

Sample &

Buy

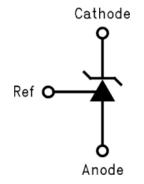
LM431

SNVS020H-MAY 2000-REVISED JANUARY 2016

LM431 Adjustable Precision Zener Shunt Regulator

Technical

Documents


1 Features

- Average Temperature Coefficient 50 ppm/°C
- Temperature Compensated for Operation Over the Full Temperature Range
- Programmable Output Voltage
- Fast Turnon Response
- Low-Output Noise
- Low-Dynamic Output Impedance
- Available in Space-Saving SOIC-8, SOT-23, and TO-92 Packages

2 Applications

- Adjustable Voltage or Current Linear and Switching Power Supplies
- Voltage Monitoring
- Current Source and Sink Circuits
- Circuits Requiring Precision References
- Zener Diode Replacements

LM431 Symbol

3 Description

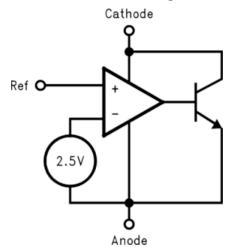
Tools &

Software

The LM431 is a 3-terminal adjustable shunt regulator with ensured temperature stability over the entire temperature range of operation. The output voltage may be set at any level greater than 2.5 V (V_{REF}) up to 36 V merely by selecting two external resistors that act as a voltage divided network. Due to the sharp turnon characteristics this device is an excellent replacement for many Zener diode applications.

Support &

Community


29

The LM431 is available in space-saving SOIC-8, SOT-23, and TO-92 packages.

		II
PART NUMBER	PACKAGE	BODY SIZE (NOM)
	SOIC (8)	4.90 mm × 3.91 mm
LM431	SOT-23 (3)	2.92 mm × 1.30 mm
	TO-92 (3)	4.30 mm × 4.30 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Functional Block Diagram

Device Information⁽¹⁾

2

Table of Contents

1		tures	
2	Арр	lications	1
3	Des	cription	1
4	Rev	ision History	2
5	Pin	Configuration and Functions	3
6	Spe	cifications	4
	6.1	Absolute Maximum Ratings	4
	6.2	ESD Ratings	4
	6.3	Recommended Operating Conditions	4
	6.4	Thermal Information	4
	6.5	Electrical Characteristics	5
	6.6	Typical Characteristics	7
7	Para	ameter Measurement Information	7
8	Deta	ailed Description1	0
	8.1	Overview	0
	8.2	Functional Block Diagram 1	0

	8.3	Feature Description	10
	8.4	Device Functional Modes	11
9	App	ication and Implementation	12
	9.1	Application Information	12
	9.2	Typical Applications	13
10	Pow	er Supply Recommendations	19
11	Lay	out	19
		Layout Guidelines	
	11.2	Layout Example	19
12	Dev	ice and Documentation Support	20
	12.1	Community Resources	20
	12.2	Trademarks	20
	12.3	Electrostatic Discharge Caution	20
	12.4	Glossary	20
13		hanical, Packaging, and Orderable mation	20

4 Revision History

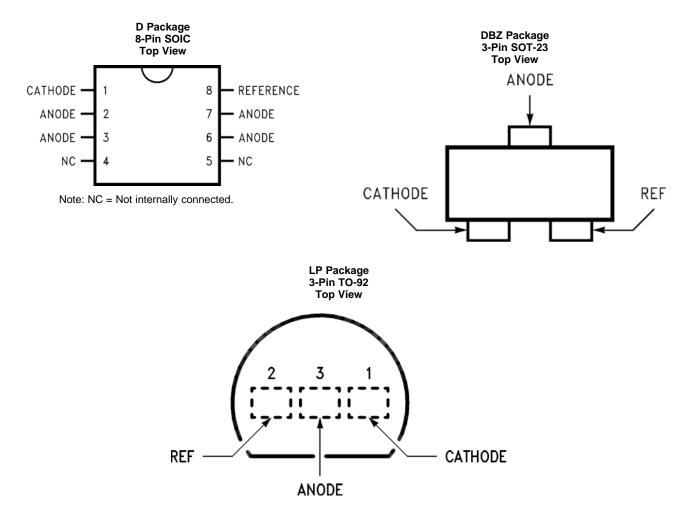
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision G (March 2013) to Revision H

Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section1

Changes from Revision F (April 2013) to Revision G

XAS STRUMENTS


www.ti.com

Page

Page

5 Pin Configuration and Functions

Pin Functions

		PIN		//O	DESCRIPTION			
NAME	SOIC	SOT-23	TO-92	1/0	DESCRIPTION			
Anode	2, 3, 6, 7	3	3	0	Anode pin, normally grounded			
Cathode	1	1	1	I/O	Shunt current/output voltage			
NC	4, 5	_	—	_	No connect			
Reference	8	2	2	I	Reference pin for adjustable output voltage			

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾⁽²⁾

		MIN	MAX	UNIT
Cathode voltage		37		V
Reference voltage		-0.5		V
Continuous cathode current	nt	-10	150	mA
Reference input current		10		mA
	TO-92 package	0.78		W
Internal power dissipation ⁽³⁾⁽⁴⁾	SOIC package	0.81		W
aloopation	SOT-23 package	0.28		W
	Industrial (LM431xI)	-40	85	°C
Operating temperature	Commercial (LM431xC)	0	70	°C
Storage temperature		-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2) If Military/Aerospace specified devices are required, please contact the TI Sales Office/ Distributors for availability and specifications.

(3) $T_{J Max} = 150^{\circ}C.$

(4) Ratings apply to ambient temperature at 25°C. Above this temperature, derate the TO-92 at 6.2 mW/°C, the SOIC at 6.5 mW/°C, the SOT-23 at 2.2 mW/°C.

6.2 ESD Ratings

			VALUE	UNIT
V _(ESD)	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2500	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

	MIN	MAX	UNIT
Cathode voltage	V _{REF}	37	V
Cathode current	1	100	mA

6.4 Thermal Information

	THERMAL METRIC ⁽¹⁾	D (SOIC)	DBZ (SOT-23)	LP (TO-92)	UNIT
		8 PINS	3 PINS	3 PINS	
R_{\thetaJA}	Junction-to-ambient thermal resistance	126.9	267.7	162.4	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	72.2	138.3	85.8	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	67.5	61	—	°C/W
ΨJT	Junction-to-top characterization parameter	21.1	21.5	29.4	°C/W
Ψ _{JB}	Junction-to-board characterization parameter	67	60.1	141.5	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	_	_		°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.



6.5 Electrical Characteristics

 $T_A = 25^{\circ}C$ unless otherwise specified

	PARAMETER	TES	T CONDITIONS	MIN	TYP	MAX	UNIT
ΔV _{REF} /		V _Z = V _{REF} , I _I LM431A (Fig		2.44	2.495	2.55	
V _{REF} Reference voltage		V _Z = V _{REF} , I _I LM431B (Fig		2.47	2.495	2.52	V
	Deviation of reference input voltage DEV overtemperature ⁽¹⁾	V _Z = V _{REF} , I _I LM431C (Fig		2.485	2.5	2.51	
V_{DEV}		$V_Z = V_{REF}, I_I$ $T_A = full rang$			8	17	mV
ΔV_{RFF}	Ratio of the change in reference voltage to the	$I_7 = 10 \text{ mA}$	V_Z from V_{REF} to 10 V		-1.4	-2.7	
ΔV_Z	change in cathode voltage	(Figure 7)	V _Z from 10 V to 36 V		-1	-2	mV/V
I _{REF}	Reference input current	R ₁ = 10 kΩ, I (Figure 7)	$R_2 = \infty, I_1 = 10 \text{ mA}$		2	4	μA
∝I _{REF}	Deviation of reference input current overtemperature	$R_1 = 10 \text{ k}\Omega, \text{ H}$ $T_A = \text{full range}$	R ₂ = ∞, I _I = 10 mA, e (Figure 7)		0.4	1.2	μA
I _{Z(MIN)}	Minimum cathode current for regulation	$V_Z = V_{REF}(Fig)$	jure 6)		0.4	1	mA
I _{Z(OFF)}	OFF-state current	V _Z = 36 V, V _I	_{REF} = 0 V (Figure 8)		0.3	1	μA

(1) Deviation of reference input voltage, V_{DEV}, is defined as the maximum variation of the reference input voltage over the full temperature range.

Texas Instruments

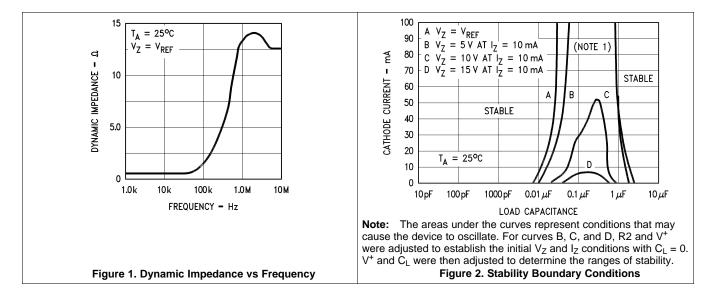
www.ti.com

Electrical Characteristics (continued)

 $T_A = 25^{\circ}C$ unless otherwise specified

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
_		V _Z = V _{REF} , LM431A, Frequency = 0 Hz (Figure 6)			0.75	0
١Z	Dynamic output impedance ⁽²⁾	V _Z = V _{REF} , LM431B, LM431C Frequency = 0 Hz (Figure 6)			0.5	Ω

(2) The dynamic output impedance, r_Z , is defined as:


$$r_Z = \frac{\Delta V_Z}{\Delta I_Z}$$

When the device is programmed with two external resistors, R1 and R2, (see Figure 7), the dynamic output impedance of the overall circuit, r_Z, is defined as:

$$\mathbf{r}_{Z} = \frac{\Delta V_{Z}}{\Delta I_{Z}} \simeq \left[\mathbf{r}_{Z} \left(1 + \frac{\mathbf{R}1}{\mathbf{R}2} \right) \right]$$

6.6 Typical Characteristics

7 Parameter Measurement Information

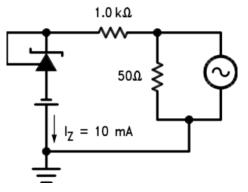


Figure 3. Test Circuit for Dynamic Impedance vs Frequency Curve

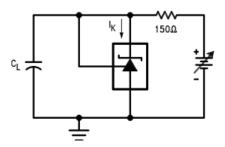


Figure 4. Test Circuit for Curve A Above

Parameter Measurement Information (continued)

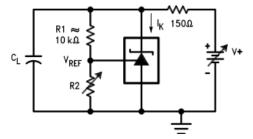


Figure 5. Test Circuit for Curves B, C and D Above

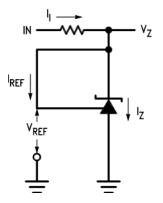
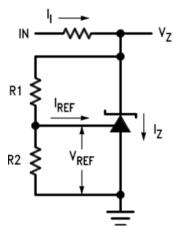



Figure 6. Test Circuit for $V_Z = V_{REF}$

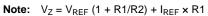


Figure 7. Test Circuit for $V_Z > V_{REF}$

Parameter Measurement Information (continued)

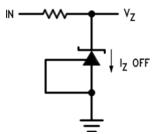


Figure 8. Test Circuit for OFF-State Current

8 Detailed Description

8.1 Overview

The LM431 is an adjustable precision shunt voltage regulator with ensured temperature stability over the entire temperature range. The part has three different packages available to meet small footprint requirements, and is available in three different tolerance grades.

8.2 Functional Block Diagram

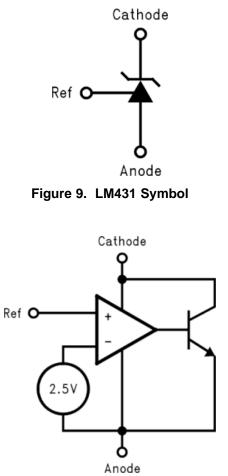


Figure 10. LM431 Block Diagram

8.3 Feature Description

The LM431 is a precision Zener diode. The part requires a small quiescent current for regulation, and regulates the output voltage by shunting more or less current to ground, depending on input voltage and load. The only external component requirement is a resistor between the cathode and the input voltage to set the input current. An external capacitor can be used on the input or output, but is not required.

Feature Description (continued)

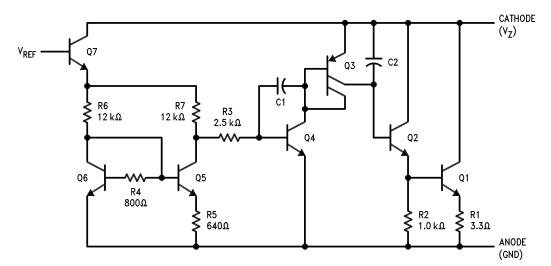


Figure 11. Equivalent Circuit

8.4 Device Functional Modes

The LM431 is most commonly operated in closed-loop mode, where the reference node is tied to the output voltage via a resistor divider. The output voltage remains in regulation as long as I_z is between 1 mA and 100 mA. The part can also be used in open-loop mode to act as a comparator, driving the feedback node from another voltage source.

Texas Instruments

www.ti.com

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers must validate and test their design implementation to confirm system functionality.

9.1 Application Information

The LM431 is an adjustable precision shunt voltage regulator with ensured temperature stability over the entire temperature range. For space critical applications, the LM431 is available in space saving SOIC-8, SOT-23 and TO-92 packages. The minimum operating current is 1 mA while the maximum operating current is 100 mA.

The typical thermal hysteresis specification is defined as the change in 25°C voltage measured after thermal cycling. The device is thermal cycled to temperature 0°C and then measured at 25°C. Next the device is thermal cycled to temperature 70°C and again measured at 25°C. The resulting VOUT delta shift between the 25°C measurements is thermal hysteresis. Thermal hysteresis is common in precision references and is induced by thermal-mechanical package stress. Changes in environmental storage temperature, operating temperature and board mounting temperature are all factors that can contribute to thermal hysteresis.

In a conventional shunt regulator application (Figure 12), an external series resistor (R_S) is connected between the supply voltage and the LM431 cathode pin. R_S determines the current that flows through the load (I_{LOAD}) and the LM431 (I_Z). Since load current and supply voltage may vary, R_S must be small enough to supply at least the minimum acceptable I_Z to the LM431 even when the supply voltage is at its minimum and the load current is at its maximum value. When the supply voltage is at its maximum and I_{LOAD} is at its minimum, R_S must be large enough so that the current flowing through the LM431 is less than 100 mA.

 R_S must be selected based on the supply voltage, (V+), the desired load and operating current, (I_{LOAD} and I_Z), and the output voltage, see Equation 1.

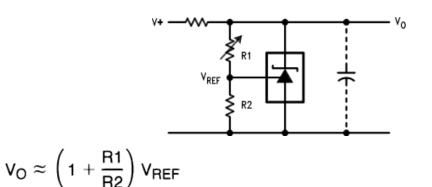
$$\mathsf{R}_{\mathsf{S}} = \frac{\mathsf{V}_{+} - \mathsf{V}_{\mathsf{O}}}{\mathsf{I}_{\mathsf{LOAD}} + \mathsf{I}_{\mathsf{Z}}} \tag{1}$$

The LM431 output voltage can be adjusted to any value in the range of 2.5 V through 37 V. It is a function of the internal reference voltage (VREF) and the ratio of the external feedback resistors as shown in Figure 12. The output voltage is found using Equation 2.

 $V_0 = V_{REF} * (1 + R_1/R_2)$

where

• V_O is the output voltage (also, cathode voltage, V_Z). The actual value of the internal V_{REF} is a function of V_Z . (2)


The corrected V_{REF} is determined by Equation 3:

 $V_{REF} = \Delta V_Z * (\Delta V_{REF} / \Delta V_Z) + V_Y$

where

- $V_Y = 2.5 \text{ V} \text{ and } \Delta V_Z = (V_Z V_Y)$
- ΔV_{REF}/ΔV_Z is found in the *Electrical Characteristics* and is typically -1.4 mV/V for V_Z raging from V_{REF} to 10 V and -1 mV/V for V_Z raging from 10 V to 36 V.
 (3)

Figure 12. Shunt Regulator

9.2.1.1 Design Requirements

Design a shunt regulator with the following requirements:

- V₊ > V_O
- V_O = 5 V

Select R_S (a resistor between V₊ and V₀) such that: 1 mA < I_Z < 100 mA

9.2.1.2 Detailed Design Procedure

The resistor R_S must be selected such that current I_Z remains in the operational region of the part for the entire V_+ range and load current range. The two extremes to consider are V_+ at its minimum, and the load at its maximum, where R_S must be small enough for I_Z to remain above 1 mA. The other extreme is V_+ at its maximum, and the load at its minimum, where R_S must be large enough to maintain $I_Z < 100$ mA. If unsure, try using 1 mA $\leq I_R \leq 10$ mA as a starting point; just remember the value of I_Z varies with input voltage and load.

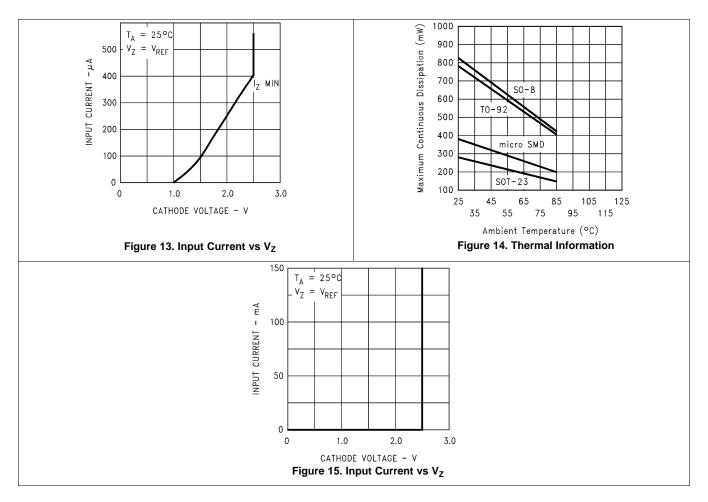
Use Equation 4 and Equation 5 to set R_S between $R_{S_{MIN}}$ and $R_{S_{MAX}}$.

$$R_{S_MIN} = \frac{V_{+_MAX} - V_{O}}{I_{LOAD_MIN} + I_{Z_MAX}}$$

$$R_{S_MAX} = \frac{V_{+_MIN} - V_{O}}{I_{LOAD_MAX} + I_{Z_MIN}}$$
(5)

Set feedback resistors R1 and R2 for a resistor divider based on Equation 2 and reproduced in Equation 6

 $V_0 = V_{REF} * (1 + R_1/R_2)$


So, for a 5-V output voltage, V_O, and V_{REF} of 2.5 V, simple calculation yields $R_1/R_2 = 1$. Based on this, select $R_1 = 1 \ k\Omega$ and $R_2 = 1 \ k\Omega$.

(6)

Typical Applications (continued)

9.2.1.3 Application Curves

9.2.2 Other Applications

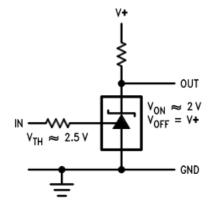


Figure 16. Single Supply Comparator With Temperature Compensated Threshold

Typical Applications (continued)

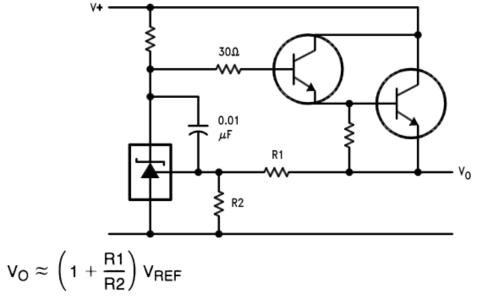
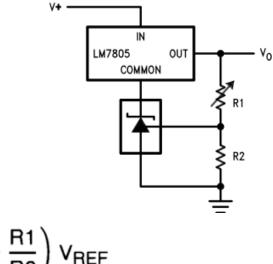
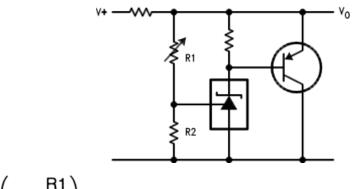
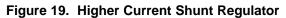



Figure 17. Series Regulator


$$V_{O} = \left(1 + \frac{RT}{R2}\right) V_{REF}$$

1


 $V_{O MIN} = V_{REF} + 5V$

Typical Applications (continued)

$$V_{O} \approx \left(1 + \frac{R1}{R2}\right) V_{REF}$$

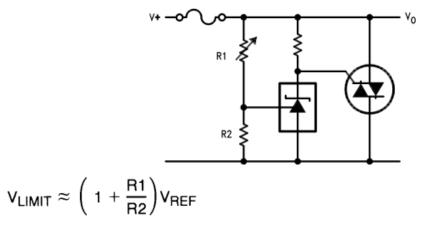
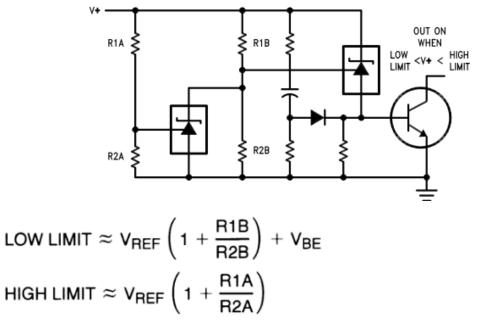
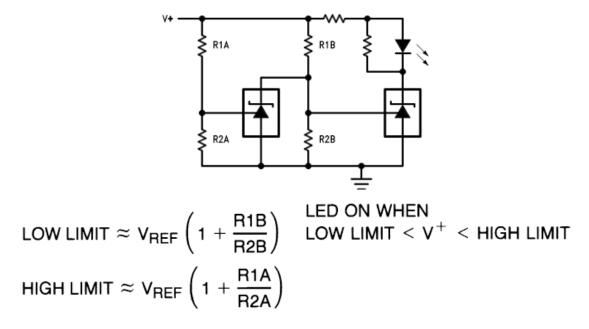
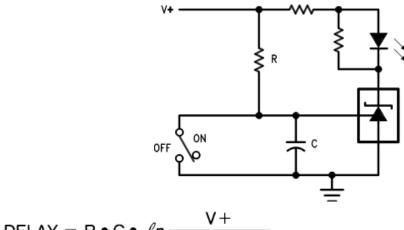
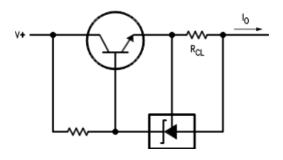



Figure 20. Crow Bar

Typical Applications (continued)


Figure 22. Voltage Monitor

Typical Applications (continued)

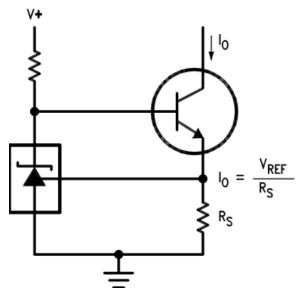

$$\mathsf{DELAY} = \mathsf{R} \bullet \mathsf{C} \bullet \, \ln \frac{\mathsf{V}}{(\mathsf{V}^+) - \mathsf{V}_{\mathsf{REF}}}$$

Figure 23. Delay Timer

 $I_O = \frac{V_{REF}}{R_{CL}}$

10 Power Supply Recommendations

While a bypass capacitor is not required on the input voltage line, TI recommends reducing noise on the input which could affect the output. TI recommends a 0.1-µF ceramic capacitor or larger.

11 Layout

11.1 Layout Guidelines

Place external components as close to the device as possible. Place R_S close to the cathode, as well as the input bypass capacitor, if used. Keep feedback resistor close the device whenever possible.

11.2 Layout Example

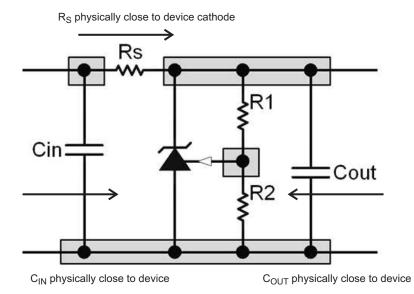


Figure 26. LM431 Layout Recommendation

12 Device and Documentation Support

12.1 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.2 Trademarks

E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

12.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
LM431ACM/NOPB	ACTIVE	SOIC	D	8	95	RoHS & Green	SN	Level-1-260C-UNLIM	0 to 70	LM431 ACM	Samples
LM431ACM3/NOPB	ACTIVE	SOT-23	DBZ	3	1000	RoHS & Green	SN	Level-1-260C-UNLIM	0 to 70	N1F	Samples
LM431ACM3X/NOPB	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	SN	Level-1-260C-UNLIM	0 to 70	N1F	Samples
LM431ACMX/NOPB	ACTIVE	SOIC	D	8	2500	RoHS & Green	SN	Level-1-260C-UNLIM	0 to 70	LM431 ACM	Samples
LM431ACZ/LFT3	ACTIVE	TO-92	LP	3	2000	RoHS & Green	SN	N / A for Pkg Type		LM431 ACZ	Samples
LM431ACZ/LFT4	ACTIVE	TO-92	LP	3	2000	RoHS & Green	SN	N / A for Pkg Type		LM431 ACZ	Samples
LM431ACZ/NOPB	ACTIVE	TO-92	LP	3	1800	RoHS & Green	Call TI	N / A for Pkg Type	0 to 70	LM431 ACZ	Samples
LM431AIM/NOPB	ACTIVE	SOIC	D	8	95	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 85	LM431 AIM	Samples
LM431AIM3/NOPB	ACTIVE	SOT-23	DBZ	3	1000	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 85	N1E	Samples
LM431AIM3X/NOPB	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 85	N1E	Samples
LM431AIMX/NOPB	ACTIVE	SOIC	D	8	2500	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 85	LM431 AIM	Samples
LM431AIZ/LFT1	ACTIVE	TO-92	LP	3	2000	RoHS & Green	SN	N / A for Pkg Type		LM431 AIZ	Samples
LM431AIZ/NOPB	ACTIVE	TO-92	LP	3	1800	RoHS & Green	Call TI	N / A for Pkg Type	-40 to 85	LM431 AIZ	Samples
LM431BCM/NOPB	ACTIVE	SOIC	D	8	95	RoHS & Green	SN	Level-1-260C-UNLIM	0 to 70	431 BCM	Samples
LM431BCM3/NOPB	ACTIVE	SOT-23	DBZ	3	1000	RoHS & Green	SN	Level-1-260C-UNLIM	0 to 70	N1D	Samples
LM431BCM3X/NOPB	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	SN	Level-1-260C-UNLIM	0 to 70	N1D	Samples
LM431BCMX/NOPB	ACTIVE	SOIC	D	8	2500	RoHS & Green	SN	Level-1-260C-UNLIM	0 to 70	431 BCM	Samples
LM431BCZ/NOPB	ACTIVE	TO-92	LP	3	1800	RoHS & Green	Call TI	N / A for Pkg Type	0 to 70	LM431	Samples

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)			BCZ	
LM431BIM/NOPB	ACTIVE	SOIC	D	8	95	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 85	431 BIM	Samples
LM431BIM3/NOPB	ACTIVE	SOT-23	DBZ	3	1000	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 85	N1C	Samples
LM431BIM3X/NOPB	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 85	N1C	Samples
LM431BIMX/NOPB	ACTIVE	SOIC	D	8	2500	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 85	431 BIM	Samples
LM431CCM/NOPB	ACTIVE	SOIC	D	8	95	RoHS & Green	SN	Level-1-260C-UNLIM	0 to 70	431 CCM	Samples
LM431CCM3/NOPB	ACTIVE	SOT-23	DBZ	3	1000	RoHS & Green	SN	Level-1-260C-UNLIM	0 to 70	N1B	Samples
LM431CCM3X/NOPB	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	SN	Level-1-260C-UNLIM	0 to 70	N1B	Samples
LM431CCZ/NOPB	ACTIVE	TO-92	LP	3	1800	RoHS & Green	Call TI	N / A for Pkg Type	0 to 70	LM431 CCZ	Samples
LM431CIM/NOPB	ACTIVE	SOIC	D	8	95	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 85	431 CIM	Samples
LM431CIM3/NOPB	ACTIVE	SOT-23	DBZ	3	1000	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 85	N1A	Samples
LM431CIM3X/NOPB	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 85	N1A	Samples
LM431CIZ/NOPB	ACTIVE	TO-92	LP	3	1800	RoHS & Green	Call TI	N / A for Pkg Type	-40 to 85	LM431 CIZ	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ **RoHS**: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

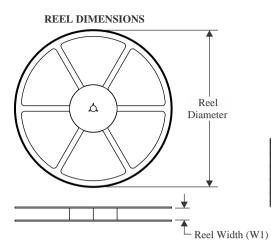
PACKAGE OPTION ADDENDUM

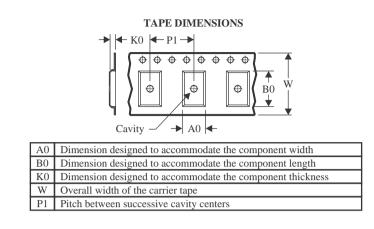
⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

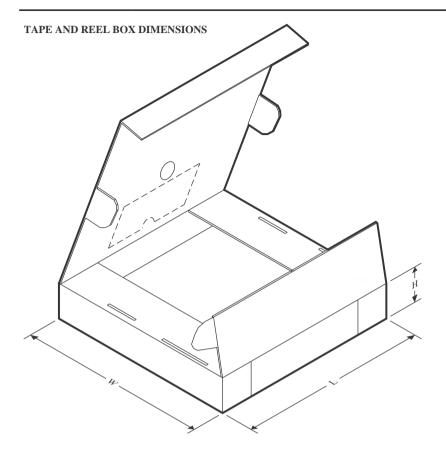

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

Texas

NSTRUMENTS

TAPE AND REEL INFORMATION

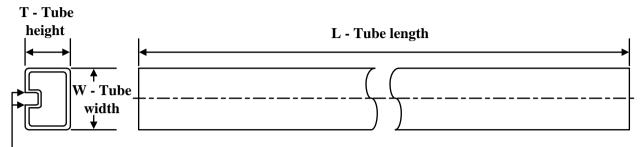
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM431ACM3/NOPB	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM431ACM3X/NOPB	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM431ACMX/NOPB	SOIC	D	8	2500	330.0	12.4	6.5	5.4	2.0	8.0	12.0	Q1
LM431AIM3/NOPB	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM431AIM3X/NOPB	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM431AIMX/NOPB	SOIC	D	8	2500	330.0	12.4	6.5	5.4	2.0	8.0	12.0	Q1
LM431BCM3/NOPB	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM431BCM3X/NOPB	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM431BCMX/NOPB	SOIC	D	8	2500	330.0	12.4	6.5	5.4	2.0	8.0	12.0	Q1
LM431BIM3/NOPB	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM431BIM3X/NOPB	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM431BIMX/NOPB	SOIC	D	8	2500	330.0	12.4	6.5	5.4	2.0	8.0	12.0	Q1
LM431CCM3/NOPB	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM431CCM3X/NOPB	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM431CIM3/NOPB	SOT-23	DBZ	3	1000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3
LM431CIM3X/NOPB	SOT-23	DBZ	3	3000	178.0	8.4	3.3	2.9	1.22	4.0	8.0	Q3

PACKAGE MATERIALS INFORMATION

1-May-2024


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM431ACM3/NOPB	SOT-23	DBZ	3	1000	208.0	191.0	35.0
LM431ACM3X/NOPB	SOT-23	DBZ	3	3000	208.0	191.0	35.0
LM431ACMX/NOPB	SOIC	D	8	2500	367.0	367.0	35.0
LM431AIM3/NOPB	SOT-23	DBZ	3	1000	208.0	191.0	35.0
LM431AIM3X/NOPB	SOT-23	DBZ	3	3000	208.0	191.0	35.0
LM431AIMX/NOPB	SOIC	D	8	2500	367.0	367.0	35.0
LM431BCM3/NOPB	SOT-23	DBZ	3	1000	208.0	191.0	35.0
LM431BCM3X/NOPB	SOT-23	DBZ	3	3000	208.0	191.0	35.0
LM431BCMX/NOPB	SOIC	D	8	2500	367.0	367.0	35.0
LM431BIM3/NOPB	SOT-23	DBZ	3	1000	208.0	191.0	35.0
LM431BIM3X/NOPB	SOT-23	DBZ	3	3000	208.0	191.0	35.0
LM431BIMX/NOPB	SOIC	D	8	2500	367.0	367.0	35.0
LM431CCM3/NOPB	SOT-23	DBZ	3	1000	208.0	191.0	35.0
LM431CCM3X/NOPB	SOT-23	DBZ	3	3000	208.0	191.0	35.0
LM431CIM3/NOPB	SOT-23	DBZ	3	1000	208.0	191.0	35.0
LM431CIM3X/NOPB	SOT-23	DBZ	3	3000	208.0	191.0	35.0

TEXAS INSTRUMENTS

www.ti.com

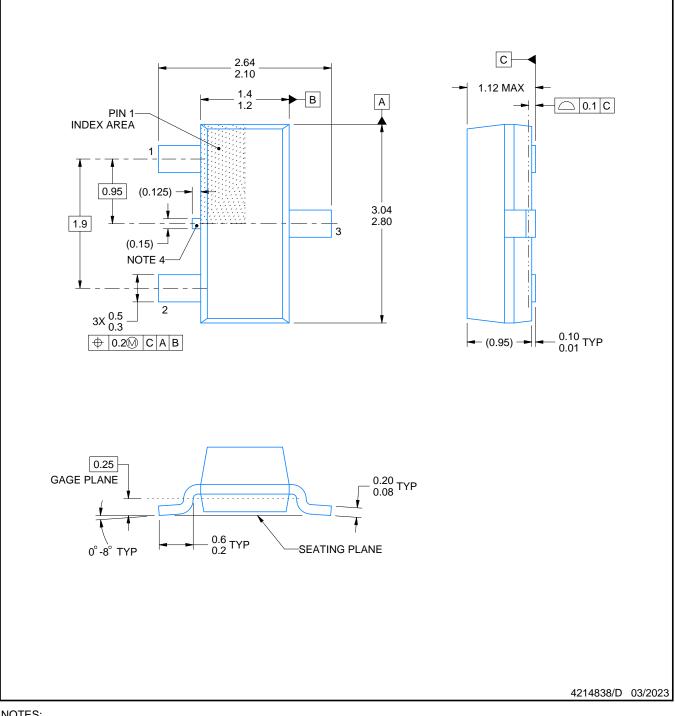
1-May-2024

TUBE

- B - Alignment groove width

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
LM431ACM/NOPB	D	SOIC	8	95	495	8	4064	3.05
LM431AIM/NOPB	D	SOIC	8	95	495	8	4064	3.05
LM431BCM/NOPB	D	SOIC	8	95	495	8	4064	3.05
LM431BIM/NOPB	D	SOIC	8	95	495	8	4064	3.05
LM431CCM/NOPB	D	SOIC	8	95	495	8	4064	3.05
LM431CIM/NOPB	D	SOIC	8	95	495	8	4064	3.05


DBZ0003A

PACKAGE OUTLINE

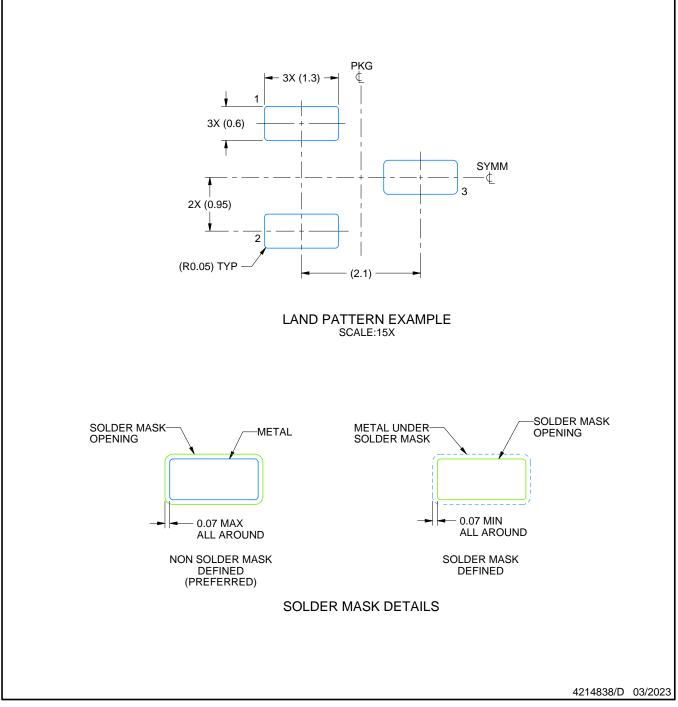
SOT-23 - 1.12 mm max height

SMALL OUTLINE TRANSISTOR

NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 Reference JEDEC registration TO-236, except minimum foot length.

- 4. Support pin may differ or may not be present.



DBZ0003A

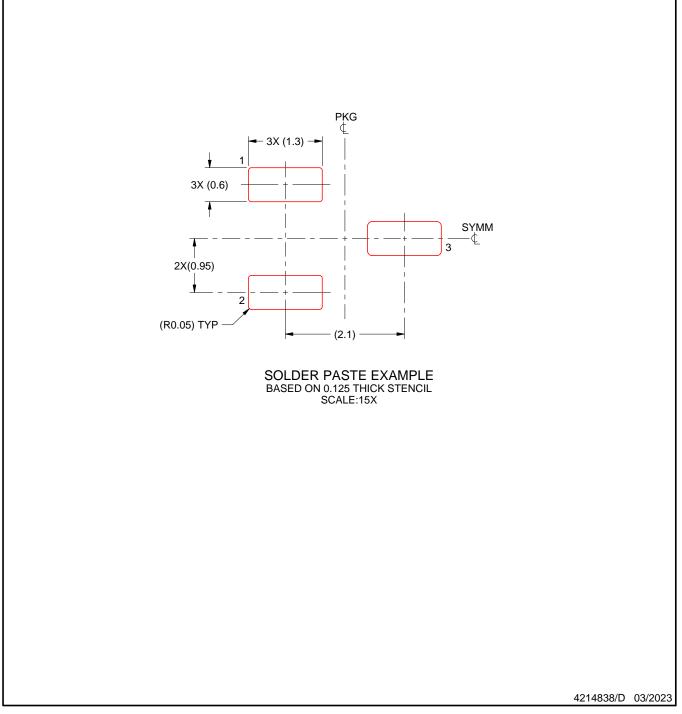
EXAMPLE BOARD LAYOUT

SOT-23 - 1.12 mm max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

4. Publication IPC-7351 may have alternate designs.5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DBZ0003A

EXAMPLE STENCIL DESIGN

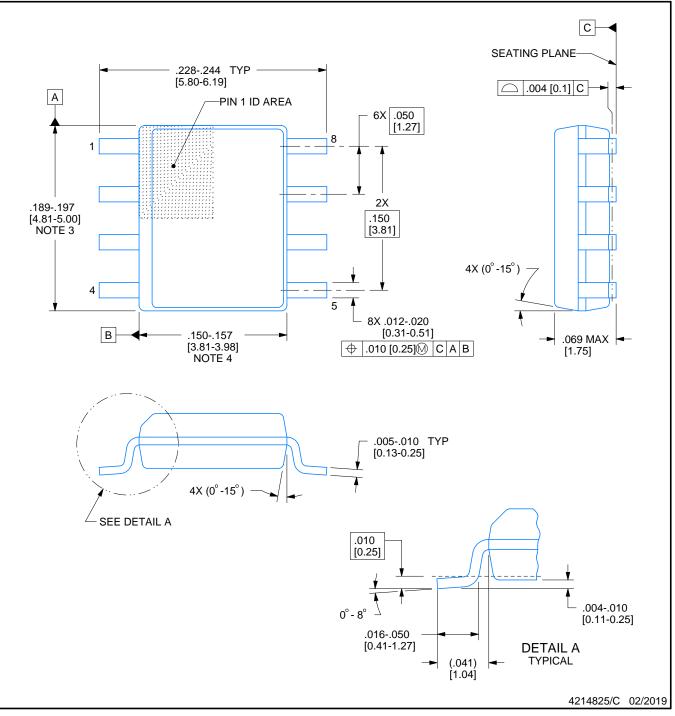
SOT-23 - 1.12 mm max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

7. Board assembly site may have different recommendations for stencil design.


D0008A

PACKAGE OUTLINE

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.

- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.

D0008A

EXAMPLE BOARD LAYOUT

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

D0008A

EXAMPLE STENCIL DESIGN

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

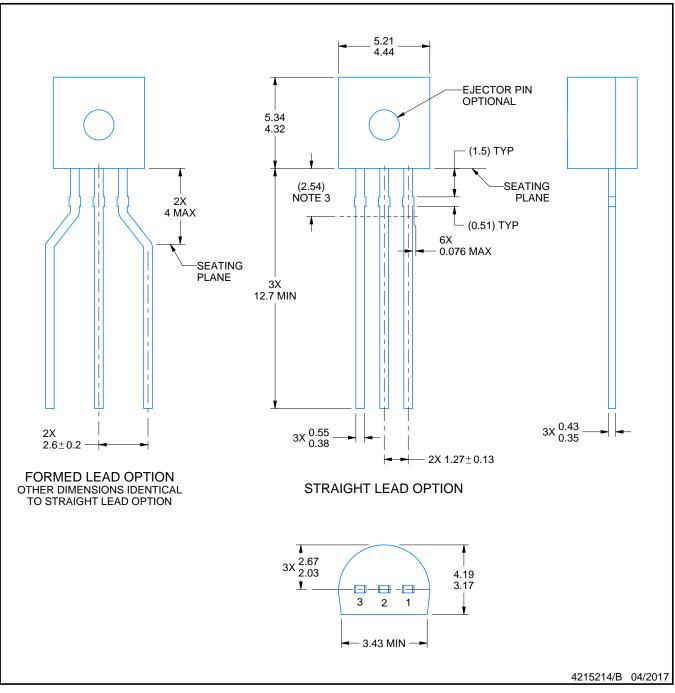
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.

GENERIC PACKAGE VIEW

TO-92 - 5.34 mm max height TRANSISTOR OUTLINE

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.


LP0003A

PACKAGE OUTLINE

TO-92 - 5.34 mm max height

TO-92

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.
- Lead dimensions are not controlled within this area.
 Reference JEDEC TO-226, variation AA.
- 5. Shipping method:

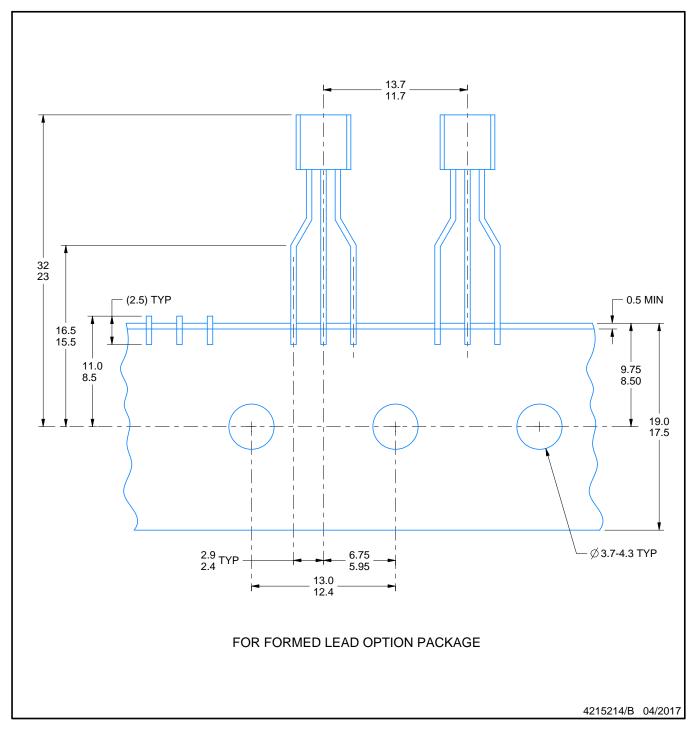
 - a. Straight lead option available in bulk pack only.b. Formed lead option available in tape and reel or ammo pack.
 - c. Specific products can be offered in limited combinations of shipping medium and lead options.
 - d. Consult product folder for more information on available options.

LP0003A

EXAMPLE BOARD LAYOUT

TO-92 - 5.34 mm max height

TO-92



LP0003A

TAPE SPECIFICATIONS

TO-92 - 5.34 mm max height

TO-92

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated