LM2731 0.6/1.6-MHz Boost Converters With 22-V Internal FET Switch in SOT-23

1 Features

• 22-V DMOS FET Switch
• 1.6-MHz (X Option), 0.6-MHz (Y Option) Switching Frequency
• Low $R_{DS(ON)}$ DMOS FET
• Switch Current Up to 1.8 A
• Wide Input Voltage Range (2.7 V to 14 V)
• Low Shutdown Current (<1 µA)
• 5-Lead SOT-23 Package
• Uses Tiny Capacitors and Inductors
• Cycle-by-Cycle Current Limiting
• Internally Compensated

2 Applications

• White LED Current Sources
• PDAs and Palm-Top Computers
• Digital Cameras
• Portable Phones and Games
• Local Boost Regulators

3 Description

The LM2731 switching regulators are current-mode boost converters operating at fixed frequencies of 1.6 MHz (X option) and 600 kHz (Y option).

The use of SOT-23 package, made possible by the minimal power loss of the internal 1.8-A switch, and use of small inductors and capacitors result in the highest power density of the industry. The 22-V internal switch makes these solutions perfect for boosting to voltages up to 20 V.

These parts have a logic-level shutdown pin that can reduce quiescent current and extend battery life.

Protection is provided through cycle-by-cycle current limiting and thermal shutdown. Internal compensation simplifies design and reduces component count.

Device Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM2731</td>
<td>SOT-23 (5)</td>
<td>1.60 mm × 2.90 mm</td>
</tr>
</tbody>
</table>

(1) For all available packages, see the orderable addendum at the end of the data sheet.

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.
Table of Contents

1 Features ... 1
2 Applications .. 1
3 Description .. 1
4 Revision History .. 2
5 Pin Configuration and Functions 3
6 Specifications .. 3
 6.1 Absolute Maximum Ratings 3
 6.2 ESD Ratings .. 3
 6.3 Recommended Operating Conditions 4
 6.4 Thermal Information ... 4
 6.5 Electrical Characteristics 5
 6.6 Typical Characteristics ... 7
7 Detailed Description .. 11
 7.1 Overview .. 11
 7.2 Functional Block Diagram 11
 7.3 Feature Description .. 11
 7.4 Device Functional Modes 12
8 Application and Implementation 13
 8.1 Application Information 13
 8.2 Typical Application ... 13
 8.3 System Examples ... 18
9 Power Supply Recommendations 20
10 Layout ... 20
 10.1 Layout Guidelines .. 20
 10.2 Layout Example .. 20
 10.3 Thermal Considerations 21
11 Device and Documentation Support 22
 11.1 Device Support .. 22
 11.2 Community Resources .. 22
 11.3 Trademarks .. 22
 11.4 Electrostatic Discharge Caution 22
 11.5 Glossary .. 22
12 Mechanical, Packaging, and Orderable Information 22

4 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision F (November 2012) to Revision G

- Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section. ... 1
5 Pin Configuration and Functions

Pin Functions

<table>
<thead>
<tr>
<th>PIN</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>FB</td>
<td>3</td>
<td>I Feedback point that connects to external resistive divider.</td>
</tr>
<tr>
<td>GND</td>
<td>2</td>
<td>PWR Analog and power ground</td>
</tr>
<tr>
<td>SHDN</td>
<td>4</td>
<td>I Shutdown control input. Connect to V_IN if the feature is not used.</td>
</tr>
<tr>
<td>SW</td>
<td>1</td>
<td>O Drain of the internal FET switch</td>
</tr>
<tr>
<td>V_IN</td>
<td>5</td>
<td>PWR Analog and power input</td>
</tr>
</tbody>
</table>

6 Specifications

6.1 Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>NAME</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Junction Temperature</td>
<td>–40</td>
<td>125</td>
<td>°C</td>
</tr>
<tr>
<td>Lead Temperature (Soldering, 5 sec.)</td>
<td></td>
<td>300</td>
<td>°C</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>Internally Limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FB Pin Voltage</td>
<td>–0.4</td>
<td>6</td>
<td>V</td>
</tr>
<tr>
<td>SW Pin Voltage</td>
<td>–0.4</td>
<td>22</td>
<td>V</td>
</tr>
<tr>
<td>Input Supply Voltage</td>
<td>–0.4</td>
<td>14.5</td>
<td>V</td>
</tr>
<tr>
<td>SHDN Pin Voltage</td>
<td>–0.4</td>
<td>V_IN + 0.3</td>
<td>V</td>
</tr>
<tr>
<td>Storage Temperature, T_stg</td>
<td>–65</td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The maximum power dissipation which can be safely dissipated for any application is a function of the maximum junction temperature, T_J(MAX) = 125°C, the junction-to-ambient thermal resistance for the SOT-23 package, R_θJA = 265°C/W, and the ambient temperature, T_A. The maximum allowable power dissipation at any ambient temperature for designs using this device can be calculated using the formula:

\[
P \text{ (MAX)} = \frac{T_J \text{ (MAX)} - T_A}{\frac{\theta_{J-A}}{265}} = \frac{125 - T_A}{265}.
\]

If power dissipation exceeds the maximum specified above, the internal thermal protection circuitry will protect the device by reducing the output voltage as required to maintain a safe junction temperature.

6.2 ESD Ratings

<table>
<thead>
<tr>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>±2000</td>
<td>V</td>
</tr>
</tbody>
</table>

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) The human body model is a 100-pF capacitor discharged through a 1.5-kΩ resistor into each pin.
6.3 Recommended Operating Conditions
over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IN}</td>
<td>2.7</td>
<td></td>
<td>14</td>
<td>V</td>
</tr>
<tr>
<td>V_{sw}</td>
<td>3</td>
<td></td>
<td>20</td>
<td>V</td>
</tr>
<tr>
<td>V_{shdn}</td>
<td>0</td>
<td></td>
<td>VIN</td>
<td>V</td>
</tr>
<tr>
<td>T_J</td>
<td>–40</td>
<td></td>
<td>125</td>
<td>ºC</td>
</tr>
</tbody>
</table>

(1) This pin should not be allowed to float or be greater than $V_{IN} + 0.3$ V.

6.4 Thermal Information

<table>
<thead>
<tr>
<th>Thermal Metric (1)</th>
<th>LM2731 DBV (SOT-23)</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{JA} Junction-to-ambient thermal resistance</td>
<td>209.9</td>
<td>ºC/W</td>
</tr>
<tr>
<td>$R_{JC(top)}$ Junction-to-case (top) thermal resistance</td>
<td>122</td>
<td>ºC/W</td>
</tr>
<tr>
<td>R_{JUB} Junction-to-board thermal resistance</td>
<td>38.4</td>
<td>ºC/W</td>
</tr>
<tr>
<td>ψ_{JT} Junction-to-top characterization parameter</td>
<td>12.8</td>
<td>ºC/W</td>
</tr>
<tr>
<td>ψ_{JUB} Junction-to-board characterization parameter</td>
<td>37.5</td>
<td>ºC/W</td>
</tr>
<tr>
<td>$R_{JC(bot)}$ Junction-to-case (bottom) thermal resistance</td>
<td>N/A</td>
<td>ºC/W</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.
6.5 Electrical Characteristics

Limits are for $T_J = 25^\circ C$. Unless otherwise specified: $V_{IN} = 5 \, V$, $V_{SHDN} = 5 \, V$, $I_L = 0 \, A$.

Table: Electrical Characteristics

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN(1)</th>
<th>TYP(2)</th>
<th>MAX(1)</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IN}</td>
<td>$V_{IN} = 5 , V$, $V_{SHDN} = 5 , V$, $I_L = 0 , A$, $R_L = 43 , \Omega$, $L = 10 , \mu H$, $C_{OUT} = 4.7 , \mu F$, duty cycle = maximum</td>
<td>2.7</td>
<td>5.4</td>
<td>10</td>
<td>V</td>
</tr>
<tr>
<td>$V_{OUT \ (MIN)}$</td>
<td>$V_{IN} = 2.7 , V$, $T_J = 25^\circ C$, $R_L = 43 , \Omega$, $L = 10 , \mu H$, $C_{OUT} = 4.7 , \mu F$, duty cycle = maximum</td>
<td>5</td>
<td>6</td>
<td>11</td>
<td>V</td>
</tr>
<tr>
<td>I_{SW}</td>
<td>$I_{SW} = 100 , mA$, $V_{IN} = 5 , V$, $T_J = 25^\circ C$</td>
<td>1.8</td>
<td>2</td>
<td>1.4</td>
<td>A</td>
</tr>
<tr>
<td>$R_{DS(ON)}$</td>
<td>$I_{SW} = 100 , mA$, $V_{IN} = 3.3 , V$, $T_J = 25^\circ C$</td>
<td>260</td>
<td>500</td>
<td>500</td>
<td>mΩ</td>
</tr>
<tr>
<td>V_{FB}</td>
<td>$V_{IN} = 3 , V$, $T_J = 25^\circ C$</td>
<td>1.230</td>
<td>1.205</td>
<td>1.255</td>
<td>V</td>
</tr>
<tr>
<td>I_{FB}</td>
<td>$V_{FB} = 1.23 , V$, $T_J = 25^\circ C$</td>
<td>60</td>
<td>500</td>
<td>nA</td>
<td></td>
</tr>
</tbody>
</table>

(1) Limits are ensured by testing, statistical correlation, or design.
(2) Typical values are derived from the mean value of a large quantity of samples tested during characterization and represent the most likely expected value of the parameter at room temperature.
(3) $L = 10 \, \mu H$, $C_{OUT} = 4.7 \, \mu F$, duty cycle = maximum
(4) Switch current limit is dependent on duty cycle (see Typical Characteristics).

Copyright © 2004–2015, Texas Instruments Incorporated
Electrical Characteristics (continued)

Limits are for $T_J = 25^\circ C$. Unless otherwise specified: $V_{\text{IN}} = 5\, \text{V}$, $V_{\text{SHDN}} = 5\, \text{V}$, $I_L = 0\, \text{A}$.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN$^{(1)}$</th>
<th>TYP$^{(2)}$</th>
<th>MAX$^{(1)}$</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_Q</td>
<td>$V_{\text{SHDN}} = 5, \text{V}$, Switching $^\text{X}$</td>
<td>$T_J = 25^\circ C$</td>
<td>$-40^\circ C \leq T_J \leq 125^\circ C$</td>
<td>2</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>$V_{\text{SHDN}} = 5, \text{V}$, Switching $^\text{Y}$</td>
<td>$T_J = 25^\circ C$</td>
<td>$-40^\circ C \leq T_J \leq 125^\circ C$</td>
<td>1</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>$V_{\text{SHDN}} = 5, \text{V}$, Not Switching</td>
<td>$T_J = 25^\circ C$</td>
<td>$-40^\circ C \leq T_J \leq 125^\circ C$</td>
<td>400</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td>$V_{\text{SHDN}} = 0$</td>
<td></td>
<td></td>
<td>0.024</td>
<td>1</td>
</tr>
<tr>
<td>$\Delta V_{\text{FB}}/\Delta V_{\text{IN}}$ FB Voltage Line Regulation</td>
<td>$2.7, \text{V} \leq V_{\text{IN}} \leq 14, \text{V}$</td>
<td></td>
<td></td>
<td>0.02</td>
<td>%/V</td>
</tr>
<tr>
<td>F_{SW}</td>
<td>Switching Frequency$^{(5)}$</td>
<td>$^\text{X}$ Option</td>
<td>$T_J = 25^\circ C$</td>
<td>$-40^\circ C \leq T_J \leq 125^\circ C$</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>$^\text{Y}$ Option</td>
<td>$T_J = 25^\circ C$</td>
<td>$-40^\circ C \leq T_J \leq 125^\circ C$</td>
<td>0.8</td>
<td>MHz</td>
</tr>
<tr>
<td>D_{MAX}</td>
<td>Maximum Duty Cycle$^{(5)}$</td>
<td>$^\text{X}$ Option</td>
<td>$T_J = 25^\circ C$</td>
<td>$-40^\circ C \leq T_J \leq 125^\circ C$</td>
<td>88%</td>
</tr>
<tr>
<td></td>
<td>$^\text{Y}$ Option</td>
<td>$T_J = 25^\circ C$</td>
<td>$-40^\circ C \leq T_J \leq 125^\circ C$</td>
<td>88%</td>
<td></td>
</tr>
<tr>
<td>I_L</td>
<td>Switch Leakage</td>
<td>Not Switching $V_{\text{SW}} = 5, \text{V}$</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

$^{(5)}$ Specified limits are the same for $V_{\text{IN}} = 3.3\, \text{V}$ input.
6.6 Typical Characteristics

Unless otherwise specified: $V_{\text{IN}} = 5\, \text{V}$, \text{SHDN pin tied to} V_{IN}.

Figure 1. I_{q} V_{IN} (Active) vs Temperature - X Option

Figure 2. I_{q} V_{IN} (Active) vs Temperature - Y Option

Figure 3. Oscillator Frequency vs Temperature - X Option

Figure 4. Oscillator Frequency vs Temperature - Y Option

Figure 5. Maximum Duty Cycle vs Temperature - X Option

Figure 6. Maximum Duty Cycle vs Temperature - Y Option
Typical Characteristics (continued)

Unless otherwise specified: \(V_{\text{IN}} = 5 \text{V} \), SHDN pin tied to \(V_{\text{IN}} \).

Figure 7. \(I_q V_{\text{IN}} \) (Idle) vs Temperature

Figure 8. Feedback Bias Current vs Temperature

Figure 9. Feedback Voltage vs Temperature

Figure 10. \(R_{\text{DS(ON)}} \) vs Temperature

Figure 11. Current Limit vs Temperature

Figure 12. \(R_{\text{DS(ON)}} \) vs \(V_{\text{IN}} \)
Typical Characteristics (continued)

Unless otherwise specified: $V_{\text{IN}} = 5 \text{ V}$, SHDN pin tied to V_{IN}.

![Efficiency vs Load Current - X Option](image1)

$V_{\text{IN}} = 2.7 \text{ V}$, $V_{\text{OUT}} = 5 \text{ V}$

![Efficiency vs Load Current - X Option](image2)

$V_{\text{IN}} = 4.2 \text{ V}$, $V_{\text{OUT}} = 5 \text{ V}$

![Efficiency vs Load Current - X Option](image3)

$V_{\text{IN}} = 2.7 \text{ V}$, $V_{\text{OUT}} = 12 \text{ V}$

![Efficiency vs Load Current - X Option](image4)

$V_{\text{IN}} = 5 \text{ V}$, $V_{\text{OUT}} = 12 \text{ V}$

![Efficiency vs Load Current - X Option](image5)

$V_{\text{IN}} = 5 \text{ V}$, $V_{\text{OUT}} = 18 \text{ V}$

![Efficiency vs Load Current - Y Option](image6)

$V_{\text{IN}} = 2.7 \text{ V}$, $V_{\text{OUT}} = 5 \text{ V}$
Typical Characteristics (continued)

Unless otherwise specified: \(V_{IN} = 5 \) V, SHDN pin tied to \(V_{IN} \).

Figure 19. Efficiency vs Load Current - Y Option

Figure 20. Efficiency vs Load Current - Y Option

Figure 21. Efficiency vs Load Current - Y Option

Figure 22. Efficiency vs Load Current - Y Option

Figure 23. Efficiency vs Load Current - Y Option
7 Detailed Description

7.1 Overview
The LM2731 device is a switching converter IC that operates at a fixed frequency (0.6 or 1.6 MHz) for fast transient response over a wide input voltage range and incorporates pulse-by-pulse current limiting protection. Because this is current mode control, a 33-mΩ sense resistor in series with the switch FET is used to provide a voltage (which is proportional to the FET current) to both the input of the pulse width modulation (PWM) comparator and the current limit amplifier.

7.1.1 Theory of Operation
At the beginning of each cycle, the S-R latch turns on the FET. As the current through the FET increases, a voltage (proportional to this current) is summed with the ramp coming from the ramp generator and then fed into the input of the PWM comparator. When this voltage exceeds the voltage on the other input (coming from the Gm amplifier), the latch resets and turns the FET off. Because the signal coming from the Gm amplifier is derived from the feedback (which samples the voltage at the output), the action of the PWM comparator constantly sets the correct peak current through the FET to keep the output voltage in regulation.

Q1 and Q2 along with R3 - R6 form a bandgap voltage reference used by the IC to hold the output in regulation. The currents flowing through Q1 and Q2 will be equal, and the feedback loop will adjust the regulated output to maintain this. Because of this, the regulated output is always maintained at a voltage level equal to the voltage at the FB node “multiplied up” by the ratio of the output resistive-divider.

The current limit comparator feeds directly into the flip-flop that drives the switch FET. If the FET current reaches the limit threshold, the FET is turned off and the cycle terminated until the next clock pulse. The current limit input terminates the pulse regardless of the status of the output of the PWM comparator.

7.2 Functional Block Diagram

7.3 Feature Description
The LM2731 is a fixed-frequency boost regulator IC that delivers a minimum 1.8-A peak switch current. The device provides cycle-by-cycle current limit protection as well as thermal shutdown protection. The device can also be controlled through the shutdown pin.
7.4 Device Functional Modes

7.4.1 Shutdown Pin Operation
The device is turned off by pulling the shutdown pin low. If this function is not going to be used, the pin should be tied directly to \(V_{IN} \). If the SHDN function will be needed, a pullup resistor must be used to \(V_{IN} \) (approximately 50 k\(\Omega \) to 100 k\(\Omega \) recommended). The SHDN pin must not be left unterminated.

7.4.2 Thermal Shutdown
Thermal shutdown limits total power dissipation by turning off the output switch when the IC junction temperature exceeds 160°C. After thermal shutdown occurs, the output switch doesn’t turn on until the junction temperature drops to approximately 150°C.

7.4.3 Current Limit
The LM2731 uses cycle-by-cycle current limiting to protect the internal NMOS switch. It is important to note that this current limit will not protect the output from excessive current during an output short-circuit. The input supply is connected to the output by the series connection of an inductor and a diode. If a short circuit is placed on the output, excessive current can damage both the inductor and diode.
8 Application and Implementation

NOTE
Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The device will operate with input voltage range from 2.7 V to 14 V and provide a regulated output voltage. This device is optimized for high-efficiency operation with minimum number of external components. For component selection, see Detailed Design Procedure.

8.2 Typical Application

8.2.1 Design Requirements

The device must be able to operate at any voltage within the recommended operating range. The load current must be defined in order to properly size the inductor, input, and output capacitors. The inductor must be able to handle full expected load current as well as the peak current generated during load transients and start-up. Inrush current at start-up will depend on the output capacitor selection. More details are provided in Detailed Design Procedure.

The device has a shutdown pin which is used to disable the device. This pin is active-LOW and care must be taken that the voltage on this pin does not exceed VIN + 0.3 V. This pin must also not be left floating.

8.2.2 Detailed Design Procedure

8.2.2.1 Selecting the External Capacitors

The best capacitors for use with the LM2731 are multi-layer ceramic capacitors. These capacitors have the lowest ESR (equivalent series resistance) and highest resonance frequency which makes them optimum for use with high-frequency switching converters.

When selecting a ceramic capacitor, only X5R and X7R dielectric types should be used. Other types such as Z5U and Y5F have such severe loss of capacitance due to effects of temperature variation and applied voltage, they may provide as little as 20% of rated capacitance in many typical applications. Always consult capacitor manufacturer’s data curves before selecting a capacitor. High-quality ceramic capacitors can be obtained from Taiyo-Yuden, AVX, and Murata.
8.2.2.2 Selecting the Output Capacitor

A single ceramic capacitor of value 4.7 µF to 10 µF will provide sufficient output capacitance for most applications. If larger amounts of capacitance are desired for improved line support and transient response, tantalum capacitors can be used. Aluminum electrolytics with ultra low ESR such as Sanyo Oscon can be used, but are usually prohibitively expensive. Typical AI electrolytic capacitors are not suitable for switching frequencies above 500 kHz due to significant ringing and temperature rise due to self-heating from ripple current. An output capacitor with excessive ESR can also reduce phase margin and cause instability.

In general, if electrolytics are used, TI recommends that they be paralleled with ceramic capacitors to reduce ringing, switching losses, and output voltage ripple.

8.2.2.3 Selecting the Input Capacitor

An input capacitor is required to serve as an energy reservoir for the current which must flow into the coil each time the switch turns ON. This capacitor must have extremely low ESR, so ceramic is the best choice. TI recommends a nominal value of 2.2 µF, but larger values can be used. Since this capacitor reduces the amount of voltage ripple seen at the input pin, it also reduces the amount of EMI passed back along that line to other circuitry.

8.2.2.4 Feedforward Compensation

Although internally compensated, the feedforward capacitor Cf is required for stability (see Figure 26). Adding this capacitor puts a zero in the loop response of the converter. The recommended frequency for the zero fz should be approximately 6 kHz. Cf can be calculated using the formula:

\[Cf = \frac{1}{2 \times \pi \times R_1 \times f_z} \]

8.2.2.5 Selecting Diodes

The external diode used in the typical application should be a Schottky diode. TI recommends a 20-V diode such as the MBR0520.

The MBR05XX series of diodes are designed to handle a maximum average current of 0.5 A. For applications exceeding 0.5-A average but less than 1 A, a Microsemi UPS5817 can be used.

8.2.2.6 Setting the Output Voltage

The output voltage is set using the external resistors R1 and R2 (see Figure 26). A minimum value of 13.3 kΩ is recommended for R2 to establish a divider current of approximately 92 µA. R1 is calculated using the formula:

\[R_1 = R_2 \times \left(\frac{V_{OUT}}{1.23} - 1 \right) \]

8.2.2.7 Switching Frequency

The LM2731 is provided with two switching frequencies: the “X” version is typically 1.6 MHz, while the “Y” version is typically 600 kHz. The best frequency for a specific application must be determined based on the trade-offs involved:

Higher switching frequency means the inductors and capacitors can be made smaller and cheaper for a given output voltage and current. The down side is that efficiency is slightly lower because the fixed switching losses occur more frequently and become a larger percentage of total power loss. EMI is typically worse at higher switching frequencies because more EMI energy will be seen in the higher frequency spectrum where most circuits are more sensitive to such interference.

![Figure 26. Basic Application Circuit](image-url)
8.2.2.8 Duty Cycle

The maximum duty cycle of the switching regulator determines the maximum boost ratio of output-to-input voltage that the converter can attain in continuous mode of operation. The duty cycle for a given boost application is defined as:

\[
\text{Duty Cycle} = \frac{V_{\text{OUT}} + V_{\text{DIODE}} - V_{\text{IN}}}{V_{\text{OUT}} + V_{\text{DIODE}} - V_{\text{SW}}}
\]

This applies for continuous mode operation.

8.2.2.9 Inductance Value

The first question that is usually asked is: “How small can I make the inductor?” (because they are the largest sized component and usually the most costly). The answer is not simple and involves trade-offs in performance. Larger inductors mean less inductor ripple current, which typically means less output voltage ripple (for a given size of output capacitor). Larger inductors also mean more load power can be delivered because the energy stored during each switching cycle is:

\[
E = \frac{1}{2} L \left(\frac{I_p}{dt}\right)^2
\]

Where “Ip” is the peak inductor current. An important point to observe is that the LM2731 will limit its switch current based on peak current. This means that since Ip(max) is fixed, increasing L will increase the maximum amount of power available to the load. Conversely, using too little inductance may limit the amount of load current which can be drawn from the output.

Best performance is usually obtained when the converter is operated in “continuous” mode at the load current range of interest, typically giving better load regulation and less output ripple. Continuous operation is defined as not allowing the inductor current to drop to zero during the cycle. All boost converters shift over to discontinuous operation as the output load is reduced far enough, but a larger inductor stays “continuous” over a wider load current range.

To better understand these trade-offs, a typical application circuit (5-V to 12-V boost with a 10-µH inductor) will be analyzed. We will assume:

\[
V_{\text{IN}} = 5 \text{ V}, \quad V_{\text{OUT}} = 12 \text{ V}, \quad V_{\text{DIODE}} = 0.5 \text{ V}, \quad V_{\text{SW}} = 0.5 \text{ V}
\]

Because the frequency is 1.6 MHz (nominal), the period is approximately 0.625 µs. The duty cycle will be 62.5%, which means the ON-time of the switch is 0.390 µs. When the switch is ON, the voltage across the inductor is approximately 4.5 V.

Using the equation:

\[
V = L \left(\frac{di}{dt}\right)
\]

The di/dt rate of the inductor can then be calculated, which is found to be 0.45 A/µs during the ON time. Using these facts, what the inductor current will look like during operation can be shown:

![10 µH Inductor Current, 5 V–12 V Boost (LM2731X)](image)

During the 0.390-µs ON-time, the inductor current ramps up 0.176 A and ramps down an equal amount during the OFF-time. This is defined as the inductor “ripple current”. If the load current drops to about 33 mA, the inductor current will begin touching the zero axis which means it will be in discontinuous mode. A similar analysis can be performed on any boost converter, to make sure the ripple current is reasonable and continuous operation will be maintained at the typical load current values.
8.2.2.10 Maximum Switch Current

The maximum FET switch current available before the current limiter cuts in is dependent on duty cycle of the application. This is illustrated in the graphs below which show typical values of switch current for both the “X” and “Y” versions as a function of effective (actual) duty cycle:

![Figure 28. Switch Current Limit vs Duty Cycle - X Option](image)

![Figure 29. Switch Current Limit vs Duty Cycle - Y Option](image)

8.2.2.11 Calculating Load Current

As shown in the figure which depicts inductor current, the load current is related to the average inductor current by the relation:

\[
I_{LOAD} = I_{IND}(AVG) \times (1 - DC)
\]

Where “DC” is the duty cycle of the application. The switch current can be found by:

\[
I_{SW} = I_{IND}(AVG) + \frac{1}{2} I_{RIPPLE}
\]

Inductor ripple current is dependent on inductance, duty cycle, input voltage and frequency:

\[
I_{RIPPLE} = DC \times \frac{V_{IN} - V_{SW}}{(f \times L)}
\]

Combining all terms, an expression can be developed which allows the maximum available load current to be calculated:

\[
I_{LOAD}(\text{max}) = (1 - DC) \times \left(I_{SW}(\text{max}) - \frac{DC(V_{IN} - V_{SW})}{2fL} \right)
\]

The equation shown to calculate maximum load current takes into account the losses in the inductor or turn-OFF switching losses of the FET and diode. For actual load current in typical applications, we took bench data for various input and output voltages for both the “X” and “Y” versions of the LM2731 and displayed the maximum load current available for a typical device in graph form:
8.2.2.12 Design Parameters \(V_{SW} \) and \(I_{SW} \)

The value of the FET "ON" voltage (referred to as \(V_{SW} \) in the equations) is dependent on load current. A good approximation can be obtained by multiplying the "ON-Resistance" of the FET times the average inductor current.

FET on resistance increases at \(V_{IN} \) values less than 5 V, since the internal N-FET has less gate voltage in this input voltage range (see Typical Characteristics curves). Above \(V_{IN} = 5V \), the FET gate voltage is internally clamped to 5V.

The maximum peak switch current the device can deliver is dependent on duty cycle. For higher duty cycles, see Typical Characteristics.

8.2.2.13 Inductor Suppliers

Recommended suppliers of inductors for this product include, but are not limited to Sumida, Coilcraft, Panasonic, TDK, and Murata. When selecting an inductor, make certain that the continuous current rating is high enough to avoid saturation at peak currents. A suitable core type must be used to minimize core (switching) losses, and wire power losses must be considered when selecting the current rating.
8.2.3 Application Curves

See Typical Characteristics.

8.3 System Examples

Figure 34. \(\text{VIN} = 3.3 \, \text{V}, \text{VOUT} = 5 \, \text{V} \) at 700 mA

Figure 35. Efficiency vs Load Current
Figure 36. VIN = 3.3 V, VOUT = 12 V at 230 mA

Figure 37. Efficiency vs Load Current

Figure 38. VIN = 3.3 V, VOUT = 9 V at 240 mA

Figure 39. Efficiency vs Load Current

Figure 40. White LED Flash Application
9 Power Supply Recommendations

The LM2731 device is designed to operate from various DC power supplies. The impedance of the input supply rail should be low enough that the input current transient does not cause a drop below SHUTDOWN level. If the input supply is connected by using long wires, additional bulk capacitance may be required in addition to normal input capacitor.

10 Layout

10.1 Layout Guidelines

High-frequency switching regulators require very careful layout of components to get stable operation and low noise. All components must be as close as possible to the LM2731 device. TI recommends that a 4-layer PCB be used so that internal ground planes are available.

As an example, a recommended layout of components is shown in Figure 41.

Some additional guidelines to be observed:

- Keep the path between L1, D1, and C2 extremely short. Parasitic trace inductance in series with D1 and C2 will increase noise and ringing.
- The feedback components R1, R2 and CF must be kept close to the FB pin of U1 to prevent noise injection on the FB pin trace.
- If internal ground planes are available (recommended), use vias to connect directly to ground at pin 2 of U1, as well as the negative sides of capacitors C1 and C2.

10.2 Layout Example

![Recommended PCB Component Layout](Image)
10.3 Thermal Considerations

At higher duty cycles, the increased ON-time of the FET means the maximum output current will be determined by power dissipation within the LM2731 FET switch. The switch power dissipation from ON-state conduction is calculated by:

\[P_{\text{(SW)}} = DC \times I_{\text{IND(AVE)}}^2 \times R_{\text{DS(ON)}} \]

(11)

There will be some switching losses as well, so some derating needs to be applied when calculating IC power dissipation.
11 Device and Documentation Support

11.1 Device Support

11.1.1 Third-Party Products Disclaimer
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

11.2 Community Resources
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of
Use.

TI E2E™ Online Community Ti's Engineer-to-Engineer (E2E) Community. Created to foster collaboration
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help
solve problems with fellow engineers.

Design Support Ti's Design Support Quickly find helpful E2E forums along with design support tools and
contact information for technical support.

11.3 Trademarks
E2E is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

11.4 Electrostatic Discharge Caution
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam
during storage or handling to prevent electrostatic damage to the MOS gates.

11.5 Glossary
SLYZ022 — Ti Glossary.
This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information
The following pages include mechanical, packaging, and orderable information. This information is the most
current data available for the designated devices. This data is subject to change without notice and revision of
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish (6)</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM2731XMFX/NOPB</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>TBD</td>
<td>Call TI</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>S51A</td>
<td>Samples</td>
</tr>
<tr>
<td>LM2731YMF</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>TBD</td>
<td>Call TI</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>S51B</td>
<td>Samples</td>
</tr>
<tr>
<td>LM2731YMFX/NOPB</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>TBD</td>
<td>Call TI</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>S51B</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) **RoHS**: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

- **RoHS Exempt**: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

- **Green**: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) **Lead/Ball Finish** - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM2731XMF</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>178.0</td>
<td>8.4</td>
<td>3.2</td>
<td>3.2</td>
<td>1.4</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>LM2731XMF/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>178.0</td>
<td>8.4</td>
<td>3.2</td>
<td>3.2</td>
<td>1.4</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>LM2731XMFX/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>178.0</td>
<td>8.4</td>
<td>3.2</td>
<td>3.2</td>
<td>1.4</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>LM2731YMF</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>178.0</td>
<td>8.4</td>
<td>3.2</td>
<td>3.2</td>
<td>1.4</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>LM2731YMF/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>178.0</td>
<td>8.4</td>
<td>3.2</td>
<td>3.2</td>
<td>1.4</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>LM2731YMFX/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>178.0</td>
<td>8.4</td>
<td>3.2</td>
<td>3.2</td>
<td>1.4</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
</tbody>
</table>

All dimensions are nominal.

Dimensions designed to accommodate the component width.

Dimensions designed to accommodate the component length.

Dimension designed to accommodate the component thickness.

Overall width of the carrier tape.

Pitch between successive cavity centers.

[Image of TAPE AND REEL INFORMATION]
<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM2731XMF</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LM2731XMF/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LM2731XMF/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LM2731YM/F</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LM2731YM/F/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LM2731YM/F/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>

All dimensions are nominal
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
NOTES: (continued)

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
8. Board assembly site may have different recommendations for stencil design.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2020, Texas Instruments Incorporated