-3.3/NOPB	ACTIVE	$\begin{array}{r} \text { DDPAK/ } \\ \text { TO-263 } \\ \hline \end{array}$	KTT	5	45	RoHS-Exempt \& Green	SN	Level-3-245C-168 HR	-40 to 125	$\begin{aligned} & \text { LM2585S } \\ & -3.3 \text { P+ } \\ & \hline \end{aligned}$	Samples
LM2585S-5.0/NOPB	ACTIVE	$\begin{array}{r} \text { DDPAK/ } \\ \text { TO-263 } \end{array}$	KTT	5	45	RoHS-Exempt \& Green	SN	Level-3-245C-168 HR	-40 to 125	$\begin{aligned} & \text { LM2585S } \\ & -5.0 P_{+} \\ & \hline \end{aligned}$	Samples
LM2585S-ADJ	LIFEBUY	$\begin{array}{r} \text { DDPAK/ } \\ \text { TO-263 } \end{array}$	KTT	5	45	Non-RoHS \& Green	Call TI	Level-3-235C-168 HR	-40 to 125	$\begin{aligned} & \text { LM2585S } \\ & \text {-ADJ P+ } \end{aligned}$	
LM2585S-ADJ/NOPB	ACTIVE	$\begin{array}{r} \text { DDPAK/ } \\ \text { TO-263 } \end{array}$	KTT	5	45	RoHS-Exempt \& Green	SN	Level-3-245C-168 HR	-40 to 125	LM2585S -ADJ P+	Samples
LM2585SX-12/NOPB	ACTIVE	$\begin{array}{r} \text { DDPAK/ } \\ \text { TO-263 } \\ \hline \end{array}$	KTT	5	500	RoHS-Exempt \& Green	SN	Level-3-245C-168 HR	-40 to 125	$\begin{aligned} & \text { LM2585S } \\ & -12 P_{+} \end{aligned}$	Samples
LM2585SX-5.0	LIFEBUY	$\begin{array}{r} \text { DDPAK/ } \\ \text { TO-263 } \end{array}$	KTT	5	500	Non-RoHS \& Green	Call TI	Level-3-235C-168 HR	-40 to 125	$\begin{aligned} & \text { LM2585S } \\ & -5.0 \text { P+ } \\ & \hline \end{aligned}$	
LM2585SX-5.0/NOPB	ACTIVE	$\begin{array}{r} \hline \text { DDPAK/ } \\ \text { TO-263 } \end{array}$	KTT	5	500	RoHS-Exempt \& Green	SN	Level-3-245C-168 HR	-40 to 125	$\begin{aligned} & \text { LM2585S } \\ & -5.0 \mathrm{P}_{+} \end{aligned}$	Samples
LM2585SX-ADJ/NOPB	ACTIVE	$\begin{array}{r} \text { DDPAK/ } \\ \text { TO-263 } \\ \hline \end{array}$	KTT	5	500	RoHS-Exempt \& Green	SN	Level-3-245C-168 HR	-40 to 125	$\begin{aligned} & \text { LM2585S } \\ & \text {-ADJ P+ } \end{aligned}$	Samples
LM2585T-12/NOPB	ACTIVE	TO-220	NDH	5	45	RoHS-Exempt \& Green	SN	Level-1-NA-UNLIM	-40 to 125	$\begin{aligned} & \text { LM2585T } \\ & -12 \mathrm{P}_{+} \\ & \hline \end{aligned}$	Samples
LM2585T-3.3/NOPB	ACTIVE	TO-220	NDH	5	45	RoHS-Exempt \& Green	SN	Level-1-NA-UNLIM	-40 to 125	$\begin{aligned} & \text { LM2585T } \\ & -3.3 \mathrm{P}_{+} \\ & \hline \end{aligned}$	Samples
LM2585T-5.0/NOPB	ACTIVE	TO-220	NDH	5	45	RoHS-Exempt \& Green	SN	Level-1-NA-UNLIM	-40 to 125	$\begin{aligned} & \text { LM2585T } \\ & -5.0 \mathrm{P}_{+} \\ & \hline \end{aligned}$	Samples
LM2585T-ADJ	LIFEBUY	TO-220	NDH	5	45	Non-RoHS \& Green	Call TI	Level-1-NA-UNLIM	-40 to 125	$\begin{aligned} & \text { LM2585T } \\ & \text {-ADJ P+ } \\ & \hline \end{aligned}$	
LM2585T-ADJ/NOPB	ACTIVE	TO-220	NDH	5	45	RoHS-Exempt \& Green	SN	Level-1-NA-UNLIM	-40 to 125	$\begin{aligned} & \text { LM2585T } \\ & \text {-ADJ P+ } \end{aligned}$	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the $<=1000 \mathrm{ppm}$ threshold requirement
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annul basis.

TAPE AND REEL INFORMATION

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

L Reel Width (W1)
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width $\mathbf{W 1}(\mathbf{m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	W $(\mathbf{m m})$	Pin1 Quadrant
LM2585SX-12/NOPB	DDPAK/ TO-263	KTT	5	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2
LM2585SX-5.0	DDPAK/ TO-263	KTT	5	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2
LM2585SX-5.0/NOPB	DDPAK/ TO-263	KTT	5	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2
LM2585SX-ADJ/NOPB	DDPAK/ TO-263	KTT	5	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM2585SX-12/NOPB	DDPAK/TO-263	KTT	5	500	356.0	356.0	45.0
LM2585SX-5.0	DDPAK/TO-263	KTT	5	500	356.0	356.0	45.0
LM2585SX-5.0/NOPB	DDPAK/TO-263	KTT	5	500	356.0	356.0	45.0
LM2585SX-ADJ/NOPB	DDPAK/TO-263	KTT	5	500	356.0	356.0	45.0

TUBE

- B - Alignment groove width
*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W $(\mathbf{m m})$	T $(\boldsymbol{\mu m})$	B (mm)
LM2585S-12/NOPB	KTT	TO-263	5	45	502	25	8204.2	9.19
LM2585S-3.3/NOPB	KTT	TO-263	5	45	502	25	8204.2	9.19
LM2585S-5.0/NOPB	KTT	TO-263	5	45	502	25	8204.2	9.19
LM2585S-ADJ	KTT	TO-263	5	45	502	25	8204.2	9.19
LM2585S-ADJ	KTT	TO-263	5	45	502	25	8204.2	9.19
LM2585S-ADJ/NOPB	KTT	TO-263	5	45	502	25	8204.2	9.19
LM2585T-12/NOPB	NDH	TO-220	5	45	502	30	30048.2	10.74
LM2585T-3.3/NOPB	NDH	TO-220	5	45	502	30	30048.2	10.74
LM2585T-5.0/NOPB	NDH	TO-220	5	45	502	30	30048.2	10.74
LM2585T-ADJ	NDH	TO-220	5	45	502	30	30048.2	10.74
LM2585T-ADJ	NDH	TO-220	5	45	502	30	30048.2	10.74
LM2585T-ADJ/NOPB	NDH	TO-220	5	45	502	30	30048.2	10.74

NDH0005D

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other Tl intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to Tl's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.
TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2024, Texas Instruments Incorporated

[^0]: (1) External components such as the diode, inductor, input and output capacitors can affect switching regulator performance. When the LM2585 is used as shown in Figure 47 and Figure 48, system performance will be as specified by the system parameters.
 (2) All room temperature limits are 100% production tested, and all limits at temperature extremes are specified via correlation using standard Statistical Quality Control (SQC) methods.
 (3) A $1-\mathrm{M} \Omega$ resistor is connected to the compensation pin (which is the error amplifier output) to ensure accuracy in measuring $A_{V o l}$

[^1]: (1) External components such as the diode, inductor, input and output capacitors can affect switching regulator performance. When the LM2585 is used as shown in Figure 47 and Figure 48, system performance will be as specified by the system parameters.
 (2) All room temperature limits are 100% production tested, and all limits at temperature extremes are specified via correlation using standard Statistical Quality Control (SQC) methods.
 (3) $\mathrm{A} 1-\mathrm{M} \Omega$ resistor is connected to the compensation pin (which is the error amplifier output) to ensure accuracy in measuring $A_{\text {vol }}$

