1 Features

- Versatile synchronous buck DC/DC controller
 - Wide input voltage range of 6 V to 75 V
 - 0.8-V reference with ±1% feedback accuracy
 - Adjustable output voltage from 0.8 V to 60 V
 - 40-ns $t_{ON(min)}$ for high V_{IN} / V_{OUT} ratio
 - 140-ns $t_{OFF(min)}$ for low dropout
 - Optimized for CISPR 32 requirements
- Switching frequency from 100 kHz to 1 MHz
 - SYNC In and SYNC Out capability
 - Selectable diode emulation or FPWM
- 7.5-V gate drivers for standard V_{TH} MOSFETs
 - 14-ns adaptive dead-time control
 - 2.3-A source and 3.5-A sink capability
 - Low-side soft start for prebiased start-up
- Fast line and load transient response
 - Voltage-mode control with line feedforward
 - High gain-bandwidth error amplifier
- Inherent protection features for robust design
 - Adjustable output voltage soft start
 - Hiccup-mode overcurrent protection
 - Input UVLO with hysteresis
 - VCC and gate-drive UVLO protection
 - Precision enable input and open-drain PGOOD indicator for sequencing and control
 - Thermal shutdown protection with hysteresis
- 20-pin VQFN package with wettable flanks
- Create a custom design using the LM5145 with WEBENCH® Power Designer

2 Applications

- Remote radio unit (RRU) and BTS
- Networking and computing power
- Non-isolated PoE and IP cameras
- Industrial motor drives

3 Description

The LM5145 75-V synchronous buck controller regulates from a high input voltage source or from an input rail subject to high voltage transients, minimizing the need for external surge suppression components. A high-side switch minimum on-time of 40 ns gives large step-down ratios, enabling the direct step-down conversion from a 48-V nominal input to low-voltage rails for reduced system complexity and solution cost. The LM5145 continues to operate during input voltage dips as low as 6 V, at nearly 100% duty cycle if needed, making it an excellent choice for high-performance industrial control, robotic, datacom, and RF power applications.

Forced-PWM (FPWM) operation eliminates switching frequency variation to minimize EMI, while user-selectable diode emulation lowers current consumption at light-load conditions. The adjustable switching frequency as high as 1 MHz can be synchronized to an external clock source to eliminate beat frequencies in noise-sensitive applications.

Device Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE(1)</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM5145</td>
<td>VQFN (20)</td>
<td>4.50 mm × 3.50 mm</td>
</tr>
</tbody>
</table>

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Typical Application Circuit and Efficiency Performance, $V_{OUT} = 5$ V

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.
Table of Contents

1 Features...1
2 Applications..1
3 Description..1
4 Revision History...2
5 Description (continued)...3
6 Pin Configuration and Functions.................................4
 6.1 Wettable Flanks..5
7 Specifications..6
 7.1 Absolute Maximum Ratings.................................6
 7.2 ESD Ratings..6
 7.3 Recommended Operating Conditions....................7
 7.4 Thermal Information...7
 7.5 Electrical Characteristics................................8
 7.6 Switching Characteristics................................10
 7.7 Typical Characteristics......................................11
8 Detailed Description...16
 8.1 Overview..16
 8.2 Functional Block Diagram..................................16
 8.3 Feature Description..17
8.4 Device Functional Modes.......................................25
9 Application and Implementation...............................27
 9.1 Application Information.....................................27
 9.2 Typical Applications..37
10 Power Supply Recommendations..............................54
11 Layout...55
 11.1 Layout Guidelines..55
 11.2 Layout Example...58
12 Device and Documentation Support............................60
 12.1 Device Support...60
 12.2 Documentation Support....................................61
 12.3 Receiving Notification of Documentation Updates....61
 12.4 Support Resources..61
 12.5 Trademarks..62
 12.6 Electrostatic Discharge Caution..........................62
 12.7 Glossary..62
13 Mechanical, Packaging, and Orderable Information........63
14 Revision History

Changes from Revision A (June 2020) to Revision B (November 2020) Page
• Changed ILIM from 0 V to -1 V in the Absolute Maximum Ratings ...6

Changes from Revision * (June 2017) to Revision A (June 2020) Page
• Updated list of bullets in the Features ..1
• Updated the numbering format for tables, figures and cross-references throughout the document......................1
• Corrected equation in Table 9-4 ...31
• Added conducted EMI plots..40
• Updated Section 11.2 ..58
• Added Table 12-1 in Section 12 ..60
• Added Table 12-1 in Section 12 ..60
• Updated Section 12.2 ..61
5 Description (continued)

Measuring the voltage drop across the low-side MOSFET or with an optional current sense resistor gives cycle-by-cycle overcurrent protection. The LM5145 voltage-mode controller with line feedforward drives external high-side and low-side N-channel power switches with robust 7.5-V gate drivers suitable for standard-threshold MOSFETs. Adaptively-timed gate drivers with 2.3-A source and 3.5-A sink capability minimize body diode conduction during switching transitions, reducing switching losses and improving thermal performance when driving MOSFETs at high input voltage and high frequency. The LM5145 can be powered from the output of the switching regulator or another available source, further improving efficiency.

A 180° out-of-phase clock output relative to the internal oscillator at SYNCOUT works well for cascaded or multi-channel power supplies to reduce input capacitor ripple current and EMI filter size. Additional features of the LM5145 include a configurable soft start, an open-drain power-good monitor for fault reporting and output monitoring, monotonic start-up into prebiased loads, integrated VCC bias supply regulator and bootstrap diode, external power supply tracking, precision enable input with hysteresis for adjustable line undervoltage lockout (UVLO), hiccup-mode overload protection, and thermal shutdown protection with automatic recovery.

The LM5145 controller is offered in a 4.5-mm × 3.5-mm thermally enhanced, 20-pin VQFN package with additional spacing for high-voltage pins and wettable flanks for optical inspection of solder joint fillets.
6 Pin Configuration and Functions

Table 6-1. Pin Functions

<table>
<thead>
<tr>
<th>PIN NO.</th>
<th>I/O(1)</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EN/UVLO</td>
<td>I</td>
</tr>
<tr>
<td>2</td>
<td>RT</td>
<td>I</td>
</tr>
<tr>
<td>3</td>
<td>SS/TRK</td>
<td>I</td>
</tr>
<tr>
<td>4</td>
<td>COMP</td>
<td>O</td>
</tr>
<tr>
<td>5</td>
<td>FB</td>
<td>I</td>
</tr>
<tr>
<td>6</td>
<td>AGND</td>
<td>P</td>
</tr>
</tbody>
</table>

Figure 6-1. RGY Package 20-Pin VQFN With Wettable Flanks Top View

Connect Exposed Pad on bottom to AGND and PGND on the PCB.
Table 6-1. Pin Functions (continued)

<table>
<thead>
<tr>
<th>NO.</th>
<th>NAME</th>
<th>I/O(1)</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>SYNCOUT</td>
<td>O</td>
<td>Synchronization output. Logic output that provides a clock signal that is 180° out-of-phase with the high-side FET gate drive. Connect SYNCOUT of the master LM5145 to the SYNCIN pin of a second LM5145 to operate two controllers at the same frequency with 180° interleaved high-side FET switch turn-on transitions. Note that the SYNCOUT pin does not provide 180° interleaving when the controller is operating from an external clock that is different from the free-running frequency set by the RT resistor.</td>
</tr>
<tr>
<td>8</td>
<td>SYNCIN</td>
<td>I</td>
<td>Dual function pin for providing an optional clock input and for enabling diode emulation by the low-side MOSFET. Connecting a clock signal to the SYNCIN pin synchronizes switching to the external clock. Diode emulation by the low-side MOSFET is disabled when the controller is synchronized to an external clock, and negative inductor current can flow in the low-side MOSFET with light loads. A continuous logic low state at the SYNCIN pin enables diode emulation to prevent reverse current flow in the inductor. Diode emulation results in discontinuous mode operation (DCM) at light loads, which improves efficiency. A logic high state at the SYNCIN pin disables diode emulation producing forced-PWM (FPWM) operation. During soft-start when SYNCIN is high or a clock signal is present, the LM5145 operates in diode emulation mode until the output is in regulation, then gradually increases the SW zero-cross threshold, resulting in a gradual transition from DCM to FPWM.</td>
</tr>
<tr>
<td>9</td>
<td>NC</td>
<td>—</td>
<td>No electrical connection.</td>
</tr>
<tr>
<td>10</td>
<td>PGOOD</td>
<td>O</td>
<td>Power Good indicator. This pin is an open-drain output. A high state indicates that the voltage at the FB pin is within a specified tolerance window centered at 0.8 V.</td>
</tr>
<tr>
<td>11</td>
<td>ILIM</td>
<td>I</td>
<td>Current limit adjust and current sense comparator input. A current sourced from the ILIM pin through an external resistor programs the threshold voltage for valley current limiting. The opposite end of the threshold adjust resistor can be connected to either the drain of the low-side MOSFET for (R_{DS(on)}) sensing or to a current sense resistor connected to the source of the low-side FET.</td>
</tr>
<tr>
<td>12</td>
<td>PGND</td>
<td>P</td>
<td>Power ground return pin for the low-side MOSFET gate driver. Connect directly to the source of the low-side MOSFET or the ground side of a shunt resistor.</td>
</tr>
<tr>
<td>13</td>
<td>LO</td>
<td>P</td>
<td>Low-side MOSFET gate drive output. Connect to the gate of the low-side synchronous rectifier FET through a short, low inductance path.</td>
</tr>
<tr>
<td>14</td>
<td>VCC</td>
<td>O</td>
<td>Output of the 7.5-V bias regulator. Locally decouple to PGND using a low ESR/ESL capacitor located as close as possible to the controller. Controller bias can be supplied from an external supply that is greater than the internal VCC regulation voltage. Use caution when applying external bias to ensure that the applied voltage is not greater than the minimum VIN voltage and does not exceed the VCC pin maximum operating rating, see Section 7.3.</td>
</tr>
<tr>
<td>15</td>
<td>EP</td>
<td>—</td>
<td>Pin internally connected to exposed pad of the package. Electrically isolated.</td>
</tr>
<tr>
<td>16</td>
<td>NC</td>
<td>—</td>
<td>No electrical connection.</td>
</tr>
<tr>
<td>17</td>
<td>BST</td>
<td>O</td>
<td>Bootstrap supply for the high-side gate driver. Connect to the bootstrap (boot) capacitor. The bootstrap capacitor supplies current to the high-side FET gate and must be placed as close as possible to the controller. If an external bootstrap diode is used to reduce the time required to charge the bootstrap capacitor, connect the cathode of the diode to the BST pin and anode to VCC.</td>
</tr>
<tr>
<td>18</td>
<td>HO</td>
<td>P</td>
<td>High-side MOSFET gate drive output. Connect to the gate of the high-side MOSFET through a short, low inductance path.</td>
</tr>
<tr>
<td>19</td>
<td>SW</td>
<td>P</td>
<td>Switching node of the buck controller. Connect to the bootstrap capacitor, the source terminal of the high-side MOSFET and the drain terminal of the low-side MOSFET using short, low inductance paths.</td>
</tr>
<tr>
<td>20</td>
<td>VIN</td>
<td>P</td>
<td>Supply voltage input for the VCC LDO regulator.</td>
</tr>
<tr>
<td></td>
<td>EP</td>
<td>—</td>
<td>Exposed pad of the package. Electrically isolated. Solder to the system ground plane to reduce thermal resistance.</td>
</tr>
</tbody>
</table>

(1) P = Power, G = Ground, I = Input, O = Output.

6.1 Wettable Flanks

100% automated visual inspection (AVI) post-assembly is typically required to meet requirements for high reliability and robustness. Standard quad-flat no-lead (VQFN) packages do not have solderable or exposed pins and terminals that are easily viewed. It is therefore difficult to visually determine whether or not the package is successfully soldered onto the printed-circuit board (PCB). The wettable-flank process was developed to resolve the issue of side-lead wetting of leadless packaging. The LM5145 is assembled using a 20-pin VQFN package with wettable flanks to provide a visual indicator of solderability, which reduces the inspection time and manufacturing costs.
7 Specifications

7.1 Absolute Maximum Ratings

Over the recommended operating junction temperature range of −40°C to 125°C (unless otherwise noted).\(^{(1)}\)

<table>
<thead>
<tr>
<th>Input voltages</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIN</td>
<td>–0.3</td>
<td>105</td>
<td>V</td>
</tr>
<tr>
<td>SW</td>
<td>–1</td>
<td>105</td>
<td>V</td>
</tr>
<tr>
<td>SW (20-ns transient)</td>
<td>–5</td>
<td>105</td>
<td>V</td>
</tr>
<tr>
<td>ILIM</td>
<td>–1</td>
<td>105</td>
<td>V</td>
</tr>
<tr>
<td>EN/UVLO</td>
<td>–0.3</td>
<td>105</td>
<td>V</td>
</tr>
<tr>
<td>VCC</td>
<td>–0.3</td>
<td>14</td>
<td>V</td>
</tr>
<tr>
<td>FB, COMP, SS/TRK, RT</td>
<td>–0.3</td>
<td>6</td>
<td>V</td>
</tr>
<tr>
<td>SYNCIN</td>
<td>–0.3</td>
<td>14</td>
<td>V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output voltages</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>BST</td>
<td>–0.3</td>
<td>115</td>
<td>V</td>
</tr>
<tr>
<td>BST to VCC</td>
<td></td>
<td>105</td>
<td>V</td>
</tr>
<tr>
<td>BST to SW</td>
<td>–0.3</td>
<td>14</td>
<td>V</td>
</tr>
<tr>
<td>VCC to BST (20-ns transient)</td>
<td></td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td>LO (20-ns transient)</td>
<td>–3</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>PGOOD</td>
<td>–0.3</td>
<td>14</td>
<td>V</td>
</tr>
</tbody>
</table>

| Operating junction temperature, \(T_J\) | 150 | °C |
| Storage temperature, \(T_{stg}\) | –55 | 150 | °C |

\(^{(1)}\) Stresses beyond those listed under *Section 7.1* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Section 7.3*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

<table>
<thead>
<tr>
<th>(V_{(ESD)})</th>
<th>Electrostatic discharge</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(^{(1)})</td>
<td>±2000</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Charged-device model (CDM), per JEDEC specification JESD22-C101(^{(2)})</td>
<td>±1000</td>
<td>V</td>
</tr>
</tbody>
</table>

\(^{(1)}\) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

\(^{(2)}\) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.
7.3 Recommended Operating Conditions

Over the recommended operating junction temperature range of –40°C to 125°C (unless otherwise noted). (1)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_i, Input voltages</td>
<td>VIN</td>
<td>6</td>
<td>75</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>SW</td>
<td>−1</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ILIM</td>
<td>0</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>External VCC bias rail</td>
<td>8</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EN/UVLO</td>
<td>−0.3</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>V_o, Output voltages</td>
<td>BST</td>
<td>−0.3</td>
<td>88</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>BST to VCC</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BST to SW</td>
<td>5</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PGGOOD</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{SINK}, I_{SRC}, Sink/source currents</td>
<td>SYNCOUT</td>
<td>−1</td>
<td>1</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>PGOOD</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_J, Operating junction temperature</td>
<td>−40</td>
<td>125</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

(1) Section 7.3 are conditions under which the device is intended to be functional. For specifications and test conditions, see Section 7.5.

7.4 Thermal Information

<table>
<thead>
<tr>
<th>THERMAL METRIC(1)</th>
<th>LM5145 RGY (VQFN)</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{BJA} Junction-to-ambient thermal resistance</td>
<td>36.8</td>
<td>°C/W</td>
</tr>
<tr>
<td>R_{BJC(top)} Junction-to-case (top) thermal resistance</td>
<td>28</td>
<td>°C/W</td>
</tr>
<tr>
<td>R_{BJB} Junction-to-board thermal resistance</td>
<td>11.8</td>
<td>°C/W</td>
</tr>
<tr>
<td>ψ_{JT} Junction-to-top characterization parameter</td>
<td>0.4</td>
<td>°C/W</td>
</tr>
<tr>
<td>ψ_{JB} Junction-to-board characterization parameter</td>
<td>11.7</td>
<td>°C/W</td>
</tr>
<tr>
<td>R_{BJC(bot)} Junction-to-case (bottom) thermal resistance</td>
<td>2.1</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.
7.5 Electrical Characteristics

Typical values correspond to $T_J = 25°C$. Minimum and maximum limits apply over the $-40°C$ to $125°C$ junction temperature range unless otherwise stated. $V_{IN} = 48$ V, $V_{EN/UVLO} = 1.5$ V, $R_{RT} = 25$ kΩ unless otherwise stated.\(^1\)\(^2\)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IN}</td>
<td>Operating input voltage range</td>
<td>6</td>
<td>75</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_{Q-RUN}</td>
<td>Operating input current, not switching</td>
<td>$V_{EN/UVLO} = 1.5$ V, $V_{SS/TRK} = 0$ V</td>
<td>1.8</td>
<td>2.1</td>
<td>mA</td>
</tr>
<tr>
<td>I_{Q-STBY}</td>
<td>Standby input current</td>
<td>$V_{EN/UVLO} = 1$ V</td>
<td>1.75</td>
<td>2</td>
<td>mA</td>
</tr>
<tr>
<td>I_{Q-SDN}</td>
<td>Shutdown input current</td>
<td>$V_{EN/UVLO} = 0$ V, $V_{VCC} < 1$ V</td>
<td>13.5</td>
<td>16</td>
<td>μA</td>
</tr>
</tbody>
</table>

VCC REGULATOR

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{VCC}</td>
<td>VCC regulation voltage</td>
<td>$V_{SS/TRK} = 0$ V, 9 V $\leq V_{IN} \leq 75$ V, 0 mA $< I_{VCC}$ ≤ 20 mA</td>
<td>7.3</td>
<td>7.5</td>
<td>7.7</td>
</tr>
<tr>
<td>$V_{VCC-LDO}$</td>
<td>VIN to VCC dropout voltage</td>
<td>$V_{VIN} = 6$ V, $V_{SS/TRK} = 0$ V, $I_{VCC} = 20$ mA</td>
<td>0.25</td>
<td>0.63</td>
<td>V</td>
</tr>
<tr>
<td>I_{SC-LDO}</td>
<td>VCC short-circuit current</td>
<td>$V_{SS/TRK} = 0$ V, $V_{VCC} = 0$ V</td>
<td>40</td>
<td>50</td>
<td>70</td>
</tr>
<tr>
<td>V_{VCC-UV}</td>
<td>VCC undervoltage threshold</td>
<td>V_{VCC} rising</td>
<td>4.8</td>
<td>4.93</td>
<td>5.2</td>
</tr>
<tr>
<td>$V_{VCC-UVH}$</td>
<td>VCC undervoltage hysteresis</td>
<td>Rising threshold – falling threshold</td>
<td>0.26</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>$V_{VCC-EXT}$</td>
<td>Minimum external bias supply voltage</td>
<td>Voltage required to disable VCC regulator</td>
<td>8</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_{VCC}</td>
<td>External VCC input current, not switching</td>
<td>$V_{SS/TRK} = 0$ V, $V_{VCC} = 13$ V</td>
<td>2.1</td>
<td>mA</td>
<td></td>
</tr>
</tbody>
</table>

ENABLE AND INPUT UVLO

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{SDN}</td>
<td>Shutdown to standby threshold</td>
<td>$V_{EN/UVLO}$ rising</td>
<td>0.42</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>$V_{SDN-HYS}$</td>
<td>Shutdown threshold hysteresis</td>
<td>EN/UVLO rising – falling threshold</td>
<td>50</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>V_{EN}</td>
<td>Standby to operating threshold</td>
<td>$V_{EN/UVLO}$ rising</td>
<td>1.164</td>
<td>1.2</td>
<td>1.236</td>
</tr>
<tr>
<td>I_{EN-HYS}</td>
<td>Standby to operating hysteresis</td>
<td>$V_{EN/UVLO} = 1.5$ V</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

ERROR AMPLIFIER

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{REF}</td>
<td>FB reference voltage</td>
<td>FB connected to COMP</td>
<td>792</td>
<td>800</td>
<td>808</td>
</tr>
<tr>
<td>$I_{FB-BIAS}$</td>
<td>FB input bias current</td>
<td>$V_{FB} = 0.8$ V</td>
<td>-0.1</td>
<td>0.1</td>
<td>μA</td>
</tr>
<tr>
<td>$V_{COMP-OL}$</td>
<td>COMP output low voltage</td>
<td>COMP sinking 1 mA</td>
<td>0.3</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>$AVOL$</td>
<td>DC gain</td>
<td>94</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GBW</td>
<td>Unity gain bandwidth</td>
<td>6.5</td>
<td>MHz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SOFT-START AND VOLTAGE TRACKING

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{SS}</td>
<td>SS/TRK capacitor charging current</td>
<td>$V_{SS/TRK} = 0$ V</td>
<td>8.5</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>R_{SS}</td>
<td>SS/TRK discharge FET resistance</td>
<td>$V_{EN/UVLO} = 1$ V, $V_{SS/TRK} = 0.1$ V</td>
<td>11</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>V_{SS-FB}</td>
<td>SS/TRK to FB offset</td>
<td>$V_{EN/UVLO} = 0$ V, $V_{SS/TRK} = 0.1$ V</td>
<td>-15</td>
<td>15 mV</td>
<td></td>
</tr>
<tr>
<td>$V_{SS-CLAMP}$</td>
<td>SS/TRK clamp voltage</td>
<td>$V_{SS/TRK} = 0$ V, $V_{FB} = 0.8$ V</td>
<td>115</td>
<td>mV</td>
<td></td>
</tr>
</tbody>
</table>

POWER GOOD INDICATOR

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$PGUTH$</td>
<td>FB upper threshold for PGOOD high to low</td>
<td>% of V_{REF}, V_{FB} rising</td>
<td>106%</td>
<td>108%</td>
<td>110%</td>
</tr>
<tr>
<td>$PGLTH$</td>
<td>FB lower threshold for PGOOD high to low</td>
<td>% of V_{REF}, V_{FB} falling</td>
<td>90%</td>
<td>92%</td>
<td>94%</td>
</tr>
<tr>
<td>$PGHYS_U$</td>
<td>PGOOD upper threshold hysteresis</td>
<td>% of V_{REF}</td>
<td>3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$PGHYS_L$</td>
<td>PGOOD lower threshold hysteresis</td>
<td>% of V_{REF}</td>
<td>2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$TPG-RISE$</td>
<td>PGOOD rising filter</td>
<td>FB to PGOOD rising edge</td>
<td>25</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td>$TPG-FALL$</td>
<td>PGOOD falling filter</td>
<td>FB to PGOOD falling edge</td>
<td>25</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td>$VP-OL$</td>
<td>PGOOD low state output voltage</td>
<td>$V_{FB} = 0.9$ V, $I_{PGOOD} = 2$ mA</td>
<td>150</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>$IPG-OH$</td>
<td>PGOOD high state leakage current</td>
<td>$V_{FB} = 0.8$ V, $I_{PGOOD} = 13$ V</td>
<td>100</td>
<td>nA</td>
<td></td>
</tr>
</tbody>
</table>
Typical values correspond to $T_J = 25^\circ C$. Minimum and maximum limits apply over the $-40^\circ C$ to $125^\circ C$ junction temperature range unless otherwise stated. $V_{IN} = 48$ V, $V_{EN/UVLO} = 1.5$ V, $R_{RT} = 25$ kΩ unless otherwise stated.$^{(1)}$ $^{(2)}$

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSCILLATOR</td>
<td>F_{SW1} Oscillator Frequency – 1</td>
<td>$R_{RT} = 100$ kΩ</td>
<td>100</td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td>F_{SW2} Oscillator Frequency – 2</td>
<td>$R_{RT} = 25$ kΩ</td>
<td>380</td>
<td>400</td>
<td>420</td>
</tr>
<tr>
<td></td>
<td>F_{SW3} Oscillator Frequency – 3</td>
<td>$R_{RT} = 12.5$ kΩ</td>
<td>780</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F_{SYNC}</td>
<td>SYNCIN external clock frequency range</td>
<td>% of nominal frequency set by R_{RT}</td>
<td>$-20%$</td>
<td>$+50%$</td>
<td></td>
</tr>
<tr>
<td>$V_{SYNC-IH}$</td>
<td>Minimum SYNCIN input logic high</td>
<td>2</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>$V_{SYNC-IL}$</td>
<td>Maximum SYNCIN input logic low</td>
<td>0.8</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>R_{SYNCIN}</td>
<td>SYNCIN input resistance</td>
<td>$V_{SYNCIN} = 3$ V</td>
<td>20</td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td>$I_{SYNC-PW}$</td>
<td>Minimum pulsewidth</td>
<td>50</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>$V_{SYNC-OH}$</td>
<td>SYNCOUT high state output voltage</td>
<td>$I_{SYNCOUT} = -1$ mA (sourcing)</td>
<td>3</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>$V_{SYNC-OL}$</td>
<td>SYNCOO low state output voltage</td>
<td>$I_{SYNCOUT} = 1$ mA (sinking)</td>
<td>0.4</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>t_{SYNCIN}</td>
<td>SYNCIN input minimum pulsewidth</td>
<td>Minimum high state or low state duration</td>
<td>150</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>$t_{SYNCOUT}$</td>
<td>Delay from HO rising to SYNCOUT leading edge</td>
<td>$V_{SYNCIN} = 0$ V, $T_S = 1/F_{SW}$, F_{SW} set by R_{RT}</td>
<td>$T_S/2 – 140$</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>V_{RAMP}</td>
<td>Ramp valley voltage (COMP at 0% duty cycle)</td>
<td>300</td>
<td></td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>k_{EF}</td>
<td>PWM feedforward gain (V_{IN} / V_{RAMP})</td>
<td>0.3 + $V_{IN} / 75$ V</td>
<td>15</td>
<td></td>
<td>V/V</td>
</tr>
<tr>
<td>I_{REF}</td>
<td>Minimum controllable on-time</td>
<td>$V_{BST} – V_{SW} = 7$ V, HO $50%$ to $50%$</td>
<td>40</td>
<td>60</td>
<td>ns</td>
</tr>
<tr>
<td>I_{OFF}</td>
<td>Minimum off-time</td>
<td>$V_{BST} – V_{SW} = 7$ V, HO $50%$ to $50%$</td>
<td>140</td>
<td>200</td>
<td>ns</td>
</tr>
<tr>
<td>DC_{100kHz}</td>
<td>Maximum duty cycle</td>
<td>$F_{SW} = 100$ kHz, 6 V $\leq V_{IN} \leq 60$ V</td>
<td>98%</td>
<td>99%</td>
<td></td>
</tr>
<tr>
<td>DC_{400kHz}</td>
<td>Maximum duty cycle</td>
<td>$F_{SW} = 400$ kHz, 6 V $\leq V_{IN} \leq 60$ V</td>
<td>90%</td>
<td>94%</td>
<td></td>
</tr>
<tr>
<td>t_{HICCUP}</td>
<td>Hiccup mode activation delay</td>
<td>Clock cycles with current limiting before hiccup off-time activated</td>
<td>128</td>
<td></td>
<td>cycles</td>
</tr>
<tr>
<td>t_{HICCUP}</td>
<td>Hiccup mode off-time after activation</td>
<td>Clock cycles with no switching followed by SS/TRK release</td>
<td>8192</td>
<td></td>
<td>cycles</td>
</tr>
</tbody>
</table>
Typical values correspond to $T_J = 25^\circ C$. Minimum and maximum limits apply over the $-40^\circ C$ to $125^\circ C$ junction temperature range unless otherwise stated. $V_{IN} = 48$ V, $V_{EN/UVLO} = 1.5$ V, $R_{RT} = 25$ kΩ unless otherwise stated.\(^{(1)}\)\(^{(2)}\)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{ZCD-SS}</td>
<td>Zero-cross detect (ZCD) soft-start ramp</td>
<td>ZCD threshold measured at SW pin 50 clock cycles after first HO pulse</td>
<td>0</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>$V_{ZCD-DIS}$</td>
<td>Zero-cross detect disable threshold (CCM)</td>
<td>ZCD threshold measured at SW pin 1000 clock cycles after first HO pulse</td>
<td>200</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>V_{DEM-TH}</td>
<td>Diode emulation zero-cross threshold</td>
<td>Measured at SW with V_{SW} rising</td>
<td>–5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>R_{HO-UP}</td>
<td>HO high-state resistance, HO to BST</td>
<td>$V_{BST} - V_{SW} = 7$ V, $I_{HO} = -100$ mA</td>
<td>1.5</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>$R_{HO-DOWN}$</td>
<td>HO low-state resistance, HO to SW</td>
<td>$V_{BST} - V_{SW} = 7$ V, $I_{HO} = 100$ mA</td>
<td>0.9</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>R_{LO-UP}</td>
<td>LO high-state resistance, LO to VCC</td>
<td>$V_{BST} - V_{SW} = 7$ V, $I_{LO} = -100$ mA</td>
<td>1.5</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>$R_{LO-DOWN}$</td>
<td>LO low-state resistance, LO to PGND</td>
<td>$V_{BST} - V_{SW} = 7$ V, $I_{LO} = 100$ mA</td>
<td>0.9</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>I_{HOH}, I_{LOH}</td>
<td>HO, LO source current</td>
<td>$V_{BST} - V_{SW} = 7$ V, HO = SW, LO = AGND</td>
<td>2.3</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>I_{HOL}, I_{LOL}</td>
<td>HO, LO sink current</td>
<td>$V_{BST} - V_{SW} = 7$ V, HO = BST, LO = VCC</td>
<td>3.5</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>T_{SD}</td>
<td>Thermal shutdown threshold</td>
<td>T_J rising</td>
<td>175</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>T_{SD-HYS}</td>
<td>Thermal shutdown hysteresis</td>
<td></td>
<td>20</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

(1) All minimum and maximum limits are specified by correlating the electrical characteristics to process and temperature variations and applying statistical process control.

(2) The junction temperature (T_J in °C) is calculated from the ambient temperature (T_A in °C) and power dissipation (P_D in Watts) as follows: $T_J = T_A + (P_D \cdot R_{θJA})$ where $R_{θJA}$ (in °C/W) is the package thermal impedance provided in Section 7.4.

7.6 Switching Characteristics

Typical values correspond to $T_J = 25^\circ C$.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{HO-TR}</td>
<td>HO, LO rise times</td>
<td>$V_{BST} - V_{SW} = 7$ V, $C_{LOAD} = 1$ nF, 20% to 80%</td>
<td>7</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>T_{LO-TR}</td>
<td>HO, LO fall times</td>
<td>$V_{BST} - V_{SW} = 7$ V, $C_{LOAD} = 1$ nF, 80% to 20%</td>
<td>4</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>T_{HO-DT}</td>
<td>HO turn-on dead time</td>
<td>$V_{BST} - V_{SW} = 7$ V, LO off to HO on, 50% to 50%</td>
<td>14</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>T_{LO-DT}</td>
<td>LO turn-on dead time</td>
<td>$V_{BST} - V_{SW} = 7$ V, HO off to LO on, 50% to 50%</td>
<td>14</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>
7.7 Typical Characteristics

$V_{\text{IN}} = 48 \text{ V}$, $R_{\text{RT}} = 25 \text{ k}\Omega$, SYNCIN tied to VCC, EN/UVLO tied to VIN (unless otherwise noted).

![Graph 1: Efficiency vs Load, CCM](image1)

Figure 7-1. Efficiency vs Load, CCM

$V_{\text{OUT}} = 5 \text{ V}$
$V_{\text{SYNCIN}} = V_{\text{CC}}$
$F_{\text{SW}} = 230 \text{ kHz}$
$R_{\text{RT}} = 43.2 \text{ k}\Omega$

See Figure 9-5

![Graph 2: Efficiency vs Load, DCM](image2)

Figure 7-2. Efficiency vs Load, DCM

$V_{\text{OUT}} = 5 \text{ V}$
$V_{\text{SYNCIN}} = 0 \text{ V}$
$F_{\text{SW}} = 230 \text{ kHz}$
$R_{\text{RT}} = 43.2 \text{ k}\Omega$

See Figure 9-5

![Graph 3: Efficiency vs Load, CCM](image3)

Figure 7-3. Efficiency vs Load, CCM

$V_{\text{OUT}} = 12 \text{ V}$
$F_{\text{SW}} = 400 \text{ kHz}$
$R_{\text{RT}} = 24.9 \text{ k}\Omega$

See Figure 9-20

![Graph 4: Efficiency vs Load, CCM](image4)

Figure 7-4. Efficiency vs Load, CCM

$V_{\text{OUT}} = 24 \text{ V}$
$F_{\text{SW}} = 440 \text{ kHz}$
$R_{\text{RT}} = 22.6 \text{ k}\Omega$

See Figure 9-33

![Graph 5: Efficiency vs Load, CCM](image5)

Figure 7-5. Efficiency vs Load, CCM

$V_{\text{OUT}} = 1.1 \text{ V}$
$F_{\text{SW}} = 300 \text{ kHz}$
$R_{\text{RT}} = 33.2 \text{ k}\Omega$

See Figure 9-46

![Graph 6: FB Voltage vs Junction Temperature](image6)

Figure 7-6. FB Voltage vs Junction Temperature
Figure 7-7. $t_{\text{ON(min)}}$ and $t_{\text{OFF(min)}}$ vs Junction Temperature

Figure 7-8. $I_{Q-\text{SHD}}$ vs Input Voltage

Figure 7-9. $I_{Q-\text{STANDBY}}$ vs Input Voltage

Figure 7-10. $I_{Q-\text{OPERATING (Non-switching)}}$ vs Input Voltage

Figure 7-11. $I_{Q-\text{OPERATING (Switching)}}$ vs Input Voltage
Figure 7-13. ILIM Current Source vs Junction Temperature

Figure 7-14. Deadtime vs Junction Temperature

Figure 7-15. VCC UVLO Thresholds vs Junction Temperature

Figure 7-16. BST UVLO Thresholds vs Junction Temperature

Figure 7-17. PGOOD UVP Thresholds vs Junction Temperature

Figure 7-18. PGOOD OVP Thresholds vs Junction Temperature
Figure 7-19. EN/UVLO Threshold vs Junction Temperature

Figure 7-20. EN Standby Thresholds vs Junction Temperature

Figure 7-21. Oscillator Frequency vs RT Resistance

Figure 7-22. Oscillator Frequency vs Junction Temperature

Figure 7-23. BST Diode Forward Voltage vs Current

Figure 7-24. Gate Driver Peak Current vs VCC Voltage
Figure 7-25. HO Driver Resistance vs VCC Voltage

Figure 7-26. LO Driver Resistance vs VCC Voltage

Figure 7-27. VCC Voltage vs Input Voltage

Figure 7-28. VCC vs ICC Characteristic

Figure 7-29. VCC vs ICC Characteristic

Figure 7-30. SS/TRK Current Source vs Junction Temperature
8 Detailed Description

8.1 Overview

The LM5145 is a 75-V synchronous buck controller with all of the functions necessary to implement a high efficiency step-down power supply. The output voltage range is from 0.8 V to 60 V. The voltage-mode control architecture uses input feedforward for excellent line transient response over a wide \(V_{\text{IN}} \) range. Voltage-mode control supports the wide duty cycle range for high input voltage and low dropout applications as well as when a high voltage conversion ratio (for example, 10-to-1) is required. Current sensing for cycle-by-cycle current limit can be implemented with either the low-side FET \(R_{\text{DS(on)}} \) or a current sense resistor. The operating frequency is programmable from 100 kHz to 1 MHz. The LM5145 drives external high-side and low-side NMOS power switches with robust 7.5-V gate drivers suitable for standard threshold MOSFETs. Adaptive dead-time control between the high-side and low-side drivers minimizes body diode conduction during switching transitions. An external bias supply can be connected to the VCC pin to improve efficiency in high-voltage applications. A user-selectable diode emulation feature enables DCM operation for improved efficiency and lower dissipation at light-load conditions.

8.2 Functional Block Diagram
8.3 Feature Description

8.3.1 Input Range (V\text{IN})

The LM5145 operational input voltage range is from 6 V to 75 V. The device is intended for step-down conversions from 12-V, 24-V, 48-V, 60-V, and 72-V unregulated, semiregulated, and fully-regulated supply rails. The application circuit in Figure 8-1 shows all the necessary components to implement an LM5145-based wide-V\text{IN} step-down regulator using a single supply. The LM5145 uses an internal LDO subregulator to provide a 7.5-V VCC bias rail for the gate drive and control circuits (assuming the input voltage is higher than 7.5 V plus the necessary subregulator dropout specification).

In high voltage applications, take extra care to ensure the VIN pin does not exceed the absolute maximum voltage rating of 105 V during line or load transient events. Voltage ringing on the VIN pin that exceeds the Section 7.1 can damage the IC. Use high-quality ceramic input capacitors to minimize ringing. An RC filter from the input rail to the VIN pin (for example, 4.7 Ω and 0.1 µF) provides supplementary filtering at the VIN pin.

8.3.2 Output Voltage Setpoint and Accuracy (FB)

The reference voltage at the FB pin is set at 0.8 V with a feedback system accuracy over the full junction temperature range of ±1%. Junction temperature range for the device is –40°C to +125°C. While dependent on switching frequency and load current levels, the LM5145 is generally capable of providing output voltages in the range of 0.8 V to a maximum of 60 V or slightly less than V\text{IN}, whichever is lower. The DC output voltage setpoint during normal operation is set by the feedback resistor network, R\text{FB1} and R\text{FB2}, connected to the output.

8.3.3 High-Voltage Bias Supply Regulator (VCC)

The LM5145 contains an internal high-voltage VCC regulator that provides a bias supply for the PWM controller and its gate drivers for the external MOSFETs. The input pin (VIN) can be connected directly to an input voltage source up to 75 V. The output of the VCC regulator is set to 7.5 V. However, when the input voltage is below the VCC setpoint level, the VCC output tracks VIN with a small voltage drop. Connect a ceramic decoupling capacitor between 1 µF and 5 µF from VCC to AGND for stability.

Figure 8-1. Schematic Diagram for VIN Operating Range of 6 V to 75 V
The VCC regulator output has a current limit of 40 mA (minimum). At power up, the regulator sources current into the capacitor connected to the VCC pin. When the VCC voltage exceeds its rising UVLO threshold of 4.93 V, the output is enabled (if EN/UVLO is above 1.2 V), and the soft-start sequence begins. The output remains active until the VCC voltage falls below its falling UVLO threshold of 4.67 V (typical) or if EN/UVLO goes to a standby or shutdown state.

Internal power dissipation of the VCC regulator can be minimized by connecting the output voltage or an auxiliary bias supply rail (up to 13 V) to VCC using a diode D_{VCC} as shown in Figure 8-2. A diode in series with the input prevents reverse current flow from VCC to VIN if the input voltage falls below the external VCC rail.

![Diagram of VCC Bias Supply Connection From VOUT or Auxiliary Supply](image)

Note that a finite bias supply regulator dropout voltage exists and is manifested to a larger extent when driving high gate charge (Q_G) power MOSFETs at elevated switching frequencies. For example, at V_{VIN} = 6 V, the VCC voltage is 5.8 V with a DC operating current, I_VCC, of 20 mA. Such a low gate drive voltage may be insufficient to fully enhance the power MOSFETs. At the very least, MOSFET on-state resistance, R_{DS(ON)}, can increase at such low gate drive voltage.

Here are the main considerations when operating at input voltages below 7.5 V:

- Increased MOSFET R_{DS(on)} at lower V_{GS}, leading to increased conduction losses and reduced OCP setpoint.
- Increased switching losses given the slower switching times when operating at lower gate voltages.
- Restricted range of suitable power MOSFETs to choose from (MOSFETs with R_{DS(on)} rated at V_{GS} = 4.5 V become mandatory).

8.3.4 Precision Enable (EN/UVLO)

The EN/UVLO input supports adjustable input undervoltage lockout (UVLO) with hysteresis programmed by the resistor values for application specific power-up and power-down requirements. EN/UVLO connects to a comparator-based input referenced to a 1.2-V bandgap voltage. An external logic signal can be used to drive the EN/UVLO input to toggle the output ON and OFF and for system sequencing or protection. The simplest way to enable the operation of the LM5145 is to connect EN/UVLO directly to VIN. This allows self start-up of the LM5145 when V_{CC} is within its valid operating range. However, many applications benefit from using a resistor divider R_{UV1} and R_{UV2} as shown in Figure 8-3 to establish a precision UVLO level.

Use [Equation 1](#eq:1) and [Equation 2](#eq:2) to calculate the UVLO resistors given the required input turnon and turnoff voltages.

\[
R_{UV1} = \frac{V_{IN(on)} - V_{IN(off)}}{I_{HYS}}
\]

\[
R_{UV2} = R_{UV1} \cdot \frac{V_{EN}}{V_{IN(on)} - V_{EN}}
\]

Copyright © 2017, Texas Instruments Incorporated
The LM5145 enters a low I_Q shutdown mode when EN/UVLO is pulled below approximately 0.4 V. The internal LDO regulator powers off and the internal bias supply rail collapses, shutting down the bias currents of the LM5145. The LM5145 operates in standby mode when the EN/UVLO voltage is between the hard shutdown and precision enable (standby) thresholds.

8.3.5 Power Good Monitor (PGOOD)

The LM5145 provides a PGOOD flag pin to indicate when the output voltage is within a regulation window. Use the PGOOD signal as shown in Figure 8-4 for start-up sequencing of downstream converters, fault protection, and output monitoring. PGOOD is an open-drain output that requires a pullup resistor to a DC supply not greater than 13 V. The typical range of pullup resistance is 10 kΩ to 100 kΩ. If necessary, use a resistor divider to decrease the voltage from a higher voltage pullup rail.

When the FB voltage exceeds 94% of the internal reference V_REF, the internal PGOOD switch turns off and PGOOD can be pulled high by the external pullup. If the FB voltage falls below 92% of V_REF, the internal PGOOD switch turns on, and PGOOD is pulled low to indicate that the output voltage is out of regulation. Similarly, when the FB voltage exceeds 108% of V_REF, the internal PGOOD switch turns on, pulling PGOOD low. If the FB voltage subsequently falls below 105% of V_REF, the PGOOD switch is turned off and PGOOD is pulled high. PGOOD has a built-in deglitch delay of 25 µs.

8.3.6 Switching Frequency (RT, SYNCCIN)

There are two options for setting the switching frequency, F_SW, of the LM5145, thus providing a power supply designer with a level of flexibility when choosing external components for various applications. To adjust the
frequency, use a resistor from the RT pin to AGND, or synchronize the LM5145 to an external clock signal through the SYNCIN pin.

8.3.6.1 Frequency Adjust

Adjust the LM5145 free-running switching frequency by using a resistor from the RT pin to AGND. The switching frequency range is from 100 kHz to 1 MHz. The frequency set resistance, \(R_{RT} \), is governed by Equation 3. E96 standard-value resistors for common switching frequencies are given in Table 8-1.

\[
R_{RT} \left[\text{k}\Omega \right] = \frac{10^4}{F_{SW} \left[\text{kHz} \right]}
\]

(3)

Table 8-1. Frequency Set Resistors

<table>
<thead>
<tr>
<th>SWITCHING FREQUENCY (kHz)</th>
<th>FREQUENCY SET RESISTANCE (kΩ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>200</td>
<td>49.9</td>
</tr>
<tr>
<td>250</td>
<td>40.2</td>
</tr>
<tr>
<td>300</td>
<td>33.2</td>
</tr>
<tr>
<td>400</td>
<td>24.9</td>
</tr>
<tr>
<td>500</td>
<td>20</td>
</tr>
<tr>
<td>750</td>
<td>13.3</td>
</tr>
<tr>
<td>1000</td>
<td>10</td>
</tr>
</tbody>
</table>

8.3.6.2 Clock Synchronization

Apply an external clock synchronization signal to the LM5145 to synchronize switching in both frequency and phase. Requirements for the external clock SYNC signal are:

- Clock frequency range: 100 kHz to 1 MHz
- Clock frequency: –20% to +50% of the free-running frequency set by \(R_{RT} \)
- Clock maximum voltage amplitude: 13 V
- Clock minimum pulse width: 50 ns

Figure 8-5 shows a clock signal at 400 kHz and the corresponding SW node waveform (\(V_{IN} = 48 \text{ V} \), \(V_{OUT} = 5 \text{ V} \), free-running frequency = 280 kHz). The SW voltage waveform is synchronized with respect to the rising edge of SYNCIN. The rising edge of the SW voltage is phase delayed relative to SYNCIN by approximately 100 ns.

![Figure 8-5. Typical 400-kHz SYNCIN and SW Voltage Waveforms](image-url)
8.3.7 Configurable Soft Start (SS/TRK)

After the EN/UVLO pin exceeds its rising threshold of 1.2 V, the LM5145 begins charging the output to the DC level dictated by the feedback resistor network. The LM5145 features an adjustable soft start (set by a capacitor from the SS/TRK pin to GND) that determines the charging time of the output. A 10-µA current source charges this soft-start capacitor. Soft start limits inrush current as a result of high output capacitance to avoid an overcurrent condition. Stress on the input supply rail is also reduced. The soft-start time, \(t_{SS} \), for the output voltage to ramp to its nominal level is set by Equation 4.

\[
t_{SS} = \frac{C_{SS} \cdot V_{REF}}{I_{SS}}
\]

(4)

where

- \(C_{SS} \) is the soft-start capacitance
- \(V_{REF} \) is the 0.8-V reference
- \(I_{SS} \) is the 10-µA current sourced from the SS/TRK pin

More simply, calculate \(C_{SS} \) using Equation 5.

\[
C_{SS} \ [\text{nF}] = 12.5 \cdot t_{SS} \ [\text{ms}]
\]

(5)

The SS/TRK pin is internally clamped to \(V_{FB} + 115 \text{ mV} \) to allow a soft-start recovery from an overload event. The clamp circuit requires a soft-start capacitance greater than 2 nF for stability and has a current limit of approximately 2 mA.

8.3.7.1 Tracking

The SS/TRK pin also doubles as a tracking pin when master-slave power-supply tracking is required. This tracking is achieved by simply dividing down the output voltage of the master with a simple resistor network. Coincident, ratiometric, and offset tracking modes are possible.

If an external voltage source is connected to the SS/TRK pin, the external soft-start capability of the LM5145 is effectively disabled. The regulated output voltage level is reached when the SS/TRACK pin reaches the 0.8-V reference voltage level. It is the responsibility of the system designer to determine if an external soft-start capacitor is required to keep the device from entering current limit during a start-up event. Likewise, the system designer must also be aware of how fast the input supply ramps if the tracking feature is enabled.

![Figure 8-6. Typical Output Voltage Tracking and PGOOD Waveforms](image)

Figure 8-6 shows a triangular voltage signal directly driving SS/TRK and the corresponding output voltage tracking response. Nominal output voltage here is 5 V, with oscilloscope channel scaling chosen such that the
waveforms overlap during tracking. As expected, the PGOOD flag transitions at thresholds of 94% (rising) and 92% (falling) of the nominal output voltage setpoint.

Two practical tracking configurations, ratiometric and coincident, are shown in Figure 8-7. The most common application is coincident tracking, used in core versus I/O voltage tracking in DSP and FPGA implementations. Coincident tracking forces the master and slave channels to have the same output voltage ramp rate until the slave output reaches its regulated setpoint. Conversely, ratiometric tracking sets the output voltage of the slave to a fraction of the output voltage of the master during start-up.

For coincident tracking, connect the SS/TRK input of the slave regulator to a resistor divider from the output voltage of the master that is the same as the divider used on the FB pin of the slave. In other words, simply select \(R_{\text{TRK3}} = R_{\text{FB3}} \) and \(R_{\text{TRK4}} = R_{\text{FB4}} \) as shown in Figure 8-7. As the master voltage rises, the slave voltage rises identically (aside from the 80-mV offset from SS/TRK to FB when \(V_{\text{FB}} \) is below 0.8 V). Eventually, the slave voltage reaches its regulation voltage, at which point the internal reference takes over the regulation while the SS/TRK input continues to 115 mV above FB, and no longer controls the output voltage.

In all cases, to ensure that the output voltage accuracy is not compromised by the SS/TRK voltage being too close to the 0.8-V reference voltage, the final value of the SS/TRK voltage of the slave should be at least 100 mV above FB.

8.3.8 Voltage-Mode Control (COMP)

The LM5145 incorporates a voltage-mode control loop implementation with input voltage feedforward to eliminate the input voltage dependence of the PWM modulator gain. This configuration allows the controller to maintain stability throughout the entire input voltage operating range and provides for optimal response to input voltage transient disturbances. The constant gain provided by the controller greatly simplifies loop compensation design because the loop characteristics remain constant as the input voltage changes, unlike a buck converter without voltage feedforward. An increase in input voltage is matched by a concomitant increase in ramp voltage amplitude to maintain constant modulator gain. The input voltage feedforward gain, \(k_{\text{FF}} \), is 15, equivalent to the input voltage divided by the ramp amplitude, \(\frac{V_{\text{IN}}}{V_{\text{RAMP}}} \). See Section 9.1.3 for more detail.

8.3.9 Gate Drivers (LO, HO)

The LM5145 gate driver impedances are low enough to perform effectively in high output current applications where large die-size or paralleled MOSFETs with correspondingly large gate charge, \(Q_G \), are used. Measured at \(V_{\text{VCC}} = 7.5 \) V, the low-side driver of the LM5145 has a low impedance pulldown path of 0.9 \(\Omega \) to minimize the effect of \(\text{dv/dt} \) induced turn-on, particularly with low gate-threshold voltage MOSFETs. Similarly, the high-side
The driver has 1.5-Ω and 0.9-Ω pullup and pulldown impedances, respectively, for faster switching transition times, lower switching loss, and greater efficiency.

The high-side gate driver works in conjunction with an integrated bootstrap diode and external bootstrap capacitor, C_{BST}. When the low-side MOSFET conducts, the SW voltage is approximately at 0 V and C_{BST} is charged from VCC through the integrated boot diode. Connect a 0.1-μF or larger ceramic capacitor close to the BST and SW pins.

Furthermore, there is a proprietary adaptive dead-time control on both switching edges to prevent shoot-through and cross-conduction, minimize body diode conduction time, and reduce body diode reverse recovery losses.

8.3.10 Current Sensing and Overcurrent Protection (ILIM)

The LM5145 implements a lossless current sense scheme designed to limit the inductor current during an overload or short-circuit condition. Figure 8-8 portrays the popular current sense method using the on-state resistance of the low-side MOSFET. Meanwhile, Figure 8-9 shows an alternative implementation with current shunt resistor, R_s. The LM5145 senses the inductor current during the PWM off-time (when LO is high).

The ILIM pin of the LM5145 sources a reference current that flows in an external resistor, designated R_{ILIM}, to program the current limit threshold. A current limit comparator on the ILIM pin prevents further SW pulses if the ILIM pin voltage goes below GND. Figure 8-10 shows the implementation.

Resistor R_{ILIM} is tied to SW to use the $R_{\text{DS(on)}}$ of the low-side MOSFET as a sensing element (termed $R_{\text{DS(on)}}$ mode). Alternatively, R_{ILIM} is tied to a shunt resistor connected at the source of the low-side MOSFET (termed R_{SENSE} mode). The LM5145 detects the appropriate mode at start-up and sets the source current amplitude and temperature coefficient (TC) accordingly.

The ILIM current with $R_{\text{DS(on)}}$ sensing is 200 μA at 27°C junction temperature and incorporates a TC of +4500 ppm/°C to generally track the $R_{\text{DS(on)}}$ temperature variation of the low-side MOSFET. Conversely, the ILIM current is a constant 100 μA in R_{SENSE} mode. This controls the valley of the inductor current during a steady-state overload at the output. Depending on the chosen mode, select the resistance of R_{ILIM} using Equation 6.

$$R_{\text{ILIM}} = \begin{cases} \frac{l_{\text{OUT}} - \Delta I_l}{2} R_{\text{DS(on)}} Q_2, & \text{R}_{\text{DS(on)}} \text{ sensing} \\ \frac{l_{\text{OUT}} - \Delta I_l}{2} R_s, & \text{shunt sensing} \end{cases}$$

where

- ΔI_l is the peak-to-peak inductor ripple current
- $R_{DS(on)}$ is the on-state resistance of the low-side MOSFET
- I_{RDSON} is the ILIM pin current in R_{DS-ON} mode
- R_S is the resistance of the current-sensing shunt element, and
- I_{RS} is the ILIM pin current in R_{SENSE} mode.

Given the large voltage swings of ILIM in $R_{DS(on)}$ sensing mode, a capacitor designated C_{ILIM} connected from ILIM to PGND is essential to the operation of the valley current limit circuit. Choose this capacitance such that the time constant $R_{ILIM} \cdot C_{ILIM}$ is approximately 6 ns.

![Figure 8-10. OCP Setpoint Defined by Current Source I_{RDSON} and Resistor R_{ILIM} in R_{DS-ON} Mode](image)

Note that current sensing with a shunt component is typically implemented at lower output current levels to provide accurate overcurrent protection. Burdened by the unavoidable efficiency penalty, PCB layout, and additional cost implications, this configuration is not usually implemented in high-current applications (except where OCP setpoint accuracy and stability over the operating temperature range are critical specifications).
In addition to valley current limiting, the LM5145 uses a proprietary duty-cycle limiter circuit to reduce the PWM on-time during an overcurrent condition. As shown in Figure 8-10, an auxiliary PWM comparator along with a modulated CLAMP voltage limits how quickly the on-time increases in response to a large step in the COMP voltage that typically occurs with a voltage-mode control loop architecture.

As depicted in Figure 8-11, the CLAMP voltage, V_{CLAMP}, is normally regulated above the COMP voltage to provide adequate headroom during a response to a load-on transient. If the COMP voltage rises quickly during an overloaded or shorted output condition, the on-time pulse terminates thereby limiting the on-time and peak inductor current. Moreover, the CLAMP voltage is reduced if additional valley current limit events occur, further reducing the average output current. If the overcurrent condition exists for 128 continuous clock cycles, a hiccup event is triggered and SS is pulled low for 8192 clock cycles before a soft-start sequence is initiated.

8.4 Device Functional Modes

8.4.1 Shutdown Mode

The EN/UVLO pin provides ON / OFF control for the LM5145. When the EN/UVLO voltage is below 0.37 V (typical), the device is in shutdown mode. Both the internal bias supply LDO and the switching regulator are off. The quiescent current in shutdown mode drops to 13.5 μA (typical) at $V_{\text{IN}} = 48$ V. The LM5145 also includes undervoltage protection of the internal bias LDO. If the internal bias supply voltage is below its UVLO threshold level, the switching regulator remains off.

8.4.2 Standby Mode

The internal bias supply LDO has a lower enable threshold than the switching regulator. When the EN/UVLO voltage exceeds 0.42 V (typical) and is below the precision enable threshold (1.2 V typically), the internal LDO is on and regulating. Switching action and output voltage regulation are disabled in standby mode.

8.4.3 Active Mode

The LM5145 is in active mode when the VCC voltage is above its rising UVLO threshold of 5 V and the EN/UVLO voltage is above the precision EN threshold of 1.2 V. The simplest way to enable the LM5145 is to tie EN/UVLO to VIN. This allows self start-up of the LM5145 when the input voltage exceeds the VCC threshold plus the LDO dropout voltage from VIN to VCC.
8.4.4 Diode Emulation Mode

The LM5145 provides a diode emulation feature that can be enabled to prevent reverse (drain-to-source) current flow in the low-side MOSFET. When configured for diode emulation, the low-side MOSFET is switched off when reverse current flow is detected by sensing of the SW voltage using a zero-cross comparator. The benefit of this configuration is lower power loss at no-load and light-load conditions, the disadvantage being slower light-load transient response.

The diode emulation feature is configured with the SYNCIN pin. To enable diode emulation and thus achieve discontinuous conduction mode (DCM) operation at light loads, connect the SYNCIN pin to AGND or leave SYNCIN floating. If forced PWM (FPWM) continuous conduction mode (CCM) operation is desired, tie SYNCIN to VCC either directly or using a pullup resistor. Note that diode emulation mode is automatically engaged to prevent reverse current flow during a prebias start-up. A gradual change from DCM to CCM operation provides monotonic start-up performance.

8.4.5 Thermal Shutdown

The LM5145 includes an internal junction temperature monitor. If the temperature exceeds 175°C (typical), thermal shutdown occurs. When entering thermal shutdown, the device:

1. Turns off the high-side and low-side MOSFETs.
2. Pulls SS/TRK and PGOOD low.
3. Turns off the VCC regulator.
4. Initiates a soft-start sequence when the die temperature decreases by the thermal shutdown hysteresis of 20°C (typical).

This is a non-latching protection, and the device will cycle into and out of thermal shutdown if the fault persists.
9 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

9.1.1 Design and Implementation

To expedite the process of designing of a LM5145-based regulator for a given application, use the **LM5145 Quickstart Calculator** available as a free download, as well as numerous LM5145 reference designs populated in TI Designs™ reference design library, or the designs provided in Section 9.2. The LM5145 is also WEBENCH® Designer enabled.

9.1.2 Power Train Components

Comprehensive knowledge and understanding of the power train components are key to successfully completing a synchronous buck regulator design.

9.1.2.1 Inductor

For most applications, choose an inductance such that the inductor ripple current, ΔI_L, is between 30% and 40% of the maximum DC output current at nominal input voltage. Choose the inductance using Equation 7 based on a peak inductor current given by Equation 8.

$$L_F = \frac{V_{OUT}}{V_{IN}} \left(\frac{V_{IN} - V_{OUT}}{\Delta I_L \cdot F_{SW}} \right)$$

(7)

$$I_{L\text{peak}} = I_{OUT} + \frac{\Delta I_L}{2}$$

(8)

Check the inductor data sheet to ensure that the saturation current of the inductor is well above the peak inductor current of a particular design. Ferrite designs have very low core loss and are preferred at high switching frequencies, so design goals can then concentrate on copper loss and preventing saturation. Low inductor core loss is evidenced by reduced no-load input current and higher light-load efficiency. However, ferrite core materials exhibit a hard saturation characteristic and the inductance collapses abruptly when the saturation current is exceeded. This results in an abrupt increase in inductor ripple current, higher output voltage ripple, not to mention reduced efficiency and compromised reliability. Note that the saturation current of an inductor generally decreases as its core temperature increases. Of course, accurate overcurrent protection is key to avoiding inductor saturation.

9.1.2.2 Output Capacitors

Ordinarily, the output capacitor energy store of the regulator combined with the control loop response are prescribed to maintain the integrity of the output voltage within the dynamic (transient) tolerance specifications. The usual boundaries restricting the output capacitor in power management applications are driven by finite available PCB area, component footprint and profile, and cost. The capacitor parasitics—equivalent series resistance (ESR) and equivalent series inductance (ESL)—take greater precedence in shaping the load transient response of the regulator as the load step amplitude and slew rate increase.

The output capacitor, C_{OUT}, filters the inductor ripple current and provides a reservoir of charge for step-load transient events. Typically, ceramic capacitors provide extremely low ESR to reduce the output voltage ripple and noise spikes, while tantalum and electrolytic capacitors provide a large bulk capacitance in a relatively compact footprint for transient loading events.
Based on the static specification of peak-to-peak output voltage ripple denoted by ΔV_{OUT}, choose an output capacitance that is larger than that given by Equation 9.

$$C_{\text{OUT}} \geq \frac{\Delta I}{8 \cdot F_{\text{SW}} \sqrt{\frac{\Delta V_{\text{OUT}}^2}{2} - (R_{\text{ESR}} \cdot \Delta I)^2}}$$ \hspace{1cm} (9)$$

Figure 9-1 conceptually illustrates the relevant current waveforms during both load step-up and step-down transitions. As shown, the large-signal slew rate of the inductor current is limited as the inductor current ramps to match the new load-current level following a load transient. This slew-rate limiting exacerbates the deficit of charge in the output capacitor, which must be replenished as rapidly as possible during and after the load step-up transient. Similarly, during and after a load step-down transient, the slew rate limiting of the inductor current adds to the surplus of charge in the output capacitor that must be depleted as quickly as possible.

![Figure 9-1. Load Transient Response Representation Showing C_{OUT} Charge Surplus or Deficit](image)

In a typical regulator application of 48-V input to low output voltage (for example, 5 V), the load-off transient represents the worst case in terms of output voltage transient deviation. In that conversion ratio application, the steady-state duty cycle is approximately 10% and the large-signal inductor current slew rate when the duty cycle collapses to zero is approximately $-V_{\text{OUT}}/L$. Compared to a load-on transient, the inductor current takes much longer to transition to the required level. The surplus of charge in the output capacitor causes the output voltage to significantly overshoot. In fact, to deplete this excess charge from the output capacitor as quickly as possible, the inductor current must ramp below its nominal level following the load step. In this scenario, a large output capacitance can be advantageously employed to absorb the excess charge and limit the voltage overshoot.

To meet the dynamic specification of output voltage overshoot during such a load-off transient (denoted as $\Delta V_{\text{OVERSHOOT}}$ with step reduction in output current given by ΔI_{OUT}), the output capacitance should be larger than

$$C_{\text{OUT}} \geq \frac{L_{\text{F}} \cdot \Delta I_{\text{OUT}}^2}{(V_{\text{OUT}} + \Delta V_{\text{OVERSHOOT}})^2 - V_{\text{OUT}}^2}$$ \hspace{1cm} (10)$$

The ESR of a capacitor is provided in the manufacturer’s data sheet either explicitly as a specification or implicitly in the impedance vs. frequency curve. Depending on type, size and construction, electrolytic capacitors have significant ESR, 5 mΩ and above, and relatively large ESL, 5 nH to 20 nH. PCB traces contribute some parasitic resistance and inductance as well. Ceramic output capacitors, on the other hand, have low ESR and

Product Folder Links: LM5145
ESL contributions at the switching frequency, and the capacitive impedance component dominates. However, depending on package and voltage rating of the ceramic capacitor, the effective capacitance can drop quite significantly with applied DC voltage and operating temperature.

Ignoring the ESR term in Equation 9 gives a quick estimation of the minimum ceramic capacitance necessary to meet the output ripple specification. One to four 47-µF, 10-V, X7R capacitors in 1206 or 1210 footprint is a common choice. Use Equation 10 to determine if additional capacitance is necessary to meet the load-off transient overshoot specification.

A composite implementation of ceramic and electrolytic capacitors highlights the rationale for paralleling capacitors of dissimilar chemistries yet complementary performance. The frequency response of each capacitor is accretive in that each capacitor provides desirable performance over a certain portion of the frequency range. While the ceramic provides excellent mid- and high-frequency decoupling characteristics with its low ESR and ESL to minimize the switching frequency output ripple, the electrolytic device with its large bulk capacitance provides low-frequency energy storage to cope with load transient demands.

9.1.2.3 Input Capacitors

Input capacitors are necessary to limit the input ripple voltage to the buck power stage due to switching-frequency AC currents. TI recommends using X5R or X7R dielectric ceramic capacitors to provide low impedance and high RMS current rating over a wide temperature range. To minimize the parasitic inductance in the switching loop, position the input capacitors as close as possible to the drain of the high-side MOSFET and the source of the low-side MOSFET. The input capacitor RMS current is given by Equation 11.

\[
I_{\text{IN,rms}} = \sqrt{D \cdot \left(I_{\text{OUT}}^2 \cdot (1-D) + \frac{\Delta I^2}{12} \right)}
\]

The highest input capacitor RMS current occurs at \(D = 0.5 \), at which point the RMS current rating of the capacitors should be greater than half the output current.

Ideally, the DC component of input current is provided by the input voltage source and the AC component by the input filter capacitors. Neglecting inductor ripple current, the input capacitors source current of amplitude \((I_{\text{OUT}} - I_{\text{IN}}) \) during the \(D \) interval and sinks \(I_{\text{IN}} \) during the \(1-D \) interval. Thus, the input capacitors conduct a square-wave current of peak-to-peak amplitude equal to the output current. It follows that the resultant capacitive component of AC ripple voltage is a triangular waveform. Together with the ESR-related ripple component, the peak-to-peak ripple voltage amplitude is given by Equation 12.

\[
\Delta V_{\text{IN}} = \frac{I_{\text{OUT}} \cdot D \cdot (1-D)}{F_{\text{SW}} \cdot C_{\text{IN}}} + I_{\text{OUT}} \cdot R_{\text{ESR}}
\]

The input capacitance required for a particular load current, based on an input voltage ripple specification of \(\Delta V_{\text{IN}} \), is given by Equation 13.

\[
C_{\text{IN}} \geq \frac{D \cdot (1-D) \cdot I_{\text{OUT}}}{F_{\text{SW}} \cdot (\Delta V_{\text{IN}} - R_{\text{ESR}} \cdot I_{\text{OUT}})}
\]

Low-ESR ceramic capacitors can be placed in parallel with higher valued bulk capacitance to provide optimized input filtering for the regulator and damping to mitigate the effects of input parasitic inductance resonating with high-Q ceramics. One bulk capacitor of sufficiently high current rating and two or three 2.2-µF 100-V X7R ceramic decoupling capacitors are usually sufficient. Select the input bulk capacitor based on its ripple current rating and operating temperature.

9.1.2.4 Power MOSFETs

The choice of power MOSFETs has significant impact on DC-DC regulator performance. A MOSFET with low on-state resistance, \(R_{\text{DS(on)}} \), reduces conduction loss, whereas low parasitic capacitances enable faster
transition times and reduced switching loss. Normally, the lower the $R_{DS(on)}$ of a MOSFET, the higher the gate charge and output charge (Q_G and Q_{OSS} respectively), and vice versa. As a result, the product $R_{DS(on)} \times Q_G$ is commonly specified as a MOSFET figure-of-merit. Low thermal resistance ensures that the MOSFET power dissipation does not result in excessive MOSFET die temperature.

The main parameters affecting power MOSFET selection in a LM5145 application are as follows:

- $R_{DS(on)}$ at $V_{GS} = 7.5$ V
- Drain-source voltage rating, BV_{DSS}, typically 60 V, 80 V or 100 V, depending on maximum input voltage
- Gate charge parameters at $V_{GS} = 7.5$ V
- Output charge, Q_{OSS}, at the relevant input voltage
- Body diode reverse recovery charge, Q_{RR}
- Gate threshold voltage, $V_{GS(th)}$, derived from the Miller plateau evident in the Q_G vs. V_{GS} plot in the MOSFET data sheet. With a Miller plateau voltage typically in the range of 2 V to 5 V, the 7.5-V gate drive amplitude of the LM5145 provides an adequately-enhanced MOSFET when on and a margin against Cdv/dt shoot-through when off.

The MOSFET-related power losses are summarized by the equations presented in Table 9-1, where suffixes 1 and 2 represent high-side and low-side MOSFET parameters, respectively. While the influence of inductor ripple current is considered, second-order loss modes, such as those related to parasitic inductances and SW node ringing, are not included. Consult the LM5145 Quickstart Calculator to assist with power loss calculations.

Table 9-1. Buck Regulator MOSFET Power Losses

<table>
<thead>
<tr>
<th>POWER LOSS MODE</th>
<th>HIGH-SIDE MOSFET</th>
<th>LOW-SIDE MOSFET</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOSFET conduction(2)</td>
<td>$P_{cond1} = D \left(I_{OUT}^2 + \frac{\Delta I^2}{12} \right) \cdot R_{DS(on)1}$</td>
<td>$P_{cond2} = D' \left(I_{OUT}^2 + \frac{\Delta I^2}{12} \right) \cdot R_{DS(on)2}$</td>
</tr>
<tr>
<td>MOSFET switching</td>
<td>$P_{sw1} = \frac{V_IN \cdot F_{SW}}{2} \left(2I_{OUT} \cdot \frac{\Delta I}{2} \cdot f_T + \left(I_{OUT} + \frac{\Delta I}{2} \right) \cdot f_T \right)$</td>
<td>Negligible</td>
</tr>
<tr>
<td>MOSFET gate drive(1)</td>
<td>$P_{Gate1} = V_{CC} \cdot F_{SW} \cdot Q_{G1}$</td>
<td>$P_{Gate2} = V_{CC} \cdot F_{SW} \cdot Q_{G2}$</td>
</tr>
<tr>
<td>MOSFET output charge(4)</td>
<td>$P_{Coss1} = F_{SW} \cdot (V_{IN} \cdot Q_{oss2} + E_{oss1} - E_{oss2})$</td>
<td></td>
</tr>
<tr>
<td>Body diode conduction</td>
<td>N/A</td>
<td>$P_{cond_{DI}} = V_{F} \cdot F_{SW} \left(I_{OUT} + \frac{\Delta I}{2} \right) \cdot t_{sat} + \left(I_{OUT} - \frac{\Delta I}{2} \right) \cdot t_{at}$</td>
</tr>
<tr>
<td>Body diode reverse recovery(5)</td>
<td>$P_{RR} = V_{IN} \cdot F_{SW} \cdot Q_{RR}$</td>
<td></td>
</tr>
</tbody>
</table>

(1) Gate drive loss is apportioned based on the internal gate resistance of the MOSFET, externally-added series gate resistance and the relevant driver resistance of the LM5145.

(2) MOSFET $R_{DS(on)}$ has a positive temperature coefficient of approximately 4500 ppm/°C. The MOSFET junction temperature, T_J, and its rise over ambient temperature is dependent upon the device total power dissipation and its thermal impedance. When operating at or near minimum input voltage, ensure that the MOSFET $R_{DS(on)}$ is rated at $V_{GS} = 4.5$ V.

(3) $D' = 1-D$ is the duty cycle complement.

(4) MOSFET output capacitances, C_{oss1} and C_{oss2}, are highly non-linear with voltage. These capacitances are charged losslessly by the inductor current at high-side MOSFET turn-off. During turn-on, however, a current flows from the input to charge the output capacitance of the low-side MOSFET. E_{oss1}, the energy of C_{oss1}, is dissipated at turn-on, but this is offset by the stored energy E_{oss2} on C_{oss2}.

(5) MOSFET body diode reverse recovery charge, Q_{RR}, depends on many parameters, particularly forward current, current transition speed and temperature.

The high-side (control) MOSFET carries the inductor current during the PWM on-time (or D interval) and typically incurs most of the switching losses. It is therefore imperative to choose a high-side MOSFET that balances conduction and switching loss contributions. The total power dissipation in the high-side MOSFET is the sum of the losses due to conduction, switching (voltage-current overlap), output charge, and typically two-thirds of the net loss attributed to body diode reverse recovery.
The low-side (synchronous) MOSFET carries the inductor current when the high-side MOSFET is off (or 1–D interval). The low-side MOSFET switching loss is negligible as it is switched at zero voltage – current just commutates from the channel to the body diode or vice versa during the transition deadtimes. The LM5145, with its adaptive gate drive timing, minimizes body diode conduction losses when both MOSFETs are off. Such losses scale directly with switching frequency.

In high step-down ratio applications, the low-side MOSFET carries the current for a large portion of the switching period. Therefore, to attain high efficiency, it is critical to optimize the low-side MOSFET for low $R_{DS(on)}$. In cases where the conduction loss is too high or the target $R_{DS(on)}$ is lower than available in a single MOSFET, connect two low-side MOSFETs in parallel. The total power dissipation of the low-side MOSFET is the sum of the losses due to channel conduction, body diode conduction, and typically one-third of the net loss attributed to body diode reverse recovery. The LM5145 is well suited to drive TI's portfolio of NexFET™ power MOSFETs.

9.1.3 Control Loop Compensation

The poles and zeros inherent to the power stage and compensator are respectively illustrated by red and blue dashed rings in the schematic embedded in Table 9-2.

Table 9-2. Buck Regulator Poles and Zeros

<table>
<thead>
<tr>
<th>POWER STAGE POLES</th>
<th>POWER STAGE ZEROS</th>
<th>COMPENSATOR POLES</th>
<th>COMPENSATOR ZEROS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\omega_b = \frac{1}{\sqrt{L_F \cdot C_{OUT} (1 + R_{ESR}/R_L)}}$</td>
<td>$\omega_{ESR} = \frac{1}{R_{ESR} \cdot C_{OUT}}$</td>
<td>$\omega_n = \frac{1}{R_{C1} \cdot (C_{C2}/C_{C3})}$, $\frac{1}{R_{C1} \cdot C_{C2}}$</td>
<td>$\omega_{z1} = \frac{1}{R_{C1} \cdot C_{C1}}$</td>
</tr>
<tr>
<td>$\approx \frac{1}{\sqrt{L_F \cdot C_{OUT}}}$</td>
<td>$\omega_L = \frac{L_F}{R_{DAMP}}$</td>
<td>$\omega_{p2} = \frac{1}{R_{C2} \cdot C_{C3}}$</td>
<td>$\omega_{z2} = \frac{1}{(R_{FB2} + C_{C2}) \cdot C_{C3}}$</td>
</tr>
</tbody>
</table>

The compensation network typically employed with voltage-mode control is a Type-III circuit with three poles and two zeros. One compensator pole is located at the origin to realize high DC gain. The normal compensation strategy uses two compensator zeros to counteract the LC double pole, one compensator pole located to nullify the output capacitor ESR zero, with the remaining compensator pole located at one-half switching frequency to attenuate high frequency noise. The resistor divider network to FB determines the desired output voltage. Note that the lower feedback resistor, R_{FB2}, has no impact on the control loop from an AC standpoint because the FB node is the input to an error amplifier and is effectively at AC ground. Hence, the control loop is designed irrespective of output voltage level. The proviso here is the necessary output capacitance derating with bias voltage and temperature.
The small-signal open-loop response of a buck regulator is the product of modulator, power train and compensator transfer functions. The power stage transfer function can be represented as a complex pole pair associated with the output LC filter and a zero related to the ESR of the output capacitor. The DC (and low frequency) gain of the modulator and power stage is V_{IN}/V_{RAMP}. The gain from COMP to the average voltage at the input of the LC filter is held essentially constant by the PWM line feedforward feature of the LM5145 (15 V/V or 23.5 dB).

Complete expressions for small-signal frequency analysis are presented in Table 9-3. The transfer functions are denoted in normalized form. While the loop gain is of primary importance, a regulator is not specified directly by its loop gain but by its performance related characteristics, namely closed-loop output impedance and audio susceptibility.

Table 9-3. Buck Regulator Small-Signal Analysis

<table>
<thead>
<tr>
<th>TRANSFER FUNCTION</th>
<th>EXPRESSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open-loop transfer function</td>
<td>$T_v(s) = \frac{\dot{v}{\text{comp}}(s)}{\dot{v}o(s)} \cdot \frac{\dot{d}(s)}{\dot{v}{\text{comp}}(s)} = G_c(s) \cdot G{vd}(s) \cdot F_M$</td>
</tr>
<tr>
<td>Duty-cycle-to-output transfer function</td>
<td>$G_{vd}(s) = \frac{\dot{v}_o(s)}{\dot{d}(s)} \bigg</td>
</tr>
<tr>
<td>Compensator transfer function$^{(1)}$</td>
<td>$G_c(s) = \frac{\dot{v}{\text{comp}}(s)}{\dot{v}o(s)} = K{mid} \begin{bmatrix} 1 + \frac{s}{\omega{21}} \ \frac{s}{\omega_{b1}} \end{bmatrix} \begin{bmatrix} 1 + \frac{s}{\omega_{22}} \ \frac{s}{\omega_{b2}} \end{bmatrix}$</td>
</tr>
<tr>
<td>Modulator transfer function</td>
<td>$F_M = \frac{\dot{d}(s)}{\dot{v}{\text{comp}}(s)} = \frac{1}{V{RAMP}}$</td>
</tr>
</tbody>
</table>

$^{(1)} K_{mid} = R_C/R_{FB1}$ is the mid-band gain of the compensator. By expressing one of the compensator zeros in inverted zero format, the mid-band gain is denoted explicitly.

Figure 9-2 shows the open-loop response gain and phase. The poles and zeros of the system are marked with x and o symbols, respectively, and a + symbol indicates the crossover frequency. When plotted on a log (dB) scale, the open-loop gain is effectively the sum of the individual gain components from the modulator, power stage, and compensator (see Figure 9-3). The open-loop response of the system is measured experimentally by breaking the loop, injecting a variable-frequency oscillator signal, and recording the ensuing frequency response using a network analyzer setup.
Figure 9-2. Typical Buck Regulator Loop Gain and Phase With Voltage-Mode Control

If the pole located at ω_{p1} cancels the zero located at ω_{ESR} and the pole at ω_{p2} is located well above crossover, the expression for the loop gain, $T_v(s)$ in Table 9-3, can be manipulated to yield the simplified expression given in Equation 14.

$$T_v(s) = R_{C1} \cdot C_{C3} \cdot \frac{V_{IN}}{V_{RAMP}} \cdot \frac{\omega_0^2}{s}$$

(14)

Essentially, a multi-order system is reduced to a single-order approximation by judicious choice of compensator components. A simple solution for the crossover frequency (denoted as f_c in Figure 9-2) with Type-III voltage-mode compensation is derived as shown in Equation 15 and Equation 16.

$$\omega_c = 2\pi \cdot f_c = \omega_0 \cdot K_{mid} \cdot \frac{V_{IN}}{V_{RAMP}}$$

(15)

$$K_{mid} = \frac{f_c}{f_0} \cdot \frac{1}{k_{FF}} = \frac{R_{C1}}{R_{FB1}}$$

(16)

Figure 9-3. Buck Regulator Constituent Gain Components
The loop crossover frequency is usually selected between one-tenth to one-fifth of switching frequency. Inserting an appropriate crossover frequency into Equation 16 gives a target for the mid-band gain of the compensator, K_{mid}. Given an initial value for R_{FB1}, R_{FB2} is then selected based on the desired output voltage. Values for R_{C1}, R_{C2}, C_{C1}, C_{C2}, and C_{C3} are calculated from the design expressions listed in Table 9-4, with the premise that the compensator poles and zeros are set as follows: $\omega_{z1} = 0.5 \cdot \omega_o$, $\omega_{z2} = \omega_o$, $\omega_{p1} = \omega_{SW}/2$, and $\omega_{p2} = \omega_{ESR}$.

Table 9-4. Compensation Component Selection

<table>
<thead>
<tr>
<th>RESISTORS</th>
<th>CAPACITORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{FB2} = \frac{R_{FB1}}{(V_{OUT}/V_{REF})-1}$</td>
<td>$C_{C1} = \frac{2}{\omega_{z1} \cdot R_{C1}}$</td>
</tr>
<tr>
<td>$R_{C1} = K_{mid} \cdot R_{FB1}$</td>
<td>$C_{C2} = \frac{1}{\omega_{p1} \cdot R_{C1}}$</td>
</tr>
<tr>
<td>$R_{C2} = \frac{1}{\omega_{p2} \cdot C_{C3}}$</td>
<td>$C_{C3} = \frac{1}{\omega_{z2} \cdot R_{FB1}}$</td>
</tr>
</tbody>
</table>

Referring to the bode plot in Figure 9-2, the phase margin, indicated as ϕ_M, is the difference between the loop phase and -180° at crossover. A target of 50° to 70° for this parameter is considered ideal. Additional phase boost is dialed in by locating the compensator zeros at a frequency lower than the LC double pole (hence why C_{C1} is scaled by a factor of 2 above). This helps mitigate the phase dip associated with the LC filter, particularly at light loads when the Q-factor is higher and the phase dip becomes especially prominent. The ramifications of low phase in the frequency domain is an under-damped transient response in the time domain.

The power supply designer now has all the necessary expressions to optimally position the loop crossover frequency while maintaining adequate phase margin over the required line, load and temperature operating ranges. The LM5145 Quickstart Calculator is available to expedite these calculations and to adjust the bode plot as needed.

9.1.4 EMI Filter Design

Switching regulators exhibit negative input impedance, which is lowest at the minimum input voltage. An underdamped LC filter exhibits a high output impedance at the resonant frequency of the filter. For stability, the filter output impedance must be less than the absolute value of the converter input impedance.

$$Z_{IN} = \left| \frac{V_{IN(min)}}{P_{IN}} \right|^2$$ (17)

The EMI filter design steps are as follows:

- Calculate the required attenuation of the EMI filter at the switching frequency, where C_{IN} represents the existing capacitance at the input of the switching converter.
- Input filter inductor L_{IN} is usually selected between 1 μH and 10 μH, but it can be lower to reduce losses in a high current design.
- Calculate input filter capacitor C_F full stop.
By calculating the first harmonic current from the Fourier series of the input current waveform and multiplying it by the input impedance (the impedance is defined by the existing input capacitor C_{IN}), a formula is derived to obtain the required attenuation as shown by Equation 18.

$$\text{Attn} = 20\log\left(\frac{I_{PEAK}}{\pi \cdot F_{SW} \cdot C_{IN}} \cdot \sin(\pi \cdot D_{MAX}) \cdot \frac{1}{1 \mu V}\right) - V_{MAX}$$

where

- V_{MAX} is the noise specification in dBμV from the applicable EMI standard, for example CISPR 32 Class B.
- C_{IN} is the existing input capacitance of the buck regulator.
- D_{MAX} is the maximum duty cycle.
- I_{PEAK} is the peak inductor current.

For filter design purposes, the current at the input can be modeled as a square-wave. Determine the EMI filter capacitance C_F from Equation 19.

$$C_F = \frac{1}{L_{IN}} \left(\frac{\text{Attn}}{10^{40/2\pi \cdot F_{SW}}}\right)^2$$

Adding an input filter to a switching regulator modifies the control-to-output transfer function. The output impedance of the filter must be sufficiently small such that the input filter does not significantly affect the loop gain of the buck converter. The impedance peaks at the filter resonant frequency. The resonant frequency of the filter is given by Equation 20.

$$f_{res} = \frac{1}{2\pi \cdot \sqrt{L_{IN} \cdot C_F}}$$

The purpose of R_D is to reduce the peak output impedance of the filter at the resonant frequency. Capacitor C_D blocks the DC component of the input voltage to avoid excessive power dissipation in R_D. Capacitor C_D must have lower impedance than R_D at the resonant frequency with a capacitance value greater than that of the input capacitor C_{IN}. This prevents C_{IN} from interfering with the cutoff frequency of the main filter. Added damping is needed when the output impedance of the filter is high at the resonant frequency (Q of filter formed by L_{IN} and C_{IN} is too high). An electrolytic capacitor C_D can be used for damping with a value given by Equation 21.
\[C_D \geq 4 \cdot C_{IN} \quad (21) \]

Select the damping resistor \(R_D \) using Equation 22.

\[R_D = \sqrt{\frac{L_{IN}}{C_{IN}}} \quad (22) \]
9.2 Typical Applications

For step-by-step design procedure, circuit schematics, bill of materials, PCB files, simulation and test results of an LM5145-powered implementation, see Ti Designs reference design library.

9.2.1 Design 1 – 20-A High-Efficiency Synchronous Buck Regulator for Telecom Power Applications

Figure 9-5 shows the schematic diagram of a 5-V, 20-A buck regulator with a switching frequency of 230 kHz. In this example, the target half-load and full-load efficiencies are 93.5% and 92.5%, respectively, based on a nominal input voltage of 48 V that ranges from 7 V to 72 V. The switching frequency is set by means of a synchronization input signal at 230 kHz, and the free-running switching frequency (in the event that the synchronization signal is removed) is set at 200 kHz by resistor \(R_{RT} \). In terms of control loop performance, the target loop crossover frequency is 35 kHz with a phase margin greater than 50°. The output voltage soft-start time is 4 ms.

Figure 9-5. Application Circuit 1 With LM5145 48-V to 5-V, 20-A Buck Regulator at 230 kHz

Note

This and subsequent design examples are provided herein to showcase the LM5145 controller in several different applications. Depending on the source impedance of the input supply bus, an electrolytic capacitor may be required at the input to ensure stability, particularly at low input voltage and high output current operating conditions. See Section 10 for more detail.
9.2.1.1 Design Requirements

The intended input, output, and performance-related parameters pertinent to this design example are shown in Table 9-5.

<table>
<thead>
<tr>
<th>DESIGN PARAMETER</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage range (steady state)</td>
<td>7 V to 72 V</td>
</tr>
<tr>
<td>Input transient voltage (peak)</td>
<td>80 V</td>
</tr>
<tr>
<td>Output voltage and current</td>
<td>5 V, 20 A</td>
</tr>
<tr>
<td>Input voltage UVLO thresholds</td>
<td>6.5 V on, 6 V off</td>
</tr>
<tr>
<td>Switching frequency (SYNC in)</td>
<td>230 kHz</td>
</tr>
<tr>
<td>Output voltage regulation</td>
<td>±0.5%</td>
</tr>
<tr>
<td>Load transient peak voltage deviation</td>
<td>< 100 mV</td>
</tr>
</tbody>
</table>

9.2.1.2 Detailed Design Procedure

The design procedure for an LM5145-based regulator for a given application is streamlined by using the LM5145 Quickstart Calculator available as a free download, or by availing of TI's WEBENCH® Power Designer. Such tools are complemented by the availability of an LM5145 evaluation module (EVM) design, numerous PSPICE models, as well as several LM5145 reference designs populated in the TI Designs reference design library.

The selected buck converter powertrain components are cited in Table 9-6, and many of the components are available from multiple vendors. The MOSFETs in particular are chosen for both lowest conduction and switching power loss, as discussed in detail in Section 9.1.2.4.

The current limit setpoint in this design is set at 25 A based on the resistor R_{ILIM} and the 4-mΩ R_{DS(on)} of the low-side MOSFET (typical at T_J = 25°C and V_{GS} = 7.5 V). This design uses a low-DCR, metal-powder inductor, and composite ceramic–polymer electrolytic output capacitor implementation.

9.2.1.3 Custom Design With WEBENCH® Tools

Click here to create a custom design using the LM5145 device with the WEBENCH® Power Designer.

1. Start by entering the input voltage (V_{IN}), output voltage (V_{OUT}), and output current (I_{OUT}) requirements.
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.
3. Compare the generated design with other possible solutions from Texas Instruments.
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time pricing and component availability.

In most cases, these actions are available:
- Run electrical simulations to see important waveforms and circuit performance
- Run thermal simulations to understand board thermal performance
- Export customized schematic and layout into popular CAD formats
- Print PDF reports for the design, and share the design with colleagues

Get more information about WEBENCH tools at www.ti.com/WEBENCH.
9.2.1.4 Application Curves

Figure 9-6. Efficiency and Power Loss vs I_{OUT} and V_{IN}

Figure 9-7. SYNCOUT and SW Node Voltages

Figure 9-8. Start-Up, 20-A Resistive Load

Figure 9-9. Shutdown Through Input UVLO, 20-A Resistive Load

Figure 9-10. ENABLE ON, 20-A Resistive Load

Figure 9-11. ENABLE OFF, 20-A Resistive Load
Figure 9-12. Load Transient Response, 10 A to 20 A to 10 A

Figure 9-13. Load Transient Response, 0 A to 20 A to 0 A

Figure 9-14. Line Transient Response, 12 V to 72 V

Figure 9-15. Line Transient Response, 72 V to 12 V

Figure 9-16. Pre-Biased Start-Up

Figure 9-17. SW Node and Output Ripple Voltages
Figure 9-18. CISPR 25 Class 5 Conducted EMI, 150 kHz to 30 MHz

- $V_{IN} = 48$ V
- $V_{OUT} = 5$ V
- 10-A load

Figure 9-19. CISPR 25 Class 5 Conducted EMI, 30 MHz to 108 MHz

- $V_{IN} = 48$ V
- $V_{OUT} = 12$ V
- 10-A load
9.2.2 Design 2 – High Density, 12-V, 10-A Rail With LDO Low-Noise Auxiliary Output for RF Power Applications

Figure 9-20 shows the schematic diagram of a 400-kHz, 12-V output, 10-A synchronous buck regulator intended for RF power applications.

An auxiliary 10-V, 800-mA rail to power noise-sensitive circuits is available using the LP38798 ultra-low noise LDO as a post-regulator. The internal pull-up of the EN pin of the LP38798 facilitates direct connection to the PGOOD of the LM5145 for sequential start-up control.

Figure 9-20. Application Circuit 2 With LM5145 48-V to 12-V Synchronous Buck Regulator at 400 kHz
9.2.2.1 Design Requirements

The required input, output, and performance parameters for this application example are shown in Table 9-7.

<table>
<thead>
<tr>
<th>DESIGN PARAMETER</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage range (steady state)</td>
<td>14.4 V to 48 V</td>
</tr>
<tr>
<td>Input transient voltage (peak)</td>
<td>56 V</td>
</tr>
<tr>
<td>Output voltage and current</td>
<td>12 V, 10 A</td>
</tr>
<tr>
<td>Input UVLO thresholds</td>
<td>14 V on, 13.2 V off</td>
</tr>
<tr>
<td>Switching frequency</td>
<td>400 kHz</td>
</tr>
<tr>
<td>Output voltage regulation</td>
<td>±1%</td>
</tr>
<tr>
<td>Load transient peak voltage deviation, 5-A load step</td>
<td>< 120 mV</td>
</tr>
</tbody>
</table>

9.2.2.2 Detailed Design Procedure

A high power density, high-efficiency regulator solution uses TI NexFET™ Power MOSFETs, such as CSD18563Q5A (60-V, 6-mΩ MOSFET in a SON 5-mm × 6-mm package), together with a low-DCR inductor and all-ceramic capacitor design. The design occupies 30 mm × 15 mm on a single-sided PCB. The overcurrent (OC) setpoint in this design is set at 14 A based on the resistor R_{ILIM} and the 6-mΩ $R_{DS(on)}$ of the low-side MOSFET (typical at $T_J = 25°C$ and $V_{GS} = 7.5$ V). The 12-V output is connected to VCC through a diode, D1, to reduce IC bias power dissipation.

The selected buck converter powertrain components are cited in Table 9-8, including power MOSFETs, buck inductor, input and output capacitors, and ICs. Use the LM5145 Quickstart Calculator to find compensation components that are selected based on a target loop crossover frequency of 40 kHz and phase margin greater than 55°. The output voltage soft-start time is 4 ms based on the selected soft-start capacitance, C_{SS}, of 33 nF.

As shown in Figure 9-20, a 2.2-Ω resistor in series with C_{BST} is used to slow the turn-on transition of the high-side MOSFET, reducing the spike amplitude and ringing of the SW node voltage and minimizing the possibility of Cdv/dt-induced shoot-through of the low-side MOSFET. If needed, place an RC snubber (for example, 2.2 Ω and 100 pF) close to the drain (SW node) and source (PGND) terminals of the low-side MOSFET to further attenuate any SW node voltage overshoot and/or ringing. Please refer to the application note Reduce Buck Converter EMI and Voltage Stress by Minimizing Inductive Parasitics for more detail.
9.2.2.3 Application Curves

Figure 9-21. Efficiency vs I_{OUT} and V_{IN}

Figure 9-22. SYNCOOUT and SW Node Voltages

Figure 9-23. Start-Up, 10-A Resistive Load

Figure 9-24. Shutdown Through Input UVLO, 10-A Resistive Load

Figure 9-25. ENABLE ON, 10-A Resistive Load

Figure 9-26. ENABLE OFF, 10-A Resistive Load
Figure 9-27. Load Transient Response, 5 A to 10 A to 5 A

Figure 9-28. Load Transient Response, 0 A to 10 A to 0 A

Figure 9-29. Line Transient Response, 24 V to 48 V

Figure 9-30. Line Transient Response, 48 V to 24 V

Figure 9-31. Pre-Biased Start-Up

Figure 9-32. SW Node and SYNCIN Voltages
9.2.3 Design 3 – 150-W, Regulated 24-V Rail for Commercial Drone Applications With Output Voltage Tracking Feature

Figure 9-33 shows the schematic diagram of a 150-W, regulated 24-V buck regulator for commercial drone applications with output voltage tracking feature.

![Schematic Diagram](image)

Figure 9-33. Application Circuit 3 With LM5145 48-V to 24-V Buck Regulator at 440 kHz

9.2.3.1 Design Requirements

The intended input, output, and performance parameters are shown in Table 9-9 for this implementation example that derives power from large battery packs common to commercial drone and electric forklift applications.

<table>
<thead>
<tr>
<th>DESIGN PARAMETER</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage range (steady state)</td>
<td>28 V to 75 V</td>
</tr>
<tr>
<td>Input transient voltage (peak)</td>
<td>85 V</td>
</tr>
<tr>
<td>Output voltage and current</td>
<td>24 V, 5 A</td>
</tr>
<tr>
<td>Switching frequency</td>
<td>440 kHz</td>
</tr>
<tr>
<td>Output voltage regulation</td>
<td>±1%</td>
</tr>
<tr>
<td>Load transient peak voltage deviation, 2.5-A load step</td>
<td>< 100 mV</td>
</tr>
</tbody>
</table>

9.2.3.2 Detailed Design Procedure

Resistors R_{TRK1} and R_{TRK2} connected to the SS/TRK pin of the LM5145 define a ratiometric tracking start-up sequence from a master power supply, V_{TRACK}. The output voltage ramps from 0 V to its nominal 24-V setpoint as the master supply ramps from 0 V to 5 V. See Section 8.3.7.1 for more detail.
The selected buck converter power stage components are cited in Table 9-10. Note that additional input or output capacitance can be included in this design as needed, but you can view the LM5145 Quickstart Calculator to adjust the compensation circuit components if \(C_{OUT} \) changes.

Table 9-10. List of Materials for Application Circuit 3

<table>
<thead>
<tr>
<th>REFERENCE DESIGNATOR</th>
<th>QTY</th>
<th>SPECIFICATION</th>
<th>MANUFACTURER</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{IN})</td>
<td>5</td>
<td>2.2 (\mu)F, 100 V, X7R, 1210, ceramic</td>
<td>TDK</td>
<td>C3225X7S2A475M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Murata</td>
<td>GRM32DC72A475KE01L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AVX</td>
<td>12101C225KAT2A</td>
</tr>
<tr>
<td>(C_{OUT})</td>
<td>7</td>
<td>10 (\mu)F, 50 V, X7R, 1210, ceramic</td>
<td>TDK</td>
<td>C3225X7R1H106M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Murata</td>
<td>GRM32ER71H106KA12L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AVX</td>
<td>12105C106KAT2A</td>
</tr>
<tr>
<td>(L_F)</td>
<td>1</td>
<td>15 (\mu)H, 24 m(\Omega), 10 A, 13.45 × 12.6 × 5.8 mm</td>
<td>Cyntec</td>
<td>CMLB136T-150MS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 (\mu)H, 24.4 m(\Omega), 10 A, 13.5 × 12.5 × 6.2 mm</td>
<td>Würth Electronik</td>
<td>WE LHMI 744373965150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 (\mu)H, 18.6 m(\Omega), 15.5 A, 10.5 × 11.8 × 10.2 mm</td>
<td>Coilcraft</td>
<td>XAL1010-153ME</td>
</tr>
<tr>
<td>(Q_1, Q_2)</td>
<td>2</td>
<td>100 V, 13 m(\Omega), MOSFET, SON 5 × 6</td>
<td>Texas Instruments</td>
<td>CSD19534Q5A</td>
</tr>
<tr>
<td>(U_1)</td>
<td>1</td>
<td>(V_{IN}) synchronous buck controller</td>
<td>Texas Instruments</td>
<td>LM5145RGYR</td>
</tr>
</tbody>
</table>
9.2.3.3 Application Curves

![Graph showing application curves]

Figure 9-34. Efficiency vs \(I_{OUT} \) and \(V_{IN} \)

![Graph showing SW Node and SYNCOUT Voltages]

Figure 9-35. SW Node and SYNCOUT Voltages

Figure 9-36. Start-Up, 5-A Resistive Load

Figure 9-37. Shutdown Through Input UVLO, 5-A Resistive Load

Figure 9-38. ENABLE ON, 5-A Resistive Load

Figure 9-39. ENABLE OFF, 10-A Resistive Load
Figure 9-40. Load Transient Response, 2.5 A to 5 A to 2.5 A

Figure 9-41. Load Transient Response, 0 A to 5 A to 0 A

Figure 9-42. Line Transient Response, 48 V to 85 V

Figure 9-43. Line Transient Response, 85 V to 48 V

Figure 9-44. Pre-Biased Start-Up

Figure 9-45. SW Node and SYNCIN Voltages at 600 kHz
9.2.4 Design 4 – Powering a Multicore DSP From a 24-V or 48-V Rail

For technical solutions, industry trends, and insights for designing and managing power supplies, please refer to TI’s Power House blog series.

Figure 9-46 shows the schematic diagram of a 10-A synchronous buck regulator for a DSP core voltage supply.

Figure 9-46. Application Circuit 4 With LM5145 DSP Core Voltage Supply
9.2.4.1 Design Requirements

For this application example, the intended input, output, and performance parameters are listed in Table 9-11.

Table 9-11. Design Parameters

<table>
<thead>
<tr>
<th>DESIGN PARAMETER</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage range (steady-state)</td>
<td>6 V to 48 V</td>
</tr>
<tr>
<td>Input transient voltage (peak)</td>
<td>55 V</td>
</tr>
<tr>
<td>Output voltage and current</td>
<td>0.9 V to 1.1 V, 10 A</td>
</tr>
<tr>
<td>Output voltage regulation</td>
<td>±1%</td>
</tr>
<tr>
<td>Load transient peak voltage deviation, 10-A step</td>
<td>< 120 mV</td>
</tr>
<tr>
<td>Switching frequency</td>
<td>300 kHz</td>
</tr>
</tbody>
</table>

9.2.4.2 Detailed Design Procedure

The schematic diagram of a 300-kHz, 24-V nominal input, 10-A regulator powering a KeyStone™ DSP is given in Figure 9-46. This high step-down ratio design leverages the low 40-ns minimum controllable on-time of the LM5145 controller to achieve stable, efficient operation at very low duty cycles. 60-V power MOSFETs, such as TI’s CSD18543Q3A and CSD18531Q5A NexFET devices, are used together with a low-DCR, metal-powder inductor, and ceramic output capacitor implementation. An external rail between 8 V and 13 V powers VCC to minimize bias power dissipation, and a blocking diode connected to the VIN pin is used as recommended in Figure 8-2.

The important components for this design are listed in Table 9-12.

Table 9-12. List of Materials for Application Circuit 4

<table>
<thead>
<tr>
<th>REFERENCE DESIGNATOR</th>
<th>QTY</th>
<th>SPECIFICATION</th>
<th>MANUFACTURER</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIN</td>
<td>5</td>
<td>2.2 µF, 100 V, X7R, 1206, ceramic</td>
<td>Murata</td>
<td>GRM31CR72A225MA73L</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4.7 µF, 80 V, X7R, 1210, ceramic</td>
<td>Murata</td>
<td>GRM32ER71K475KE14L</td>
</tr>
<tr>
<td>OUT</td>
<td>4</td>
<td>100 µF, 6.3V, X7S, 1210, ceramic</td>
<td>Taido Yuden</td>
<td>JMK325AC7107MM-P</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 µF, 6.3V, X5R, 1206, ceramic</td>
<td>TDK</td>
<td>C3216X5RJ107M</td>
</tr>
<tr>
<td>L</td>
<td>1</td>
<td>1 µH, 5.6 mΩ, 16 A, 6.95 × 6.6 × 2.8 mm</td>
<td>Cyntec</td>
<td>CMLE063T-1R0MS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 µH, 5.5 mΩ, 12 A, 6.65 × 6.45 × 3.0 mm</td>
<td>Würth Electronik</td>
<td>WE XHMI 74439344010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 µH, 7.9 mΩ, 16 A, 6.5 × 6.0 × 3.0 mm</td>
<td>Panasonic</td>
<td>ETQP3M1R0YFN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 µH, 6.95 mΩ, 18 A, 6.76 × 6.56 × 3.1 mm</td>
<td>Coilcraft</td>
<td>XEL6030-102ME</td>
</tr>
<tr>
<td>Q1</td>
<td>1</td>
<td>60 V, 8.5 mΩ, high-side MOSFET, SON 3 × 3</td>
<td>Texas Instruments</td>
<td>CSD18543Q3A</td>
</tr>
<tr>
<td>Q2</td>
<td>1</td>
<td>60 V, 4 mΩ, low-side MOSFET, SON 5 × 6</td>
<td>Texas Instruments</td>
<td>CSD18531Q5A</td>
</tr>
<tr>
<td>U1</td>
<td>1</td>
<td>Wide Vsb synchronous buck controller</td>
<td>Texas Instruments</td>
<td>LMS5145RGYR</td>
</tr>
<tr>
<td>U2</td>
<td>1</td>
<td>6- or 4-bit VID voltage programmer, WSON-10</td>
<td>Texas Instruments</td>
<td>LM10011SD</td>
</tr>
<tr>
<td>U3</td>
<td>1</td>
<td>KeyStone™ DSP</td>
<td>Texas Instruments</td>
<td>TMS320C667x</td>
</tr>
</tbody>
</table>

(1) Refer to Hardware Design Guide for Keystone I Devices (SPRAB12) and How to Optimize Your DSP Power Budget for further detail.

The regulator output current requirements are dependent upon the baseline and activity power consumption of the DSP in a real-use case. While baseline power is highly dependent on voltage, temperature and DSP frequency, activity power relates to dynamic core utilization, DDR3 memory access, peripherals, and so on. To this end, the IDAC_OUT pin of the LM10011 connects to the LM5145 FB pin to allow continuous optimization of the core voltage. The SmartReflex-enabled DSP provides 6-bit information using the VCNTL open-drain I/Os to command the output voltage setpoint with 6.4-mV step resolution. (1)
9.2.4.3 Application Curves

Figure 9-47. Efficiency vs \(I_{\text{OUT}}\) and \(V_{\text{IN}}\)

- Output Current (A) and Efficiency (%)
- \(V_{\text{OUT}} = 1.1\) V
- \(V_{\text{AUX}} = 8\) V

Figure 9-48. Start-Up, 10-A Resistive Load

- \(V_{\text{IN}}\) step to 24 V
- 0.11-\(\Omega\) Load

Figure 9-49. ENABLE ON and OFF, 10-A Resistive Load

- \(V_{\text{IN}} = 24\) V
- 0.11-\(\Omega\) Load

Figure 9-50. Load Transient Response, 0 A to 10 A to 0 A

- \(V_{\text{IN}} = 24\) V
10 Power Supply Recommendations

The LM5145 buck controller is designed to operate from a wide input voltage range from 6 V to 75 V. The characteristics of the input supply must be compatible with the Section 7.1 and Section 7.3 tables. In addition, the input supply must be capable of delivering the required input current to the fully-loaded regulator. Estimate the average input current with Equation 23.

\[
I_{IN} = \frac{V_{OUT} \cdot I_{OUT}}{V_{IN} \cdot \eta}
\]

(23)

where

• \(\eta \) is the efficiency

If the converter is connected to an input supply through long wires or PCB traces with a large impedance, take special care to achieve stable performance. The parasitic inductance and resistance of the input cables may have an adverse affect on converter operation. The parasitic inductance in combination with the low-ESR ceramic input capacitors form an underdamped resonant circuit. This circuit can cause overvoltage transients at \(VIN \) each time the input supply is cycled ON and OFF. The parasitic resistance causes the input voltage to dip during a load transient. If the regulator is operating close to the minimum input voltage, this dip can cause false UVLO fault triggering and a system reset. The best way to solve such issues is to reduce the distance from the input supply to the regulator and use an aluminum or tantalum input capacitor in parallel with the ceramics. The moderate ESR of the electrolytic capacitors helps to damp the input resonant circuit and reduce any voltage overshoots. A capacitance in the range of 10 \(\mu F \) to 47 \(\mu F \) is usually sufficient to provide input damping and helps to hold the input voltage steady during large load transients.

An EMI input filter is often used in front of the regulator that, unless carefully designed, can lead to instability as well as some of the effects mentioned above. The application report Simple Success with Conducted EMI for DC-DC Converters (SNVA489) provides helpful suggestions when designing an input filter for any switching regulator.
11 Layout
11.1 Layout Guidelines

Proper PCB design and layout is important in a high-current, fast-switching circuits (with high current and voltage slew rates) to assure appropriate device operation and design robustness. As expected, certain issues must be considered before designing a PCB layout using the LM5145. The high-frequency power loop of the buck converter power stage is denoted by #1 in the shaded area of Figure 11-1. The topological architecture of a buck converter means that particularly high di/dt current flows in the components of loop 1, and it becomes mandatory to reduce the parasitic inductance of this loop by minimizing its effective loop area. Also important is the gate drive loops of the low-side and high-side MOSFETs, denoted by 2 and 3, respectively, in Figure 11-1.

![Figure 11-1. DC-DC Regulator Ground System With Power Stage and Gate Drive Circuit Switching Loops](image)

Figure 11-1. DC-DC Regulator Ground System With Power Stage and Gate Drive Circuit Switching Loops

11.1.1 Power Stage Layout

1. Input capacitors, output capacitors, and MOSFETs are the constituent components of the power stage of a buck regulator and are typically placed on the top side of the PCB (solder side). The benefits of convective heat transfer are maximized because of leveraging any system-level airflow. In a two-sided PCB layout, small-signal components are typically placed on the bottom side (component side), insert at least one inner plane, connected to ground, to shield and isolate the small-signal traces from noisy power traces and lines.

2. The DC/DC converter has several high-current loops. Minimize the area of these loops in order to suppress generated switching noise and parasitic loop inductance and optimize switching performance.
 - Loop #1: The most important loop to minimize the area of is the path from the input capacitor or capacitors through the high- and low-side MOSFETs, and back to the capacitor(s) through the ground connection. Connect the input capacitor or capacitors negative terminal close to the source of the low-side MOSFET (at ground). Similarly, connect the input capacitor or capacitors positive terminal close to the drain of the high-side MOSFET (at VIN). Refer to loop #1 of Figure 11-1.
 - Another loop, not as critical though as loop #1, is the path from the low-side MOSFET through the inductor and output capacitor(s), and back to source of the low-side MOSFET through ground. Connect the source of the low-side MOSFET and negative terminal of the output capacitor(s) at ground as close as possible.

3. The PCB trace defined as SW node, which connects to the source of the high-side (control) MOSFET, the drain of the low-side (synchronous) MOSFET and the high-voltage side of the inductor, must be short and wide. However, the SW connection is a source of injected EMI and thus must not be too large.

4. Follow any layout considerations of the MOSFETs as recommended by the MOSFET manufacturer, including pad geometry and solder paste stencil design.
5. The SW pin connects to the switch node of the power conversion stage and acts as the return path for the high-side gate driver. The parasitic inductance inherent to loop #1 in Figure 11-1 and the output capacitance (C_{OSS}) of both power MOSFETs form a resonant circuit that induces high frequency (>100 MHz) ringing on the SW node. The voltage peak of this ringing, if not controlled, can be significantly higher than the input voltage. Ensure that the peak ringing amplitude does not exceed the absolute maximum rating limit for the SW pin. In many cases, a series resistor and capacitor snubber network connected from the SW node to GND damps the ringing and decreases the peak amplitude. Provide provisions for snubber network components in the PCB layout. If testing reveals that the ringing amplitude at the SW pin is excessive, then include snubber components as needed.

11.1.2 Gate Drive Layout

The LM5145 high-side and low-side gate drivers incorporate short propagation delays, adaptive dead-time control and low-impedance output stages capable of delivering large peak currents with very fast rise and fall times to facilitate rapid turn-on and turn-off transitions of the power MOSFETs. Very high di/dt can cause unacceptable ringing if the trace lengths and impedances are not well controlled.

Minimization of stray or parasitic gate loop inductance is key to optimizing gate drive switching performance, whether it be series gate inductance that resonates with MOSFET gate capacitance or common source inductance (common to gate and power loops) that provides a negative feedback component opposing the gate drive command, thereby increasing MOSFET switching times. The following loops are important:

- **Loop 2**: high-side MOSFET, Q_1. During the high-side MOSFET turn-on, high current flows from the bootstrap (boot) capacitor through the gate driver and high-side MOSFET, and back to the negative terminal of the boot capacitor through the SW connection. Conversely, to turn off the high-side MOSFET, high current flows from the gate of the high-side MOSFET through the gate driver and SW, and back to the source of the high-side MOSFET through the SW trace. Refer to loop #2 of Figure 11-1.

- **Loop 3**: low-side MOSFET, Q_2. During the low-side MOSFET turn-on, high current flows from the VCC decoupling capacitor through the gate driver and low-side MOSFET, and back to the negative terminal of the capacitor through ground. Conversely, to turn off the low-side MOSFET, high current flows from the gate of the low-side MOSFET through the gate driver and GND, and back to the source of the low-side MOSFET through ground. Refer to loop #3 of Figure 11-1.

TI strongly recommends following circuit layout guidelines when designing with high-speed MOSFET gate drive circuits.

1. Connections from gate driver outputs, HO and LO, to the respective gate of the high-side or low-side MOSFET must be as short as possible to reduce series parasitic inductance. Use 0.65 mm (25 mils) or wider traces. Use a via or vias, if necessary, of at least 0.5 mm (20 mils) diameter along these traces. Route HO and SW gate traces as a differential pair from the LM5145 to the high-side MOSFET, taking advantage of flux cancellation.

2. Minimize the current loop path from the VCC and BST pins through their respective capacitors as these provide the high instantaneous current, up to 3.5 A, to charge the MOSFET gate capacitances. Specifically, locate the bootstrap capacitor, C_{BST}, close to the BST and SW pins of the LM5145 to minimize the area of loop #2 associated with the high-side driver. Similarly, locate the VCC capacitor, C_{VCC}, close to the VCC and PGND pins of the LM5145 to minimize the area of loop #3 associated with the low-side driver.

3. Placing a 2-Ω to 10-Ω resistor in series with the boot capacitor, as shown in Figure 9-20, slows down the high-side MOSFET turn-on transition, serving to reduce the voltage ringing and peak amplitude at the SW node at the expense of increased MOSFET turn-on power loss.

11.1.3 PWM Controller Layout

With the proviso to locate the controller as close as possible to the MOSFETs to minimize gate driver trace runs, the components related to the analog and feedback signals, current limit setting, and temperature sense are considered in the following:

1. Separate power and signal traces, and use a ground plane to provide noise shielding.

2. Place all sensitive analog traces and components such as COMP, FB, RT, ILIM and SS/TRK away from high-voltage switching nodes such as SW, HO, LO or BST to avoid mutual coupling. Use an internal layer or layers
as a ground plane or ground planes. Pay particular attention to shielding the feedback (FB) trace from power traces and components.

3. The upper feedback resistor can be connected directly to the output voltage sense point at the load device or the bulk capacitor at the converter side.

4. Connect the ILIM setting resistor from the drain of the low-side MOSFET to ILIM and make the connections as close as possible to the LM5145. The trace from the ILIM pin to the resistor must avoid coupling to a high-voltage switching net.

5. Minimize the loop area from the VCC and VIN pins through their respective decoupling capacitors to the GND pin. Locate these capacitors as close as possible to the LM5145.

11.1.4 Thermal Design and Layout

The useful operating temperature range of a PWM controller with integrated gate drivers and bias supply LDO regulator is greatly affected by:

- average gate drive current requirements of the power MOSFETs;
- switching frequency;
- operating input voltage (affecting bias regulator LDO voltage drop and hence its power dissipation);
- thermal characteristics of the package and operating environment.

For a PWM controller to be useful over a particular temperature range, the package must allow for the efficient removal of the heat produced while keeping the junction temperature within rated limits. The LM5145 controller is available in a small 3.5-mm × 4.5-mm 20-pin VQFN (RGY) PowerPAD™ package to cover a range of application requirements. The thermal metrics of this package are summarized in Section 7.4. The application report *Semiconductor and IC Package Thermal Metrics* provides detailed information regarding the thermal information table.

The 20-pin VQFN package offers a means of removing heat from the semiconductor die through the exposed thermal pad at the base of the package. While the exposed pad of the package is not directly connected to any leads of the package, it is thermally connected to the substrate of the LM5145 device (ground). This allows a significant improvement in heat sinking, and it becomes imperative that the PCB is designed with thermal lands, thermal vias, and a ground plane to complete the heat removal subsystem. The exposed pad of the LM5145 is soldered to the ground-connected copper land on the PCB directly underneath the device package, reducing the thermal resistance to a very low value. Wide traces of the copper tying in the no-connect pins of the LM5145 (pins 9 and 16) and connection to this thermal land helps to dissipate heat.

Numerous vias with a 0.3-mm diameter connected from the thermal land to the internal and solder-side ground plane(s) are vital to help dissipation. In a multi-layer PCB design, a solid ground plane is typically placed on the PCB layer below the power components. Not only does this provide a plane for the power stage currents to flow but it also represents a thermally conductive path away from the heat generating devices.

The thermal characteristics of the MOSFETs also are significant. The drain pad of the high-side MOSFET is normally connected to a VIN plane for heat sinking. The drain pad of the low-side MOSFET is tied to the SW plane, but the SW plane area is purposely kept relatively small to mitigate EMI concerns.

11.1.5 Ground Plane Design

As mentioned previously, using one or more of the inner PCB layers as a solid ground plane is recommended. A ground plane offers shielding for sensitive circuits and traces and also provides a quiet reference potential for the control circuitry. Connect the PGND pin to the system ground plane using an array of vias under the exposed pad. Also connect the PGND directly to the return terminals of the input and output capacitors. The PGND net contains noise at the switching frequency and can bounce because of load current variations. The power traces for PGND, VIN and SW can be restricted to one side of the ground plane. The other side of the ground plane contains much less noise and is ideal for sensitive analog trace routes.
11.2 Layout Example

Figure 11-2 shows an example PCB layout based on the LM5145EVM-HD-20A design. The power component connections are made on the top layer with wide, copper-filled areas. A power ground plane is placed on layer 2 with 6 mil (0.15 mm) spacing to the top layer. The small area of the buck regulator hot loop is denoted by the white border in Figure 11-2. This is critical to minimize EMI as well as switch-node voltage overshoot and ringing.

The LM5145 is located on the bottom side with a surrounding analog ground plane for sensitive analog components as shown in Figure 11-3. The analog ground plane (AGND) and power ground plane (PGND) are connected at a single point directly under the IC (at the die attach pad or DAP). Refer to the LM5145EVM-HD-20A High Density Evaluation Module User's Guide and LM5146-Q1-EVM12V Evaluation Module User's Guide for more detail.

![Figure 11-2. LM5145 Power Stage PCB Layout](image-url)
Figure 11-3. LM5145 Controller PCB Layout (Viewed From Top)
12 Device and Documentation Support

12.1 Device Support

12.1.1 Third-Party Products Disclaimer

TI’S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

12.1.2 Development Support

With an input operating voltage as low as 3.5 V and up to 100 V as specified in Table 12-1, the LM(2)514x family of synchronous buck controllers from TI provides flexibility, scalability and optimized solution size for a range of applications. These controllers enable DC/DC solutions with high density, low EMI and increased flexibility.

<table>
<thead>
<tr>
<th>DC/DC CONTROLLER</th>
<th>SINGLE or DUAL</th>
<th>V_IN RANGE</th>
<th>CONTROL METHOD</th>
<th>GATE DRIVE VOLTAGE</th>
<th>SYNC OUTPUT</th>
<th>PROGRAMMABLE DITHER</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM5140-Q1</td>
<td>Dual</td>
<td>3.8 V to 65 V</td>
<td>Peak current mode</td>
<td>5 V</td>
<td>180° phase shift</td>
<td>N/A</td>
</tr>
<tr>
<td>LM25141</td>
<td>Single</td>
<td>3.8 V to 42 V</td>
<td>Peak current mode</td>
<td>5 V</td>
<td>N/A</td>
<td>Yes</td>
</tr>
<tr>
<td>LM5141</td>
<td>Single</td>
<td>3.8 V to 65 V</td>
<td>Peak current mode</td>
<td>5 V</td>
<td>N/A</td>
<td>Yes</td>
</tr>
<tr>
<td>LM5143-Q1</td>
<td>Dual</td>
<td>3.5 V to 65 V</td>
<td>Peak current mode</td>
<td>5 V</td>
<td>90° phase shift</td>
<td>Yes</td>
</tr>
<tr>
<td>LM25145</td>
<td>Single</td>
<td>6 V to 42 V</td>
<td>Voltage mode</td>
<td>7.5 V</td>
<td>180° phase shift</td>
<td>N/A</td>
</tr>
<tr>
<td>LM5145</td>
<td>Single</td>
<td>6 V to 75 V</td>
<td>Voltage mode</td>
<td>7.5 V</td>
<td>180° phase shift</td>
<td>N/A</td>
</tr>
<tr>
<td>LM5146-Q1</td>
<td>Single</td>
<td>5.5 V to 100 V</td>
<td>Voltage mode</td>
<td>7.5 V</td>
<td>180° phase shift</td>
<td>N/A</td>
</tr>
</tbody>
</table>

For development support see the following:

- **LM5145 Quickstart Calculator**
- **LM5145 Simulation Models**
- For TI’s reference design library, visit **TI Designs**
- For TI’s WEBENCH Design Environment, visit the **WEBENCH® Design Center**
- TI Reference Designs:
 - 57W Output Synchronous Buck Converter for Telecom Reference Design
 - 20-A Automotive Pre-regulator Reference Design With Extended Input Voltage Range for Trucks
 - 20-A Automotive Pre-regulator Reference Design
 - 10-A Automotive Pre-regulator Reference Design With Extended Input Voltage Range for Trucks
 - 10-A Automotive Pre-regulator Reference Design
- Technical Articles:
 - High-Density PCB Layout of DC/DC Converters
 - Synchronous Buck Controller Solutions Support Wide V_{IN} Performance and Flexibility
 - How to Use Slew Rate for EMI Control

12.1.3 Custom Design With WEBENCH® Tools

Click here to create a custom design using the LM5145 device with the WEBENCH® Power Designer.

1. Start by entering the input voltage (V_{IN}), output voltage (V_{OUT}), and output current (I_{OUT}) requirements.
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.
3. Compare the generated design with other possible solutions from Texas Instruments.

The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time pricing and component availability.

In most cases, these actions are available:
• Run electrical simulations to see important waveforms and circuit performance
• Run thermal simulations to understand board thermal performance
• Export customized schematic and layout into popular CAD formats
• Print PDF reports for the design, and share the design with colleagues

Get more information about WEBENCH tools at www.ti.com/WEBENCH.

12.2 Documentation Support

12.2.1 Related Documentation

For related documentation see the following:

• **LM5146-Q1 EVM User's Guide**
• **LM5145 EVM User's Guide**
• **LM5143-Q1 Synchronous Buck Controller EVM**
• **LM5143-Q1 Synchronous Buck Controller High-Density 4-Phase Design**
• **Reduce Buck Converter EMI and Voltage Stress by Minimizing Inductive Parasitics**
• **AN-2162 Simple Success with Conducted EMI from DC-DC Converters**
• **White Papers:**
 – Valuing Wide Vin, Low-EMI Synchronous Buck Circuits for Cost-Effective, Demanding Applications
 – An Overview of Conducted EMI Specifications for Power Supplies
 – An Overview of Radiated EMI Specifications for Power Supplies

12.2.1.1 PCB Layout Resources

• **Improve High-current DC/DC Regulator Performance for Free with Optimized Power Stage Layout**
• **AN-1149 Layout Guidelines for Switching Power Supplies**
• **Constructing Your Power Supply – Layout Considerations**
• **Technical Articles:**
 – High-Density PCB Layout of DC-DC Converters

12.2.1.2 Thermal Design Resources

• **AN-2020 Thermal Design by Insight, Not Hindsight**
• **AN-1520 A Guide to Board Layout for Best Thermal Resistance for Exposed Pad Packages**
• **Semiconductor and IC Package Thermal Metrics**
• **Thermal Design Made Simple with LM43603 and LM43602**
• **PowerPAD™ Thermally Enhanced Package**
• **PowerPAD Made Easy**
• **Using New Thermal Metrics**

12.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on **Subscribe to updates** to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.4 Support Resources

TI E2E™ support forums are an engineer’s go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's **Terms of Use**.
12.5 Trademarks
NexFET™ and TI E2E™ are trademarks of Texas Instruments.
KeyStone™ is a trademark of TI.
PowerPAD™ is a trademark of Texas Instruments.
WEBENCH® is a registered trademark of Texas Instruments.
All trademarks are the property of their respective owners.

12.6 Electrostatic Discharge Caution
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.7 Glossary
TI Glossary This glossary lists and explains terms, acronyms, and definitions.
13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
NOTES:
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.
EXAMPLE BOARD LAYOUT

RGY0020B VQFN - 1 mm max height
PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

www.ti.com
NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
Packaging Information

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>PIns</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead finish/ Ball material (6)</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM5145RGYR</td>
<td>ACTIVE</td>
<td>VQFN</td>
<td>RGY</td>
<td>20</td>
<td>3000</td>
<td>RoHS & Green</td>
<td>SN</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>LM5145</td>
<td>Samples</td>
</tr>
<tr>
<td>LM5145RGYT</td>
<td>ACTIVE</td>
<td>VQFN</td>
<td>RGY</td>
<td>20</td>
<td>250</td>
<td>RoHS & Green</td>
<td>SN</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>LM5145</td>
<td>Samples</td>
</tr>
</tbody>
</table>

1. The marketing status values are defined as follows:
 - **ACTIVE**: Product device recommended for new designs.
 - **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
 - **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
 - **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
 - **OBSOLETE**: TI has discontinued the production of the device.

2. **RoHS**: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
 - **RoHS Exempt**: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
 - **Green**: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

3. **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

4. There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

5. Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

6. Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

TAPE DIMENSIONS

- **A0**: Dimension designed to accommodate the component width
- **B0**: Dimension designed to accommodate the component length
- **K0**: Dimension designed to accommodate the component thickness
- **W**: Overall width of the carrier tape
- **P1**: Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

- **Q1**
- **Q2**
- **Q3**
- **Q4**

All dimensions are nominal.

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM5145RGYR</td>
<td>VQFN</td>
<td>RGY</td>
<td>20</td>
<td>3000</td>
<td>330.0</td>
<td>12.4</td>
<td>3.8</td>
<td>4.8</td>
<td>1.18</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LM5145RGYT</td>
<td>VQFN</td>
<td>RGY</td>
<td>20</td>
<td>250</td>
<td>180.0</td>
<td>12.4</td>
<td>3.8</td>
<td>4.8</td>
<td>1.18</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>
TAPE AND REEL BOX DIMENSIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM5145RGYR</td>
<td>VQFN</td>
<td>RGY</td>
<td>20 3000</td>
<td>367.0</td>
<td>367.0</td>
<td>38.0</td>
</tr>
<tr>
<td>LM5145RGYT</td>
<td>VQFN</td>
<td>RGY</td>
<td>20 250</td>
<td>213.0</td>
<td>191.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>

All dimensions are nominal
IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI’s Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2021, Texas Instruments Incorporated