LM4992 Boomer® Audio Power Amplifier Series 420mW Stereo Cell Phone Audio Amplifier
Check for Samples: LM4992, LM4992SDBD

FEATURES
• Available in Space-Saving WSON Package
• Ultra Low Current Shutdown Mode
• BTL Output Can Drive Capacitive Loads
• Improved Click and Pop Circuitry Eliminates Noise During Turn-On and Turn-Off Transitions
• 2.2 - 5.5V Operation
• No Output Coupling Capacitors, Snubber Networks or Bootstrap Capacitors Required
• Unity-Gain Stable
• External Gain Configuration Capability

DESCRIPTION
The LM4992 is a stereo audio power amplifier primarily designed for demanding applications in mobile phones and other portable communication device applications. It is capable of delivering 1 watt, per channel, of continuous average power to an 8Ω BTL load with less than 1% distortion (THD+N) from a 5VDC power supply.

Boomer audio power amplifiers were designed specifically to provide high quality output power with a minimal amount of external components. The LM4992 does not require output coupling capacitors or bootstrap capacitors, and therefore is ideally suited for mobile phone and other low voltage applications where minimal power consumption is a primary requirement.

The LM4992 features independent shutdown control for each channel and a low-power consumption shutdown mode, which is achieved by driving both shutdown pins with logic low. Additionally, the LM4992 features an internal thermal shutdown protection mechanism.

The LM4992 contains advanced click and pop circuitry which eliminates noise which would otherwise occur during turn-on and turn-off transitions.

The LM4992 is unity-gain stable and can be configured by external gain-setting resistors.

APPLICATIONS
• Mobile Phones
• PDAs
• Portable Electronic Devices

KEY SPECIFICATIONS
• Improved PSRR at 217Hz & 1KHz: 64 dB (1KHz)
• Stereo Output Power at 5.0V, 1% THD, 8Ω: 1.07 W (typ)
• Stereo Output Power at 3.3V, 1% THD, 8Ω: 420 mW (typ)
• Shutdown Current, Vdd = 3.3V: 0.2 µA (typ)

Connection Diagram

14 Pin WSON (Top View)
See Package Number NHK0014A
TYPICAL APPLICATION

Figure 1. Typical Audio Amplifier Application Circuit

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.
ABSOLUTE MAXIMUM RATINGS \(^{(1)}(2)\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>6.0V</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>–65°C to +150°C</td>
</tr>
<tr>
<td>Input Voltage</td>
<td>–0.3V to (V_{DD}) +0.3V</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>Internally Limited</td>
</tr>
<tr>
<td>ESD Susceptibility</td>
<td>2000V</td>
</tr>
<tr>
<td>ESD Susceptibility</td>
<td>200V</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>150°C</td>
</tr>
<tr>
<td>Thermal Resistance</td>
<td>(\theta_{JA}) (WSON) 103°C/W</td>
</tr>
</tbody>
</table>

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which ensure specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not ensured for parameters where no limit is given, however, the typical value is a good indication of device performance.

(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.

(3) If the product is in Shutdown mode and \(V_{DD}\) exceeds 6V (to a max of 8V \(V_{DD}\)), then most of the excess current will flow through the ESD protection circuits. If the source impedance limits the current to a max of 10mA, then the device will be protected. If the device is enabled when \(V_{DD}\) is greater than 5.5V and less than 6.5V, no damage will occur, although operation life will be reduced. Operation above 6.5V with no current limit will result in permanent damage.

(4) The maximum power dissipation must be derated at elevated temperatures and is dictated by \(T_{JMAX}, \theta_{JA}\), and the ambient temperature \(T_A\). The maximum allowable power dissipation is \(P_{DMAX} = (T_{JMAX}-T_A)/\theta_{JA}\) or the number given in Absolute Maximum Ratings, whichever is lower.

(5) Maximum power dissipation in the device \(P_{DMAX}\) occurs at an output power level significantly below full output power. \(P_{DMAX}\) can be calculated using Equation (1) shown in the APPLICATION INFORMATION section. It may also be obtained from the power dissipation graphs.

(6) Human body model, 100pF discharged through a 1.5k\(\Omega\) resistor.


OPERATING RATINGS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Range</td>
<td>(-40°C \leq T_A \leq 85°C)</td>
</tr>
<tr>
<td>Supply Voltage</td>
<td>(2.2V \leq V_{DD} \leq 5.5V)</td>
</tr>
</tbody>
</table>
### ELECTRICAL CHARACTERISTICS $V_{DD} = 5V$

The following specifications apply for the circuit shown in Figure 1, unless otherwise specified. Limits apply for $T_A = 25^\circ C$.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>LM4992</th>
<th>Units (Limits)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Typical (3)</td>
<td>Limit (4) (5)</td>
</tr>
<tr>
<td>$I_{DD}$</td>
<td>Quiescent Power Supply Current</td>
<td>$V_{IN} = 0V, I_o = 0A, No Load$</td>
<td>6</td>
<td>14 mA (max)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>18 mA (max)</td>
</tr>
<tr>
<td>$I_{SD}$</td>
<td>Shutdown Current</td>
<td>$V_{IN} = 0V, I_o = 0A, 8\Omega \text{ Load}$</td>
<td>1.4</td>
<td>3 $\mu A$ (max)</td>
</tr>
<tr>
<td>$V_{SDH}$</td>
<td>Shutdown Voltage Input High</td>
<td>$V_{SD} = V_{GND}$</td>
<td>1.5</td>
<td>$V$</td>
</tr>
<tr>
<td>$V_{SDL}$</td>
<td>Shutdown Voltage Input Low</td>
<td>$V_{SD} = V_{GND}$</td>
<td>1.3</td>
<td>$V$</td>
</tr>
<tr>
<td>$V_{OS}$</td>
<td>Output Offset Voltage</td>
<td></td>
<td>7</td>
<td>30 mV (max)</td>
</tr>
<tr>
<td>$P_o$</td>
<td>Output Power</td>
<td>$THD = 1% \text{ (max)}; f = 1 \text{ kHz, per channel}$</td>
<td>1.07</td>
<td>0.9 W (min)</td>
</tr>
<tr>
<td>$T_{WU}$</td>
<td>Wake-up time</td>
<td></td>
<td>100</td>
<td>ms</td>
</tr>
<tr>
<td>$THD+N$</td>
<td>Total Harmonic Distortion+Noise</td>
<td>$P_o = 0.5 \text{ Wrms}; f = 1\text{kHz}$</td>
<td>0.15</td>
<td>%</td>
</tr>
<tr>
<td>$X_{talk}$</td>
<td>Crosstalk</td>
<td></td>
<td>80</td>
<td>dB</td>
</tr>
<tr>
<td>PSRR</td>
<td>Power Supply Rejection Ratio</td>
<td>$V_{ripple} = 200\text{mV sine p-p}$</td>
<td>60 ($f = 217\text{Hz}$)</td>
<td>64 ($f = 1\text{kHz}$)</td>
</tr>
<tr>
<td></td>
<td>Input terminated with 10$Ω$</td>
<td>55</td>
<td>dB (min)</td>
<td></td>
</tr>
</tbody>
</table>

(1) All voltages are measured with respect to the ground pin, unless otherwise specified.
(2) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which ensure specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not ensured for parameters where no limit is given, however, the typical value is a good indication of device performance.
(3) Typicals are measured at 25°C and represent the parametric norm.
(4) Limits are ensured to AOQL (Average Outgoing Quality Level).
(5) Datasheet min/max specification limits are specified by design, test, or statistical analysis.

### ELECTRICAL CHARACTERISTICS $V_{DD} = 3.3V$

The following specifications apply for the circuit shown in Figure 1, unless otherwise specified. Limits apply for $T_A = 25^\circ C$.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>LM4992</th>
<th>Units (Limits)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Typical (3)</td>
<td>Limit (4) (5)</td>
</tr>
<tr>
<td>$I_{DD}$</td>
<td>Quiescent Power Supply Current</td>
<td>$V_{IN} = 0V, I_o = 0A, No Load$</td>
<td>4</td>
<td>12 mA (max)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>15 mA (max)</td>
</tr>
<tr>
<td>$I_{SD}$</td>
<td>Shutdown Current</td>
<td>$V_{IN} = 0V, I_o = 0A, 8\Omega \text{ Load}$</td>
<td>0.2</td>
<td>2.0 $\mu A$ (max)</td>
</tr>
<tr>
<td>$V_{SDH}$</td>
<td>Shutdown Voltage Input High</td>
<td>$V_{SD} = V_{GND}$</td>
<td>1.2</td>
<td>$V$</td>
</tr>
<tr>
<td>$V_{SDL}$</td>
<td>Shutdown Voltage Input Low</td>
<td></td>
<td>1.0</td>
<td>$V$</td>
</tr>
<tr>
<td>$V_{OS}$</td>
<td>Output Offset Voltage</td>
<td></td>
<td>7</td>
<td>30 mV (max)</td>
</tr>
<tr>
<td>$P_o$</td>
<td>Output Power</td>
<td>$THD = 1% \text{ (max)}; f = 1 \text{ kHz, per channel}$</td>
<td>420</td>
<td>mW (min)</td>
</tr>
<tr>
<td>$T_{WU}$</td>
<td>Wake-up time</td>
<td></td>
<td>75</td>
<td>ms</td>
</tr>
<tr>
<td>$THD+N$</td>
<td>Total Harmonic Distortion+Noise</td>
<td>$P_o = 0.25 \text{ Wrms}; f = 1\text{kHz}$</td>
<td>0.1</td>
<td>%</td>
</tr>
<tr>
<td>$X_{talk}$</td>
<td>Crosstalk</td>
<td></td>
<td>80</td>
<td>dB</td>
</tr>
<tr>
<td>PSRR</td>
<td>Power Supply Rejection Ratio</td>
<td>$V_{ripple} = 200\text{mV sine p-p}$</td>
<td>65 ($f = 217\text{Hz}$)</td>
<td>70 ($f = 1\text{kHz}$)</td>
</tr>
<tr>
<td></td>
<td>Input terminated with 10$Ω$</td>
<td>55</td>
<td>dB (min)</td>
<td></td>
</tr>
</tbody>
</table>

(1) All voltages are measured with respect to the ground pin, unless otherwise specified.
(2) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which ensure specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not ensured for parameters where no limit is given, however, the typical value is a good indication of device performance.
(3) Typicals are measured at 25°C and represent the parametric norm.
(4) Limits are ensured to AOQL (Average Outgoing Quality Level).
(5) Datasheet min/max specification limits are specified by design, test, or statistical analysis.
ELECTRICAL CHARACTERISTICS $V_{DD} = 2.6V^{(1)}^{(2)}$

The following specifications apply for the circuit shown in Figure 1, unless otherwise specified. Limits apply for $T_A = 25°C$.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>LM4992</th>
<th>Units (Limits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_DD</td>
<td>Quiescent Power Supply Current</td>
<td>$V_{IN} = 0V, I_o = 0A, No Load$</td>
<td>4.0</td>
<td>mA (max)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{IN} = 0V, I_o = 0A, 8Ω Load$</td>
<td>6.0</td>
<td>mA (max)</td>
</tr>
<tr>
<td>I_SD</td>
<td>Shutdown Current</td>
<td>$V_{SD} = V_{GND}$</td>
<td>0.02</td>
<td>2.0</td>
</tr>
<tr>
<td>V_SDH</td>
<td>Shutdown Voltage Input High</td>
<td></td>
<td>1.2</td>
<td>-</td>
</tr>
<tr>
<td>V_SDL</td>
<td>Shutdown Voltage Input Low</td>
<td></td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>V_OS</td>
<td>Output Offset Voltage</td>
<td></td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>P_o</td>
<td>Output Power</td>
<td>$THD = 1%$ (max); $f = 1 \text{kHz}$, per channel</td>
<td>240</td>
<td>mW (min)</td>
</tr>
<tr>
<td>T_WU</td>
<td>Wake-up time</td>
<td></td>
<td>70</td>
<td>-</td>
</tr>
<tr>
<td>THD+N</td>
<td>Total Harmonic Distortion+Noise</td>
<td>$P_o = 0.15 \text{ Wrms}$; $f = 1\text{kHz}$</td>
<td>0.1</td>
<td>-</td>
</tr>
<tr>
<td>Xtalk</td>
<td>Crosstalk</td>
<td></td>
<td>80</td>
<td>-</td>
</tr>
<tr>
<td>PSRR</td>
<td>Power Supply Rejection Ratio</td>
<td>$V_{ripple} = 200mV$ sine p-p</td>
<td>51 ($f = 217\text{Hz}$) 51 ($f = 1\text{kHz}$)</td>
<td>dB (min)</td>
</tr>
</tbody>
</table>

(1) All voltages are measured with respect to the ground pin, unless otherwise specified.
(2) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which ensure specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not ensured for parameters where no limit is given, however, the typical value is a good indication of device performance.
(3) Typical values are measured at 25°C and represent the parametric norm.
(4) Limits are ensured to AOQL (Average Outgoing Quality Level).
(5) Datasheet min/max specification limits are specified by design, test, or statistical analysis.

External Components Description

(Figure 1)

<table>
<thead>
<tr>
<th>Components</th>
<th>Functional Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. R_i</td>
<td>Inverting input resistance which sets the closed-loop gain in conjunction with R_f. This resistor also forms a high pass filter with $C_i$ at $f_c = 1/(2\pi R_i C_i)$.</td>
</tr>
<tr>
<td>2. C_i</td>
<td>Input coupling capacitor which blocks the DC voltage at the amplifiers input terminals. Also creates a highpass filter with $R_i$ at $f_c = 1/(2\pi R_i C_i)$. Refer to the section, PROPER SELECTION OF EXTERNAL COMPONENTS, for an explanation of how to determine the value of $C_i$.</td>
</tr>
<tr>
<td>3. R_f</td>
<td>Feedback resistance which sets the closed-loop gain in conjunction with $R_i$.</td>
</tr>
<tr>
<td>4. C_S</td>
<td>Supply bypass capacitor which provides power supply filtering. Refer to the POWER SUPPLY BYPASSING section for information concerning proper placement and selection of the supply bypass capacitor.</td>
</tr>
<tr>
<td>5. C_B</td>
<td>Bypass pin capacitor which provides half-supply filtering. Refer to the section, PROPER SELECTION OF EXTERNAL COMPONENTS, for information concerning proper placement and selection of $C_B$.</td>
</tr>
</tbody>
</table>
TYPICAL PERFORMANCE CHARACTERISTICs

THD+N vs Frequency at $V_{DD} = 5V$, $8\ \Omega\ R_L$, and PWR = 500mW, per channel

THD+N vs Frequency at $V_{DD} = 3.3V$, $8\ \Omega\ R_L$, and PWR = 250mW, per channel

THD+N vs Frequency at $V_{DD} = 2.6V$, $8\ \Omega\ R_L$, 1kHz, per channel

THD+N vs Power Out at $V_{DD} = 5V$, $8\ \Omega\ R_L$, 1kHz, per channel

THD+N vs Power Out at $V_{DD} = 3.3V$, $8\ \Omega\ R_L$, 1kHz, per channel

THD+N vs Power Out at $V_{DD} = 2.6V$, $8\ \Omega\ R_L$, 1kHz, per channel

Submit Documentation Feedback

Copyright © 2003–2013, Texas Instruments Incorporated

Product Folder Links: LM4992 LM4992SDBD
TYPICAL PERFORMANCE CHARACTERISTICS (continued)

Power Supply Rejection Ratio (PSRR) vs Frequency at \( V_{DD} = 5V, 8\, \Omega R_L \)

Figure 8. Input terminated with 10\( \Omega \)

Power Supply Rejection Ratio (PSRR) vs Frequency at \( V_{DD} = 3.3V, 8\, \Omega R_L \)

Figure 10. Input Floating

Power Supply Rejection Ratio (PSRR) vs Frequency at \( V_{DD} = 2.6V, 8\, \Omega R_L \)

Figure 12. Input terminated with 10\( \Omega \)

Power Supply Rejection Ratio (PSRR) vs Frequency at \( V_{DD} = 3.3V, 8\, \Omega R_L \)

Figure 9. Input Floating

Power Supply Rejection Ratio (PSRR) vs Frequency at \( V_{DD} = 2.6V, 8\, \Omega R_L \)

Figure 11. Input Floating

Copyright © 2003–2013, Texas Instruments Incorporated

Submit Documentation Feedback

Product Folder Links: LM4992 LM4992SDBD
TYPICAL PERFORMANCE CHARACTERISTICS (continued)

Crosstalk vs Frequency
2.6V, 8Ω, $P_{OUT} = 200mW$

Figure 20.

Power Dissipation vs Output Power, 5V, 8Ω, per channel

Figure 21.

Power Dissipation vs Output Power, 3.3V, 8Ω, per channel

Figure 22.

Power Dissipation vs Output Power, 2.6V, 8Ω, per channel

Figure 23.

Shutdown Hysteresis Voltage
5V

Figure 24.

Shutdown Hysteresis Voltage
3.3V

Figure 25.
TYPICAL PERFORMANCE CHARACTERISTICs (continued)

Figure 26.

Figure 27.

Figure 28.

Figure 29.
APPLICATION INFORMATION

BRIDGE CONFIGURATION EXPLANATION

As shown in Figure 1, the LM4992 has two internal operational amplifiers per channel. The first amplifier’s gain is externally configurable, while the second amplifier is internally fixed in a unity-gain, inverting configuration. The closed-loop gain of the first amplifier is set by selecting the ratio of \( R_f \) to \( R_i \) while the second amplifier’s gain is fixed by the two internal 20k\( \Omega \) resistors. Figure 1 shows that the output of amplifier one serves as the input to amplifier two which results in both amplifiers producing signals identical in magnitude, but out of phase by 180°. Consequently, the differential gain for the IC is

\[
A_{VD} = 2 \times \frac{R_f}{R_i} \tag{1}
\]

By driving the load differentially through outputs Vo1 and Vo2, an amplifier configuration commonly referred to as “bridged mode” is established. Bridged mode operation is different from the classical single-ended amplifier configuration where one side of the load is connected to ground.

A bridge amplifier design has a few distinct advantages over the single-ended configuration, as it provides differential drive to the load, thus doubling output swing for a specified supply voltage. Four times the output power is possible as compared to a single-ended amplifier under the same conditions. This increase in attainable output power assumes that the amplifier is not current limited or clipped. In order to choose an amplifier’s closed-loop gain without causing excessive clipping, please refer to the AUDIO POWER AMPLIFIER DESIGN section.

A bridge configuration, such as the one used in LM4992, also creates a second advantage over single-ended amplifiers. Since the differential outputs, Vo1 and Vo2, are biased at half-supply, no net DC voltage exists across the load. This eliminates the need for an output coupling capacitor which is required in a single supply, single-ended amplifier configuration. Without an output coupling capacitor, the half-supply bias across the load would result in both increased internal IC power dissipation and also possible loudspeaker damage.

POWER DISSIPATION

Power dissipation is a major concern when designing a successful amplifier, whether the amplifier is bridged or single-ended. A direct consequence of the increased power delivered to the load by a bridge amplifier is an increase in internal power dissipation. The maximum internal power dissipation per channel is 4 times that of a single-ended amplifier. The maximum power dissipation for a given application can be derived from the power dissipation graphs or from Equation (2).

\[
P_{\text{DMAX}} = 4 \times \left( \frac{V_{\text{DD}}}{2} \right)^2 / (2\pi^2 R_L) \tag{2}
\]

It is critical that the maximum junction temperature \( T_{\text{JMAX}} \) of 150°C is not exceeded. \( T_{\text{JMAX}} \) is a function of \( P_{\text{DMAX}} \) and the PC board foil area. By adding copper foil, the thermal resistance of the application can be reduced from the free air value of \( \theta_{JA} \), resulting in higher \( P_{\text{DMAX}} \) values without thermal shutdown protection circuitry being activated. Additional copper foil can be added to any of the leads connected to the LM4992. It is especially effective when connected to \( V_{\text{DD}} \), GND, and the output pins. Refer to the application information on the LM4992 reference design board for an example of good heat sinking. If \( T_{\text{JMAX}} \) still exceeds 150°C, then additional changes must be made. These changes can include reduced supply voltage, higher load impedance, or reduced ambient temperature. Internal power dissipation is a function of output power. Refer to the TYPICAL PERFORMANCE CHARACTERISTICS curves for power dissipation information for different output powers and output loading.

EXPOSED-DAP MOUNTING CONSIDERATIONS

The LM4992’s exposed-DAP (die attach paddle) packages (NHK) provide a low thermal resistance between the die and the PCB to which the part is mounted and soldered. This allows rapid heat transfer from the die to the surrounding PCB copper area heatsink, copper traces, ground plane, and finally, surrounding air. The result is a low voltage audio power amplifier that produces 1.07W dissipation per channel in an 8Ω load at \( \leq 1\% \) THD+N. This power is achieved through careful consideration of necessary thermal design. Failing to optimize thermal design may compromise the LM4992’s performance and activate unwanted, though necessary, thermal shutdown protection.
The LM4992SD must have its DAP soldered to a copper pad on the PCB. The DAP’s PCB copper pad is then, ideally, connected to a large plane of continuous unbroken copper. This plane forms a thermal mass, heat sink, and radiation area. Place the heat sink area on either outside plane in the case of a two-sided or multi-layer PCB. (The heat sink area can also be placed on an inner layer of a multi-layer board. The thermal resistance, however, will be higher.) Connect the DAP copper pad to the inner layer or backside copper heat sink area with vias. The via diameter should be 0.012in - 0.013in with a 1.27mm pitch. Ensure efficient thermal conductivity by plugging and tenting the vias with plating and solder mask, respectively.

POWER SUPPLY BYPASSING

As with any amplifier, proper supply bypassing is critical for low noise performance and high power supply rejection. The capacitor location on both the bypass and power supply pins should be as close to the device as possible. Typical applications employ a 5V regulator with 10 µF tantalum or electrolytic capacitor and a ceramic bypass capacitor which aid in supply stability. This does not eliminate the need for bypassing the supply nodes of the LM4992. The selection of a bypass capacitor, $C_B$, is dependent upon PSRR requirements, click and pop performance (as explained in the section, PROPER SELECTION OF EXTERNAL COMPONENTS), system cost, and size constraints.

SHUTDOWN FUNCTION

In order to reduce power consumption while not in use, the LM4992 contains shutdown circuitry that is used to independently turn off each channel’s bias circuitry. This shutdown feature turns a given channel off when logic low is placed on the corresponding shutdown pin. By switching a particular shutdown pin to GND, the LM4992 supply current draw due to that channel will be minimized in idle mode. Idle current is measured with the shutdown pin connected to GND. The trigger point for shutdown is shown as a typical value in the Shutdown Hysteresis Voltage graphs in the TYPICAL PERFORMANCE CHARACTERISTICS section. It is best to switch between ground and supply for maximum performance. While the device may be disabled with shutdown voltages in between ground and supply, the idle current may be greater than the typical value of 0.2µA. In either case, the shutdown pin should be tied to a definite voltage to avoid unwanted state changes.

In many applications, a microcontroller or microprocessor output is used to control the shutdown circuitry, which provides a quick, smooth transition to shutdown. Another solution is to use a single-throw switch in conjunction with an external pull-up resistor. This scheme ensures that the shutdown pin will not float, thus preventing unwanted state changes.

PROPER SELECTION OF EXTERNAL COMPONENTS

Proper selection of external components in applications using integrated power amplifiers is critical to optimize device and system performance. While the LM4992 is tolerant of external component combinations, consideration to component values must be used to maximize overall system quality.

The LM4992 is unity-gain stable which gives the designer maximum system flexibility. The LM4992 should be used in low gain configurations to minimize THD+N values, and maximize the signal to noise ratio. Low gain configurations require large input signals to obtain a given output power. Input signals equal to or greater than 1 Vrms are available from sources such as audio codecs. Please refer to the section, AUDIO POWER AMPLIFIER DESIGN, for a more complete explanation of proper gain selection.

Besides gain, one of the major considerations is the closed-loop bandwidth of the amplifier. To a large extent, the bandwidth is dictated by the choice of external components shown in Figure 1. The input coupling capacitor, $C_i$, forms a first order high pass filter which limits low frequency response. This value should be chosen based on needed frequency response for a few distinct reasons.

Selection Of Input Capacitor Size

Large input capacitors are both expensive and space hungry for portable designs. Clearly, a certain sized capacitor is needed to couple in low frequencies without severe attenuation. But in many cases the speakers used in portable systems, whether internal or external, have little ability to reproduce signals below 100Hz to 150Hz. Thus, using a large input capacitor may not increase actual system performance.
In addition to system cost and size, click and pop performance is effected by the size of the input coupling capacitor, \( C_i \). A larger input coupling capacitor requires more charge to reach its quiescent DC voltage (nominally \( 1/2 \, V_{DD} \)). This charge comes from the output via the feedback and is apt to create pops upon device enable. Thus, by minimizing the capacitor size based on necessary low frequency response, turn-on pops can be minimized.

Besides minimizing the input capacitor size, careful consideration should be paid to the bypass capacitor value. Bypass capacitor, \( C_B \), is the most critical component to minimize turn-on pops since it determines how fast the LM4992 turns on. The slower the LM4992’s outputs ramp to their quiescent DC voltage (nominally \( 1/2 \, V_{DD} \)), the smaller the turn-on pop. Choosing \( C_B \) equal to 1.0 \( \mu F \) along with a small value of \( C_i \) (in the range of 0.1 \( \mu F \) to 0.39 \( \mu F \)), should produce a virtually clickless and popless shutdown function. While the device will function properly, (no oscillations or motorboating), with \( C_B \) equal to 0.1 \( \mu F \), the device will be much more susceptible to turn-on clicks and pops. Thus, a value of \( C_B \) equal to 1.0 \( \mu F \) is recommended in all but the most cost sensitive designs.

**AUDI0 POWER AMPLIFIER DESIGN**

**A 1W/8Ω Audio Amplifier**

Given:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Output</td>
<td>1 W rms</td>
</tr>
<tr>
<td>Load Impedance</td>
<td>8Ω</td>
</tr>
<tr>
<td>Input Level</td>
<td>1 V rms</td>
</tr>
<tr>
<td>Input Impedance</td>
<td>20 kΩ</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>100 Hz–20 kHz ± 0.25 dB</td>
</tr>
</tbody>
</table>

A designer must first determine the minimum supply rail to obtain the specified output power. By extrapolating from the Output Power vs Supply Voltage graphs in the TYPICAL PERFORMANCE CHARACTERISTICS section, the supply rail can be easily found.

5V is a standard voltage in most applications, it is chosen for the supply rail. Extra supply voltage creates headroom that allows the LM4992 to reproduce peaks in excess of 1W without producing audible distortion. At this time, the designer must make sure that the power supply choice along with the output impedance does not violate the conditions explained in the POWER DISSIPATION section.

Once the power dissipation equations have been addressed, the required differential gain can be determined from Equation (3).

\[
A_{VD} \geq \sqrt{(P_{OL})/(V_{IN})} = V_{rms}/V_{inrms}
\]

\[
R_f/R_i = A_{VD}/2
\]

From Equation (3), the minimum \( A_{VD} \) is 2.83; use \( A_{VD} = 3 \).

Since the desired input impedance was 20 kΩ, and with a \( A_{VD} \) impedance of 2, a ratio of 1.5:1 of \( R_i \) to \( R_f \) results in an allocation of \( R_i = 20 \) kΩ and \( R_f = 30 \) kΩ. The final design step is to address the bandwidth requirements which must be stated as a pair of −3 dB frequency points. Five times away from a −3 dB point is 0.17 dB down from passband response which is better than the required ± 0.25 dB specified.

\[
f_L = 100 \, Hz/5 = 20 \, Hz
\]

\[
f_H = 20 \, kHz \times 5 = 100 \, kHz
\]

As stated in the PROPER SELECTION OF EXTERNAL COMPONENTS section, \( R_i \) in conjunction with \( C_i \) create a highpass filter.

\[
C_i \geq 1/(2\pi^2 \times 20 \, kΩ \times 20 \, Hz) = 0.397 \, \mu F; \text{ use } 0.39 \, \mu F
\]

The high frequency pole is determined by the product of the desired frequency pole, \( f_H \), and the differential gain, \( A_{VD} \). With a \( A_{VD} = 3 \) and \( f_H = 100 \, kHz \), the resulting GBWP = 300kHz which is much smaller than the LM4992 GBWP of 1.5MHz. This figure displays that if a designer has a need to design an amplifier with a higher differential gain, the LM4992 can still be used without running into bandwidth limitations.
The LM4992 is unity-gain stable and requires no external components besides gain-setting resistors, an input coupling capacitor, and proper supply bypassing in the typical application. However, if a closed-loop differential gain of greater than 10 is required, a feedback capacitor (C4) may be needed as shown in SCHEMATIC DRAWING to bandwidth limit the amplifier. This feedback capacitor creates a low pass filter that eliminates possible high frequency oscillations. Care should be taken when calculating the -3dB frequency in that an incorrect combination of R3 and C4 will cause rolloff before 20kHz. A typical combination of feedback resistor and capacitor that will not produce audio band high frequency rolloff is R3 = 20kΩ and C4 = 25pf. These components result in a -3dB point of approximately 320 kHz.

PCB LAYOUT GUIDELINES

This section provides practical guidelines for mixed signal PCB layout that involves various digital/analog power and ground traces. Designers should note that these are only "rule-of-thumb" recommendations and the actual results will depend heavily on the final layout.

GENERAL MIXED SIGNAL LAYOUT RECOMMENDATION

Power and Ground Circuits

For 2 layer mixed signal design, it is important to isolate the digital power and ground trace paths from the analog power and ground trace paths. Star trace routing techniques (bringing individual traces back to a central point rather than daisy chaining traces together in a serial manner) can have a major impact on low level signal performance. Star trace routing refers to using individual traces to feed power and ground to each circuit or even device. This technique will require a greater amount of design time but will not increase the final price of the board. The only extra parts required will be some jumpers.

Single-Point Power / Ground Connections

The analog power traces should be connected to the digital traces through a single point (link). A "Pi-filter" can be helpful in minimizing High Frequency noise coupling between the analog and digital sections. It is further recommended to put digital and analog power traces over the corresponding digital and analog ground traces to minimize noise coupling.

Placement of Digital and Analog Components

All digital components and high-speed digital signal traces should be located as far away as possible from analog components and circuit traces.

Avoiding Typical Design / Layout Problems

Avoid ground loops or running digital and analog traces parallel to each other (side-by-side) on the same PCB layer. When traces must cross over each other do it at 90 degrees. Running digital and analog traces at 90 degrees to each other from the top to the bottom side as much as possible will minimize capacitive noise coupling and cross talk.
Figure 30. Higher Gain Schematic Drawing
Demonstration Board Layout

Figure 31. Recommended WSON Board Layout: Top Overlay

Figure 32. Recommended WSON Board Layout: Top Layer
Figure 33. Recommended WSON Board Layout: Bottom Layer
# REVISION HISTORY

Changes from Revision A (May 2013) to Revision B

<table>
<thead>
<tr>
<th>Change Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changed layout of National Data Sheet to TI format</td>
<td>17</td>
</tr>
</tbody>
</table>
### PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Lead finish/Ball material</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM4992SD/NOPB</td>
<td>ACTIVE</td>
<td>WSON</td>
<td>NHK</td>
<td>14</td>
<td>1000</td>
<td>RoHS &amp; Green</td>
<td>SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
**ACTIVE:** Product device recommended for new designs.
**LIFEBUY:** TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
**NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
**PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.
**OBSOLETE:** TI has discontinued the production of the device.

(2) **RoHS:** TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
**RoHS Exempt:** TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
**Green:** TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

**Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSIONS

A0  Dimension designed to accommodate the component width
B0  Dimension designed to accommodate the component length
K0  Dimension designed to accommodate the component thickness
W  Overall width of the carrier tape
P1  Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0  (mm)</th>
<th>B0  (mm)</th>
<th>K0  (mm)</th>
<th>P1  (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM4992SD/NOPB</td>
<td>WSON</td>
<td>NHK</td>
<td>14</td>
<td>1000</td>
<td>178.0</td>
<td>12.4</td>
<td>3.3</td>
<td>4.3</td>
<td>1.0</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>Device</td>
<td>Package Type</td>
<td>Package Drawing</td>
<td>Pins</td>
<td>SPQ</td>
<td>Length (mm)</td>
<td>Width (mm)</td>
<td>Height (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>------</td>
<td>------</td>
<td>-------------</td>
<td>------------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM4992SD/NOPB</td>
<td>WSON</td>
<td>NHK</td>
<td>14</td>
<td>1000</td>
<td>208.0</td>
<td>191.0</td>
<td>35.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*All dimensions are nominal*
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2021, Texas Instruments Incorporated