LMK00804B-Q1 1.5-V to 3.3-V, 1-to-4 High-Performance LVCMOS Fan-Out Buffer and Level Translator

1 Features

- AEC-Q100 qualified with the following results:
 - Device temperature grade 1: –40°C to +125°C, T_A
- Four LVCMOS/LVTTL outputs supporting 1.5-V to 3.3-V levels
 - Additive jitter: 0.1-ps RMS (typical) at 40 MHz
 - Noise floor: –168 dBC/Hz (typical) at 40 MHz
 - Output frequency: 350 MHz (maximum)
 - Output skew: 35 ps (maximum)
 - Part-to-part skew: 550 ps (maximum)
- Two selectable inputs
 - CLK_P, CLK_N pair accepts LVPECL, LVDS, HCSL, SSTL, LVHSTL, or LVCMOS/LVTTL
 - LVCMOS_CLK accepts LVCMOS/LVTTL
- Synchronous clock enable
- Core/output power supplies:
 - 3.3 V/3.3 V
 - 3.3 V/2.5 V
 - 3.3 V/1.8 V
 - 3.3 V/1.5 V
- Package: 16-pin VQFN

2 Applications

- Advanced Driver Assistance Systems (ADAS)
 - Forward-facing long range radar
 - Medium/short range radar
 - Ultra short range radar

3 Description

The LMK00804B-Q1 is a high-performance clock fan-out buffer and level translator that can distribute up to four LVCMOS/LVTTL outputs (3.3-V, 2.5-V, 1.8-V, or 1.5-V levels) from one of two selectable inputs that can accept differential or single-ended inputs. The clock enable input is synchronized internally to eliminate runt or glitch pulses on the outputs when the clock enable terminal is asserted or deasserted. The outputs are held in logic low state when the clock is disabled. The LMK00804B-Q1 can also distribute a low-jitter clock across four transceivers and can improve the overall target detection and resolution in a cascaded mmWave radar system.

Device Information(1)

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMK00804B-Q1</td>
<td>VQFN (16)</td>
<td>3.00 mm × 3.00 mm</td>
</tr>
</tbody>
</table>

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Simplified Schematic

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.
Table of Contents

1 Features ... 1
2 Applications .. 1
3 Description .. 1
4 Revision History ... 2
5 Pin Configuration and Functions 3
6 Specifications .. 4
 6.1 Absolute Maximum Ratings 4
 6.2 ESD Ratings ... 4
 6.3 Recommended Operating Conditions 4
 6.4 Thermal Information 5
 6.5 Power Supply Characteristics 5
 6.6 LVCMOS / LVTTL DC Electrical Characteristics 6
 6.7 Differential Input DC Electrical Characteristics .. 6
 6.8 Switching Characteristics 7
 6.9 Pin Characteristics 7
 6.10 Typical Characteristics 8
7 Parameter Measurement Information 9
8 Detailed Description 10
 8.1 Overview .. 10
 8.2 Functional Block Diagram 10
9 Applications and Implementation 12
 9.1 Application Information 12
 9.2 Typical Applications 12
 9.3 Do's and Don'ts 16
10 Power Supply Recommendations 18
 10.1 Power Supply Considerations 18
11 Layout .. 18
 11.1 Layout Guidelines 18
 11.2 Layout Example 19
12 Device and Documentation Support 20
 12.1 Documentation Support 20
 12.2 Receiving Notification of Documentation Updates 20
 12.3 Community Resources 20
 12.4 Trademarks .. 20
 12.5 Electrostatic Discharge Caution 20
 12.6 Glossary ... 20
13 Mechanical, Packaging, and Orderable Information 20

4 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision A (June 2019) to Revision B Page

• Changed part-to-part skew maximum from: 700 ps to: 550 ps .. 1
• Changed front long range radar application to: forward-facing long range radar 1
• Changed Simplified Schematic graphic ... 1
• Changed pin 2 in the RGT package from: OE to: NC .. 3
• Changed the pin descriptions ... 3
• Changed Changed CDM ESD ratings from: +/-250 V to: +/-750 V 4
• Added the Typical Characteristics section back to the data sheet 8
• Changed Differential Input Level timing diagram .. 9
• Changed the Overview section .. 10
• Changed Functional Block Diagram ... 10
• Added the Typical Connection Diagram .. 12
• Changed the Power Considerations section to Power Dissipation Calculations 16
• Moved the Thermal Management section to Do's and Don'ts 16
• Changed the recommendations for unused output pins .. 17
• Changed the Input Slew Rate Considerations section .. 17
• Added content to the Ground Planes section .. 18
• Changed the Layout Example section .. 19

Changes from Original (March 2019) to Revision A Page

• Changed data sheet status from Advanced Information to Production Data 1
5 Pin Configuration and Functions

Pin Functions (1)

<table>
<thead>
<tr>
<th>PIN</th>
<th>TYPE (2)</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>NO.</td>
<td></td>
</tr>
<tr>
<td>CLK_EN</td>
<td>4</td>
<td>I, PU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Synchronous clock enable input. CLK_EN must be held low until a valid reference clock is provided. Typically connected to VDD with an external 1-kΩ pullup. When unused, leave floating. 0 = Outputs are forced to logic low state 1 = Outputs are enabled with LVCMOS/LVTTL levels</td>
</tr>
<tr>
<td>CLK_N</td>
<td>6</td>
<td>I, PD, PU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inverting differential clock input with internal 51-kΩ (typ) pullup resistor to VDD and internal 51-kΩ (typ) pulldown resistor to GND. Typically connected to the inverting clock input. When unused, leave floating. Internally biased to VDD/2 when left floating.</td>
</tr>
<tr>
<td>CLK_P</td>
<td>5</td>
<td>I, PD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Noninverting differential clock input with internal 51-kΩ (typ) pulldown resistor to GND. Typically connected to the noninverting clock input. A single-ended clock input can also be connected to CLK_P. When unused, leave floating.</td>
</tr>
<tr>
<td>CLK_SEL</td>
<td>7</td>
<td>I, PU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clock select input. Typically connected to VDD with an external 1-kΩ pullup. When unused, leave floating. 0 = Select LVCMOS_CLK (pin 8) 1 = Select CLK_P, CLK_N (pins 5, 6)</td>
</tr>
<tr>
<td>GND</td>
<td>1, 9, 13</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Power supply ground.</td>
</tr>
<tr>
<td>LVCMOS_CLK</td>
<td>8</td>
<td>I, PD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Single-ended clock input with internal 51-kΩ (typ) pulldown resistor to GND. Typically connected to a single-ended clock input. When unused, leave floating. Accepts LVCMOS/LVTTL levels.</td>
</tr>
<tr>
<td>NC</td>
<td>2</td>
<td>NC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No connect pin. Typically left floating. Do not connect to GND.</td>
</tr>
<tr>
<td>Q0</td>
<td>16</td>
<td>O</td>
</tr>
<tr>
<td>Q1</td>
<td>14</td>
<td>O</td>
</tr>
<tr>
<td>Q2</td>
<td>12</td>
<td>O</td>
</tr>
<tr>
<td>Q3</td>
<td>10</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Single-ended clock outputs with LVCMOS/LVTTL levels at 7-Ω output impedance. Typically connected to a receiver with a 43-Ω series termination. When unused, leave floating.</td>
</tr>
</tbody>
</table>

(1) See Recommendations for Unused Input and Output Pins, if applicable.
(2) G = Ground, I = Input, O = Output, P = Power, PU = 51-kΩ pullup, PD = 51-kΩ pulldown. NC = No connect
Pin Functions (1) (continued)

<table>
<thead>
<tr>
<th>PIN</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD</td>
<td>P</td>
<td>Power supply terminal. Typically connected to a 3.3-V supply. The VDD pin is typically connected GND with an external 0.1-μF capacitor.</td>
</tr>
<tr>
<td>VDDO</td>
<td>P</td>
<td>Output supply terminals. Typically connected to a 3.3-V, 2.5-V, 1.8-V, or 1.5-V supply. The VDDO pins are typically connected GND with external 0.1-μF capacitors.</td>
</tr>
</tbody>
</table>

6 Specifications

6.1 Absolute Maximum Ratings (1)(2)

Over operating free-air temperature range (unless otherwise noted) (1)

<table>
<thead>
<tr>
<th>PIN</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD</td>
<td>−0.3</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>VDDO</td>
<td>−0.3</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>V<sub>I</sub></td>
<td>−0.3</td>
<td>V<sub>DD</sub> + 0.3</td>
<td>V</td>
</tr>
<tr>
<td>T<sub>J</sub></td>
<td>−40</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>T<sub>stg</sub></td>
<td>−65</td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) If Military/Aerospace specified devices are required, contact the Texas Instruments Sales Office/Distributors for availability and specifications.

6.2 ESD Ratings

<table>
<thead>
<tr>
<th>V<sub>ESD</sub></th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human-body model (HBM), per AEC Q100-002 (1)</td>
<td>±2000</td>
<td>V</td>
</tr>
<tr>
<td>Charged-device model (CDM), per AEC Q100-011</td>
<td>±750</td>
<td>V</td>
</tr>
</tbody>
</table>

(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>PIN</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD</td>
<td>3.135</td>
<td>3.3</td>
<td>3.465</td>
<td>V</td>
</tr>
<tr>
<td>VDDO</td>
<td>3.135</td>
<td>3.3</td>
<td>3.465</td>
<td>V</td>
</tr>
<tr>
<td>T<sub>A</sub></td>
<td>−40</td>
<td>125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>T<sub>J</sub></td>
<td>−40</td>
<td>135</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>T<sub>OUT</sub></td>
<td>1.425</td>
<td>1.5</td>
<td>1.575</td>
<td>MHz</td>
</tr>
</tbody>
</table>

(1) There is no minimum input / output frequency provided the input slew rate is sufficiently fast. Refer to Input Slew Rate Considerations.
6.4 Thermal Information

<table>
<thead>
<tr>
<th>THERMAL METRIC(^{(1)})((^{(2)}))</th>
<th>LMK00804B-Q1</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RGT (VQFN)</td>
<td>16 PINS</td>
</tr>
<tr>
<td>(R_{JA}) Junction-to-ambient thermal resistance</td>
<td>48.0</td>
<td>°C/W</td>
</tr>
<tr>
<td>(R_{JC(top)}) Junction-to-case (top) thermal resistance</td>
<td>58.6</td>
<td>°C/W</td>
</tr>
<tr>
<td>(R_{JB}) Junction-to-board thermal resistance</td>
<td>22.6</td>
<td>°C/W</td>
</tr>
<tr>
<td>(\psi_{JT}) Junction-to-top characterization parameter</td>
<td>2.1</td>
<td>°C/W</td>
</tr>
<tr>
<td>(\psi_{JB}) Junction-to-board characterization parameter</td>
<td>22.6</td>
<td>°C/W</td>
</tr>
<tr>
<td>(R_{JC(bot)}) Junction-to-case (bottom) thermal resistance</td>
<td>6.5</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report (SPRA953).
(2) The package thermal impedance is calculated in accordance with JESD 51 and JEDEC2S2P (high-K board).

6.5 Power Supply Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{DD}) Power supply current through VDD</td>
<td>21</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{DDO}) Power supply current through VDDO</td>
<td>5</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.6 LVCMOS / LVTTL DC Electrical Characteristics

\[V_{DD} = 3.3 \, \text{V} \pm 5\%, \, V_{DDO} = 1.5 \, \text{V} \pm 5\%, \, 1.8 \, \text{V} \pm 5\%, \, 2.5 \, \text{V} \pm 5\%, \, 3.3 \, \text{V} \pm 5\% \] and \(T_a = -40^\circ\text{C} \) to 125°C

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{IH})</td>
<td>Input high voltage</td>
<td>CLK_EN, CLK_SEL</td>
<td>2</td>
<td>(V_{DDO} + 0.3)</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LVCMOS_CLK</td>
<td>2</td>
<td>(V_{DDO} + 0.3)</td>
<td>V</td>
</tr>
<tr>
<td>(V_{IL})</td>
<td>Input low voltage</td>
<td>CLK_EN, CLK_SEL</td>
<td>-0.3</td>
<td>0.8</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LVCMOS_CLK</td>
<td>-0.3</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>(I_{IH})</td>
<td>Input high current</td>
<td>CLK_EN, CLK_SEL</td>
<td>(V_{H} = V_{DD})</td>
<td>15</td>
<td>(\mu\text{A})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LVCMOS_CLK</td>
<td>(V_{DD} = 3.465 , \text{V}, , V_{IN} = 3.465 , \text{V})</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>(I_{IL})</td>
<td>Input low current</td>
<td>CLK_EN, CLK_SEL</td>
<td>(V_{L} = \text{GND})</td>
<td>-150</td>
<td>(\mu\text{A})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LVCMOS_CLK</td>
<td>(V_{DD} = 3.465 , \text{V}, , V_{IN} = 0 , \text{V})</td>
<td>-150</td>
<td></td>
</tr>
<tr>
<td>(V_{OH})</td>
<td>Output high voltage (1)</td>
<td>(V_{DDO} = 3.3 , \text{V} \pm 5%)</td>
<td>2.64</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DDO} = 2.5 , \text{V} \pm 5%)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DDO} = 1.8 , \text{V} \pm 5%)</td>
<td>1.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DDO} = 1.5 , \text{V} \pm 5%)</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{OL})</td>
<td>Output low voltage (1)</td>
<td>(V_{DDO} = 3.3 , \text{V} \pm 5%)</td>
<td>0.66</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DDO} = 2.5 , \text{V} \pm 5%)</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DDO} = 1.8 , \text{V} \pm 5%)</td>
<td>0.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DDO} = 1.5 , \text{V} \pm 5%)</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{OZH})</td>
<td>Output Hi-Z current high</td>
<td></td>
<td>-5</td>
<td></td>
<td>(\mu\text{A})</td>
</tr>
<tr>
<td>(I_{OZL})</td>
<td>Output Hi-Z current low</td>
<td></td>
<td>5</td>
<td></td>
<td>(\mu\text{A})</td>
</tr>
</tbody>
</table>

(1) Outputs terminated with 50 Ω to \(V_{DDO}/2 \).

6.7 Differential Input DC Electrical Characteristics

\[V_{DD} = 3.3 \, \text{V} \pm 5\%, \, V_{DDO} = 1.5 \, \text{V} \pm 5\%, \, 1.8 \, \text{V} \pm 5\%, \, 2.5 \, \text{V} \pm 5\%, \, 3.3 \, \text{V} \pm 5\% \] and \(T_a = -40^\circ\text{C} \) to 125°C

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{ID})</td>
<td>Differential input voltage swing, ((V_{IH} - V_{IL})) (1)</td>
<td></td>
<td>0.15</td>
<td>1.4</td>
<td>V</td>
</tr>
<tr>
<td>(V_{IC})</td>
<td>Input common-mode voltage (1)(2)</td>
<td></td>
<td>0.5</td>
<td>(V_{DD} - 0.85)</td>
<td>V</td>
</tr>
<tr>
<td>(I_{IH})</td>
<td>Input high current (3)</td>
<td>CLK_N, CLK_P</td>
<td>(V_{DD} = 3.465 , \text{V}, , V_{IN} = 3.465 , \text{V})</td>
<td>150</td>
<td>(\mu\text{A})</td>
</tr>
<tr>
<td>(I_{IL})</td>
<td>Input low current (3)</td>
<td>CLK_N, CLK_P</td>
<td>(V_{DD} = 3.465 , \text{V}, , V_{IN} = 0 , \text{V})</td>
<td>-150</td>
<td>(\mu\text{A})</td>
</tr>
</tbody>
</table>

(1) \(V_{IL} \) should not be less than \(-0.3 \, \text{V}\).
(2) Input common-mode voltage is defined as \(V_{IH} \).
(3) For \(I_{IH} \) and \(I_{IL} \) measurements on CLK_P or CLK_N, one must comply with \(V_{ID} \) and \(V_{IC} \) specifications by using the appropriate bias on CLK_N or CLK.
6.8 Switching Characteristics

$V_{DD} = 3.3\, \text{V} \pm 5\%, \quad V_{DDO} = 1.5\, \text{V} \pm 5\%, \quad 1.8\, \text{V} \pm 5\%, \quad 2.5\, \text{V} \pm 5\%, \quad 3.3\, \text{V} \pm 5\% \quad \text{and} \quad T_A = -40\, \text{°C} \text{ to } 125\, \text{°C}$

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{PDLH}</td>
<td>Propagation delay, Low-to-high</td>
<td>LVCMOS_CLK(1), CLK_P/CLK_N(2)</td>
<td>–40°C to 125°C</td>
<td>1</td>
<td>2.5</td>
</tr>
<tr>
<td>$t_{SK(0)}$</td>
<td>Output skew(3)(4)</td>
<td>Measured on rising edge</td>
<td>35</td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td>$t_{(SKPP)}$</td>
<td>Part-to-part skew(4)(5)</td>
<td>550</td>
<td>ps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{RF}</td>
<td>Output rise/fall time</td>
<td>20% to 80%, $C_L = 5, \text{pF}$</td>
<td>100</td>
<td>310</td>
<td>600</td>
</tr>
<tr>
<td>t_{JIT}</td>
<td>Additive jitter(6)</td>
<td>$f = 40, \text{MHz}$, Input slew rate = 1.25 V/ns, 12-kHz to 20-MHz integration band</td>
<td>115</td>
<td>200</td>
<td>fs RMS</td>
</tr>
<tr>
<td>PN_{FLOOR}</td>
<td>Phase noise floor(7)</td>
<td>$f = 40, \text{MHz}$, Input slew rate = 1.25 V/ns</td>
<td>dBc/Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D_O</td>
<td>Output duty cycle</td>
<td>REF = CLK_P/CLK_N, 50% input duty cycle, f < 166 MHz</td>
<td>45%</td>
<td>55%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>REF = LVCMOS_CLK, 50% input duty cycle, f > 166 MHz</td>
<td>42%</td>
<td>58%</td>
<td></td>
</tr>
</tbody>
</table>

(1) Measured from the $V_{DD}/2$ of the input to the $V_{DDO}/2$ of the output.
(2) Measured from the differential input crossing point to $V_{DDO}/2$ of the output.
(3) Defined as skew between outputs at the same supply voltage and with equal loading conditions. Measured at $V_{DDO}/2$ of the output.
(4) Parameter is defined in accordance with JEDEC Standard 65.
(5) Calculation for part-to-part skew is the difference between the fastest and slowest t_{PD} across multiple devices, various supply voltages, operating at the same frequency, same temperature, with equal load conditions, and using the same type of inputs on each device.
(6) Buffer additive jitter: $t_{JIT} = \sqrt{t_{JIT_SYS}^2 - t_{JIT_SOURCE}^2}$, where t_{JIT_SYS} is the RMS jitter of the system output (source+buffer) and t_{JIT_SOURCE} is the RMS jitter of the input source, and system output noise is not correlated to the input source noise. Additive jitter should be considered only when the input source noise floor is 3 dB or better than the buffer noise floor (PN_{FLOOR}). This is usually the case for high-quality, ultra-low-noise oscillators. Refer to System-Level Phase Noise and Additive Jitter Measurement for input source and measurement details.
(7) Buffer phase noise floor: $PN_{FLOOR}\ (\text{dBc/Hz}) = 10 \times \log_{10}[10^{(PN_{SYSTEM}/10)} - 10^{(PN_{SOURCE}/10)}]$, where PN_{SYSTEM} is the phase noise floor of the system output (source+buffer) and PN_{SOURCE} is the phase noise floor of the input source. Buffer Phase Noise Floor should be considered only when the input source noise floor is 3 dB or better than the buffer noise floor (PN_{FLOOR}). This is usually the case for high-quality, ultra-low-noise oscillators. Refer to System-Level Phase Noise and Additive Jitter Measurement for input source and measurement details.

6.9 Pin Characteristics

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_I</td>
<td>1</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>R_{PU}</td>
<td>51</td>
<td></td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td>R_{PD}</td>
<td>51</td>
<td></td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td>C_{PD}</td>
<td>2</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>R_{OUT}</td>
<td>7</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
</tbody>
</table>

Copyright © 2019, Texas Instruments Incorporated
6.10 Typical Characteristics

Figure 1. Propagation Delay vs. Temperature and Supply Voltage

Figure 2. ICCO vs. Temperature and Supply Voltage

Figure 3. ICC vs. Temperature and Supply Voltage

Figure 4. Additive Jitter vs. Temperature and Supply Voltage
7 Parameter Measurement Information

VDD

CLK_N

CLK_P

GND

\[V_{\text{CM}} = V_{\text{IC}} - V_{\text{ID}}/2 = (V_{\text{IH}} + V_{\text{IL}})/2 \]

NOTE: \(V_{\text{CM}} = V_{\text{IC}} - V_{\text{ID}}/2 \) = \((V_{\text{IH}} + V_{\text{IL}})/2 \)

Figure 5. Differential Input Level

Figure 6. Output Voltage, and Rise and Fall Times

Figure 7. Output Skew and Propagation Delay
8 Detailed Description

8.1 Overview
The LMK00804B-Q1 is a clock fan-out buffer with two selectable clock inputs and four LVCMOS outputs. The LVCMOS_CLK input accepts a single-ended clock input, and the CLK_P/CLK_N input accepts a differential or single-ended clock input. The LMK00804B-Q1 has a synchronous clock enable feature that allows the device to synchronously enable or disable the outputs using the CLK_EN pin.

8.2 Functional Block Diagram
8.3 Feature Description

8.3.1 Clock Enable Timing
After CLK_EN switches, the clock outputs are disabled or enabled following a rising and falling input clock edge as shown in Figure 8.

Figure 8. Clock Enable Timing Diagram

8.4 Device Functional Modes
The device can provide fan-out and level translation from a differential or single-ended input to a LVCMOS/LVTTL output where the output V_{OH} and V_{OL} levels are applied to the V_{DDO} pin and output load condition.
9 Applications and Implementation

NOTE
Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information
The LMK00804B-Q1 enables the distribution of up to four LVCMOS copies of a low-noise source designed for general-purpose and high-performance applications. For best jitter performance, TI recommends to use the appropriate matching networks for the clock driver and receiver format, as detailed in the Typical Applications section. Practice good high-speed layout design outlined in the High-speed Layout Guidelines application report (SCAA082).

The LMK00804B-Q1 is designed to drive 50-Ω controlled-impedance traces. TI recommends to design these clock traces as 50-Ω, single-ended controlled impedance traces. Use a series 43-Ω resistor at the clock outputs Q[3:0] to match the driver impedance and series resistance to the trace impedance.

9.2 Typical Applications
Refer to the following sections for output clock and input clock interface circuits.

Figure 9. Typical Connection Diagram
Typical Applications (continued)

9.2.1 Output Clock Interface Circuit

![LVCMOS Output Configuration Diagram]

Figure 10. LVCMOS Output Configuration

9.2.1.1 Design Requirements

For high-performance devices, limitations of the equipment can affect phase-noise measurements. The noise floor of the equipment is often higher than the noise floor of the device. The real noise floor of the device is probably lower. It is important to understand that system-level phase noise measured at the DUT output is influenced by the input source and the measurement equipment.

For Figure 11 and system-level phase noise plots, a Rohde & Schwarz SMA100A low-noise signal generator was cascaded with an Agilent 70429A K95 single-ended-to-differential converter block with ultra-low phase noise and fast-edge slew rate (>3 V/ns) to provide a low-noise clock input source to the LMK00804B-Q1. An Agilent E5052 source signal analyzer with an ultra-low measurement noise floor was used to measure the phase noise of the input source (SMA100A + 70429A K95) and system output (input source + LMK00804B-Q1). The light blue trace shows the input source phase noise, and the dark blue trace in Figure 11 shows the system output phase noise.
Typical Applications (continued)

9.2.1.2 Detailed Design Procedure

Use Equation 1 to calculate the additive phase noise or noise floor of the buffer (PN_{FLOOR}):

$$PN_{\text{FLOOR}} (\text{dBc/Hz}) = 10 \times \log_{10}[10^{\left(\frac{PN_{\text{SYSTEM}}}{10}\right)} - 10^{\left(\frac{PN_{\text{SOURCE}}}{10}\right)}]$$

where
- PN_{SYSTEM} is the phase noise of the system output (source+buffer)
- PN_{SOURCE} is the phase noise of the input source

Use Equation 2 to calculate the additive jitter of the buffer (t_{JIT}):

$$t_{\text{JIT}} = \sqrt{t_{\text{JIT_SYS}}^2 - t_{\text{JIT_SOURCE}}^2}$$

where:
- $t_{\text{JIT_SYS}}$ is the RMS jitter of the system output (source+buffer), integrated from 10 kHz to 20 MHz
- $t_{\text{JIT_SOURCE}}$ is the RMS jitter of the input source, integrated from 10 kHz to 20 MHz

9.2.1.3 Application Curve

9.2.1.3.1 System-Level Phase Noise and Additive Jitter Measurement

![Image of phase noise measurement](image-url)

Figure 11. 40-MHz Input Phase Noise (181 fs rms, Light Blue), and Output Phase Noise (196 fs rms, Dark Blue), Additive Jitter = 77 fs rms
Typical Applications (continued)

9.2.2 Input Detail

![Clock Input Components](image)

Figure 12. Clock Input Components

9.2.3 Input Clock Interface Circuits

![LVCMOS_CLK Input Configuration](image)

Figure 13. LVCMOS_CLK Input Configuration

(1) The Thevenin/split termination values (\(R = 100 \Omega\)) at the CLK_P input may be adjusted to provide a small differential offset voltage (50 mV, for example) between the CLK_P and CLK_N inputs to prevent input chatter if the LVCMOS driver in a tri-state condition. For example, the engineer can use 105 \(\Omega\) 1% to the 3.3-V rail and 97.6 \(\Omega\) 1% to GND to receive a \(-60\) mV offset voltage (\(V_{CLK_N} - V_{CLK_P}\)). Ensure a logic low state if the LVCMOS driver enters a tri-state condition.

![Single-Ended/LVCMOS Input DC Configuration](image)

Figure 14. Single-Ended/LVCMOS Input DC Configuration
9.3 Do's and Don'ts

9.3.1 Power Dissipation Calculations

The following power considerations refer to the device-consumed power consumption only. The device power consumption is the sum of static and dynamic power. The dynamic power usage consists of two components:

- Power used by the device as it switches states
- Power required to charge any output load

The output load can be capacitive-only or capacitive and resistive. Use Equation 3 through Equation 5 to calculate the power consumption of the device:

\[
P_{\text{Dev}} = P_{\text{stat}} + P_{\text{dyn}} + P_{\text{Cload}} \quad (3)
\]

\[
P_{\text{stat}} = (I_{DD} \times V_{DD}) + (I_{DDO} \times V_{DDO}) \quad (4)
\]

\[
P_{\text{dyn}} + P_{\text{Cload}} = (I_{DDO,dyn} + I_{DDO,Cload}) \times V_{DDO} \quad (5)
\]

where:

- \(I_{DDO,dyn} = C_{PD} \times V_{DDO} \times f \times n \) [mA]
- \(I_{DDO,Cload} = C_{load} \times V_{DDO} \times f \times n \) [mA]

Example for power consumption of the LMK00804B-Q1: 4 outputs are switching, \(f = 100 \text{ MHz} \), \(V_{DD} = V_{DDO} = 3.465 \text{ V} \) and assuming \(C_{load} = 5 \text{ pF per output} \):

\[
P_{\text{Dev}} = 90 \text{ mW} + 34 \text{ mW} = 124 \text{ mW} \quad (6)
\]

\[
P_{\text{stat}} = (21 \text{ mA} \times 3.465 \text{ V}) + (5 \text{ mA} \times 3.465 \text{ V}) = 90 \text{ mW} \quad (7)
\]

\[
P_{\text{dyn}} + P_{\text{Cload}} = (2.8 \text{ mA} + 6.9 \text{ mA}) \times 3.465 \text{ V} = 34 \text{ mW} \quad (8)
\]

\[
I_{DDO,dyn} = 2 \text{ pF} \times 3.465 \text{ V} \times 100 \text{ MHz} \times 4 = 2.8 \text{ mA} \quad (9)
\]

\[
I_{DDO,Cload} = 5 \text{ pF} \times 3.465 \text{ V} \times 100 \text{ MHz} \times 4 = 6.9 \text{ mA} \quad (10)
\]

NOTE

For dimensioning the power supply, consider the total power consumption. The total power consumption is the sum of device power consumption and the power consumption of the load.

9.3.2 Thermal Management

For reliability and performance reasons, limit the die temperature to a maximum of 125°C. That is, as an estimate, \(T_A \) (ambient temperature) plus device power consumption times \(R_{\theta JA} \) should not exceed 125°C.

Assuming the conditions in the Power Dissipation Calculations section and operating at an ambient temperature of 70°C with all outputs loaded, Equation 11 shows the estimate of the LMK00804B-Q1 junction temperature:

\[
T_J = T_A + P_{\text{Total}} \times R_{\theta JA} = 70°C + (124 \text{ mW} \times 48\text{°C/W}) = 70°C + 6.0°C = 76.0°C \quad (11)
\]

Here are some recommendations to improve heat flow away from the die:

- Use multi-layer boards
- Specify a higher copper thickness for the board
- Increase the number of vias from the top level ground plane under and around the device to internal layers and to the bottom layer with as much copper area flow on each level as possible
- Apply air flow
- Leave unused outputs floating
Do’s and Don’ts (continued)

9.3.3 Recommendations for Unused Input and Output Pins

- **CLK_SEL and CLK_EN**: CLK_EN must be held low until a valid reference clock is provided before the engineer can use the pin to enable the outputs. These inputs both have an internal pullup (PU) according to Table 1. Table 1 shows the default floating state of these inputs:

 Table 1. Input Floating Default States

<table>
<thead>
<tr>
<th>INPUT</th>
<th>FLOATING STATE SELECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLK_SEL</td>
<td>CLK_P/CLK_N selected</td>
</tr>
<tr>
<td>CLK_EN</td>
<td>Synchronous outputs enable</td>
</tr>
</tbody>
</table>

- **CLK_P/CLK_N Inputs**: See Figure 12 for the internal connections. When using a single-ended input, take note of the internal pullup and pulldown to make sure the unused input is properly biased. To interface a single-ended input to the CLK_P/CLK_N input, the configuration shown in Figure 14 is recommended.

- **LVCMOS_CLK Input**: See Figure 12 for the internal connection. The internal pulldown (PD) resistor ensures a low state when this input is left floating.

- **Outputs**: Any unused output may be left floating.

9.3.4 Input Slew Rate Considerations

LMK00804B-Q1 employs high-speed and low-latency circuit topology to allow ultra-low additive jitter/phase noise and high-frequency operation. To take advantage of these benefits in the system application, it is optimal for the input signal to have a high slew rate of 3 V/ns or greater. Driving the input with a slower slew rate can degrade the additive jitter and noise floor performance. For this reason, a differential signal input is recommended over a single-ended signal, because a differential signal typically provides a higher slew rate and common-mode-rejection.
10 Power Supply Recommendations

10.1 Power Supply Considerations

While there is no strict power supply sequencing requirement, it is generally best practice to sequence the supply input voltage (V\textsubscript{DD}) before the supply output voltage (V\textsubscript{DDO}).

10.1.1 Power-Supply Filtering

High-performance clock buffers are sensitive to noise on the power supply, which can dramatically increase the additive jitter of the buffer. Thus, it is essential to reduce noise from the system power supply, especially when jitter or phase noise is critical to applications.

The use of bypass capacitors eliminates the low-frequency noise from power supply, because they can provide a very low-impedance path for high-frequency noise and guard the power-supply system against induced fluctuations. The bypass capacitors also provide instantaneous current surges as required by the device, and should have low ESR. To use the bypass capacitors properly, place them close to the power supply terminals and lay out traces with short loops to minimize inductance. TI recommends that the engineer add as many high-frequency (for example, 0.1-µF) bypass capacitors as there are supply terminals in the package. TI recommends that the engineer insert a ferrite bead between the board power supply and the chip power supply to isolate the high-frequency switching noises generated by the clock driver. This would prevent leakage into the board supply. It is important to choose an appropriate ferrite bead with low DC resistance, because the bead must provide adequate isolation between the board supply and the chip supply. It is also important to maintain a voltage at the supply terminals that is greater than the minimum voltage required for proper operation.

![Figure 15. Power-Supply Decoupling](image-url)

11 Layout

11.1 Layout Guidelines

11.1.1 Ground Planes

Solid ground planes are recommended because these planes provide a low-impedance return paths between the device and bypass capacitors, along with the clock source and destination devices.

LMK00804B-Q1 has a die attach pad (DAP) for enhanced thermal and electrical performance. Use five VIAs to connect the DAP to a solid GND plane. Full-through VIAs are preferred.

Avoid return paths of other system circuitry (for example, high-speed/digital logic, switching power supplies, and so forth) from passing through the local ground of the device to minimize noise coupling. Remember that noise coupling can lead to added jitter and spurious noise.

11.1.2 Power Supply Pins

Follow the power supply schematic and layout example described in Power-Supply Filtering.
Layout Guidelines (continued)

11.1.3 Differential Input Termination
- Place input termination or biasing resistors as close to the CLK_P/CLK_N pins as possible.
- Avoid or minimize vias in the 50-Ω input traces to minimize impedance discontinuities. Intra-pair skew should also be minimized on the differential input traces.
- If not used, CLK_P/CLK_N inputs may be left as no connect.

11.1.4 LVCMOS Input Termination
- Input termination is not necessary when the LVCMOS_CLK input is driven from a LVCMOS driver that is series-terminated to match the characteristic impedance of the trace. Otherwise, place the input termination resistor as close to the LVCMOS_CLK input as possible.
- Avoid or minimize vias in the 50-Ω input trace to minimize impedance discontinuities.
- If not used, LVCMOS_CLK input may be left as no connect.

11.1.5 Output Termination
- Place 43-Ω series termination resistors close to the Qx outputs at the launch of the 50-Ω traces.
- Avoid or minimize vias in the 50-Ω input traces to minimize impedance discontinuities.
- If not used, any Qx output should be left as no connect.

11.2 Layout Example

Figure 16 shows the recommended PCB design for good electrical and thermal performance. To maximize the heat dissipation from the package, a thermal landing pattern including multiple vias to a ground plane must be incorporated into the PCB within the footprint of the package. The thermal pad must be soldered down to ensure adequate heat conduction to of the package. Refer to the Example Board Layout in the Package Option Addendum.

![Figure 16. General PCB Ground Layout for Thermal Reliability](image_url)
12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation
For related documentation, see the following:

High-Speed Layout Guidelines (SCAA082)

12.2 Receiving Notification of Documentation Updates
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.3 Community Resources
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.4 Trademarks
E2E is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

12.5 Electrostatic Discharge Caution
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.6 Glossary
SLYZ022 — TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information
The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead finish/ Ball material</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMK00804BQWRGTRQ1</td>
<td>ACTIVE</td>
<td>VQFN</td>
<td>RGT</td>
<td>16</td>
<td>3000</td>
<td>RoHS & Green</td>
<td>SN</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>804BQ</td>
<td></td>
</tr>
<tr>
<td>LMK00804BQWRGTTQ1</td>
<td>ACTIVE</td>
<td>VQFN</td>
<td>RGT</td>
<td>16</td>
<td>250</td>
<td>RoHS & Green</td>
<td>SN</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>804BQ</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) **RoHS**: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF LMK00804B-Q1 :

Catalog: LMK00804B

NOTE: Qualified Version Definitions:

Catalog - TI's standard catalog product
TAPE AND REEL INFORMATION

TAPE DIMENSIONS

<table>
<thead>
<tr>
<th>A0</th>
<th>Dimension designed to accommodate the component width</th>
</tr>
</thead>
<tbody>
<tr>
<td>B0</td>
<td>Dimension designed to accommodate the component length</td>
</tr>
<tr>
<td>K0</td>
<td>Dimension designed to accommodate the component thickness</td>
</tr>
<tr>
<td>W</td>
<td>Overall width of the carrier tape</td>
</tr>
<tr>
<td>P1</td>
<td>Pitch between successive cavity centers</td>
</tr>
</tbody>
</table>

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

```
  Q1 Q2
  Q3 Q4
  Q1 Q2
```

DEVICE INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMK00804BQWRGTRQ1</td>
<td>VQFN</td>
<td>RGT</td>
<td>16</td>
<td>3000</td>
<td>330.0</td>
<td>12.4</td>
<td>3.3</td>
<td>3.3</td>
<td>1.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q2</td>
</tr>
<tr>
<td>LMK00804BQWRGTTQ1</td>
<td>VQFN</td>
<td>RGT</td>
<td>16</td>
<td>250</td>
<td>180.0</td>
<td>12.4</td>
<td>3.3</td>
<td>3.3</td>
<td>1.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q2</td>
</tr>
</tbody>
</table>

All dimensions are nominal.
*All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMK00804BQWRGTRQ1</td>
<td>VQFN</td>
<td>RGT</td>
<td>16</td>
<td>3000</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LMK00804BQWRGTTQ1</td>
<td>VQFN</td>
<td>RGT</td>
<td>16</td>
<td>250</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>
Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.
NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.