LM384 5W Audio Power Amplifier

Check for Samples: LM384

FEATURES
• Wide Supply Voltage Range: 12V to 26V
• Low Quiescent Power Drain
• Voltage Gain Fixed at 50
• High Peak Current Capability: 1.3A
• Input Referenced to GND
• High Input Impedance: 150kΩ
• Low Distortion: 0.25% (P₀=4W, Rₗ=8Ω)
• Quiescent Output Voltage is at One Half of the Supply Voltage
• 14-Pin PDIP Package

DESCRIPTION
The LM384 is a power audio amplifier for consumer applications. In order to hold system cost to a minimum, gain is internally fixed at 34 dB. A unique input stage allows ground referenced input signals. The output automatically self-centers to one-half the supply voltage.

The output is short-circuit proof with internal thermal limiting. The package outline is standard dual-in-line. A copper lead frame is used with the center three pins on either side comprising a heat sink. This makes the device easy to use in standard p-c layout.

Uses include simple phonograph amplifiers, intercoms, line drivers, teaching machine outputs, alarms, ultrasonic drivers, TV sound systems, AM-FM radio and sound projector systems. See SNAA086 for circuit details.

Schematic Diagram
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td></td>
<td>28V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Current</td>
<td></td>
<td>1.3A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Dissipation</td>
<td></td>
<td>1.67W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Voltage</td>
<td></td>
<td>±0.5V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage Temperature</td>
<td></td>
<td>−65°C to +150°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Temperature</td>
<td></td>
<td>0°C to +70°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead Temperature (Soldering, 10 sec.)</td>
<td></td>
<td>260°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ_{JC}</td>
<td></td>
<td>30°C/W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ_{JA}</td>
<td></td>
<td>79°C/W</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits.
2. If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.
3. The maximum junction temperature of the LM384 is 150°C.
4. The package is to be derated at 15°C/W junction to heat sink pins.

Electrical Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z_{IN}</td>
<td>Input Resistance</td>
<td></td>
<td>150</td>
<td></td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td>I_{BIAS}</td>
<td>Bias Current</td>
<td>Inputs Floating</td>
<td>100</td>
<td></td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>A_V</td>
<td>Gain</td>
<td></td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>V/V</td>
</tr>
<tr>
<td>P_{OUT}</td>
<td>Output Power</td>
<td>THD = 10%, $R_L = 8\Omega$</td>
<td>5</td>
<td>5.5</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>I_Q</td>
<td>Quiescent Supply Current</td>
<td></td>
<td>8.5</td>
<td></td>
<td>25</td>
<td>mA</td>
</tr>
<tr>
<td>V_{OUT}</td>
<td>Quiescent Output Voltage</td>
<td></td>
<td>11</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>BW</td>
<td>Bandwidth</td>
<td>$P_{OUT} = 2W$, $R_L = 8\Omega$</td>
<td>450</td>
<td></td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>V^+</td>
<td>Supply Voltage</td>
<td></td>
<td>12</td>
<td></td>
<td>26</td>
<td>V</td>
</tr>
<tr>
<td>I_{SC}</td>
<td>Short Circuit Current</td>
<td></td>
<td>1.3</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>PSRR_{RTO}</td>
<td>Power Supply Rejection Ratio</td>
<td></td>
<td>31</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>THD</td>
<td>Total Harmonic Distortion</td>
<td>$P_{OUT} = 4W$, $R_L = 8\Omega$</td>
<td>0.25</td>
<td>1.0</td>
<td></td>
<td>%</td>
</tr>
</tbody>
</table>

1. $V^+ = 22V$ and $T_A = 25°C$ operating with a Staver V7 heat sink for 30 seconds.
2. Output is fully protected against a shorted speaker condition at all voltages up to 22V.
3. Rejection ratio referred to the output with $C_{BYPASS} = 5 \mu F$, freq = 120 Hz.
Heat Sink Dimensions

Figure 1. Staver “V7” Heat Sink
Typical Performance Characteristics

Device Dissipation vs Ambient Temperature

Thermal Resistance vs Square Inches

Supply Decoupling vs Frequency

Total Harmonic Distortion vs Output Power

Output Voltage Gain vs Frequency

Total Harmonic Distortion vs Frequency
Typical Performance Characteristics (continued)

Power Supply Current vs Supply Voltage

![Graph showing Power Supply Current vs Supply Voltage](image)

Device Dissipation vs Output Power — 16Ω Load

![Graph showing Device Dissipation vs Output Power — 16Ω Load](image)

Device Dissipation vs Output Power — 8Ω Load

![Graph showing Device Dissipation vs Output Power — 8Ω Load](image)

Device Dissipation vs Output Power — 4Ω Load

![Graph showing Device Dissipation vs Output Power — 4Ω Load](image)
Block and Connection Diagrams

Note: Heatsink Pins

Figure 12. 14-Pin PDIP (Top View)
See NFF0014A Package

Typical Applications

Figure 13. Typical 5W Amplifier
Figure 14. Bridge Amplifier

*For stability with high current loads

Figure 15. Intercom

Figure 16. Phase Shift Oscillator
Changes from Revision B (April 2013) to Revision C

- Changed layout of National Data Sheet to TI format

Page

7
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead finish/Ball material (6)</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM384N/NOPB</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>14</td>
<td>25</td>
<td>RoHS & Green</td>
<td>Call TI</td>
<td>SN</td>
<td>Level-1-NA-UNLIM</td>
<td>0 to 70</td>
<td>LM384N</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBsolete: TI has discontinued the production of the device.

(2) **RoHS:** TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "," will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
NOTES:

A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

⚠️ Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).

⚠️ The 20 pin end lead shoulder width is a vendor option, either half or full width.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI’s Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2021, Texas Instruments Incorporated