The LMK03002/LMK03002C precision clock conditioners combine the functions of jitter cleaning/reconditioning, multiplication, and distribution of a reference clock. The devices integrate a Voltage Controlled Oscillator (VCO), a high performance Integer-N Phase Locked Loop (PLL), a partially integrated loop filter, and four LVPECL clock output distribution blocks.

The VCO output is optionally accessible on the Fout port. Internally, the VCO output goes through a VCO Divider to feed the various clock distribution blocks.

Each clock distribution block includes a programmable divider, a phase synchronization circuit, a programmable delay, a clock output mux, and an LVPECL output buffer. This allows multiple integer-related and phase-adjusted copies of the reference to be distributed to four system components.

The clock conditioners come in a 48-pin WQFN package and are footprint compatible with other clocking devices in the same family.
Functional Block Diagram
PIN DESCRIPTIONS

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Pin Name</th>
<th>I/O</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 25</td>
<td>GND</td>
<td>-</td>
<td>Ground</td>
</tr>
<tr>
<td>2</td>
<td>Fout</td>
<td>O</td>
<td>Internal VCO Frequency Output</td>
</tr>
<tr>
<td>3, 8, 13, 16, 19, 22, 26, 30, 31, 33, 37, 40, 43, 46</td>
<td>Vcc1, Vcc2, Vcc3, Vcc4, Vcc5, Vcc6, Vcc7, Vcc8, Vcc9, Vcc10, Vcc11, Vcc12, Vcc13, Vcc14</td>
<td>- Power Supply</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>CLKuWire</td>
<td>I</td>
<td>MICROWIRE Clock Input</td>
</tr>
<tr>
<td>5</td>
<td>DATAuWire</td>
<td>I</td>
<td>MICROWIRE Data Input</td>
</tr>
<tr>
<td>6</td>
<td>LEuWire</td>
<td>I</td>
<td>MICROWIRE Latch Enable Input</td>
</tr>
<tr>
<td>7, 14, 15, 17, 18, 20, 21, 23, 24, 34, 35</td>
<td>NC</td>
<td>- No Connection to these pins</td>
<td></td>
</tr>
<tr>
<td>9, 10</td>
<td>LDObyp1, LDObyp2</td>
<td>-</td>
<td>LDO Bypass</td>
</tr>
<tr>
<td>11</td>
<td>GOE</td>
<td>I</td>
<td>Global Output Enable</td>
</tr>
<tr>
<td>12</td>
<td>LD</td>
<td>O</td>
<td>Lock Detect and Test Output</td>
</tr>
<tr>
<td>27</td>
<td>SYNC*</td>
<td>I</td>
<td>Global Clock Output Synchronization</td>
</tr>
<tr>
<td>28, 29</td>
<td>OSCIn, OSCIn*</td>
<td>I</td>
<td>Oscillator Clock Input; Must be AC coupled</td>
</tr>
<tr>
<td>32</td>
<td>CPout</td>
<td>O</td>
<td>Charge Pump Output</td>
</tr>
<tr>
<td>36</td>
<td>Bias</td>
<td>I</td>
<td>Bias Bypass</td>
</tr>
<tr>
<td>38, 39</td>
<td>CLKout0, CLKout0*</td>
<td>O</td>
<td>LVPECL Clock Output 0</td>
</tr>
<tr>
<td>41, 42</td>
<td>CLKout1, CLKout1*</td>
<td>O</td>
<td>LVPECL Clock Output 1</td>
</tr>
<tr>
<td>44, 45</td>
<td>CLKout2, CLKout2*</td>
<td>O</td>
<td>LVPECL Clock Output 2</td>
</tr>
<tr>
<td>47, 48</td>
<td>CLKout3, CLKout3*</td>
<td>O</td>
<td>LVPECL Clock Output 3</td>
</tr>
<tr>
<td>DAP</td>
<td>DAP</td>
<td>-</td>
<td>Die Attach Pad is Ground</td>
</tr>
</tbody>
</table>
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Ratings</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply Voltage</td>
<td>V<sub>CC</sub></td>
<td>-0.3 to 3.6</td>
<td>V</td>
</tr>
<tr>
<td>Input Voltage</td>
<td>V<sub>IN</sub></td>
<td>-0.3 to (V<sub>CC</sub> + 0.3)</td>
<td>V</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>T<sub>STG</sub></td>
<td>-65 to 150</td>
<td>°C</td>
</tr>
<tr>
<td>Lead Temperature (solder 4 s)</td>
<td>T<sub>L</sub></td>
<td>+260</td>
<td>°C</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>T<sub>J</sub></td>
<td>125</td>
<td>°C</td>
</tr>
</tbody>
</table>

(1) "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur, including inoperability and degradation of device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating Conditions indicate conditions at which the device is functional and the device should not be operated beyond such conditions.

(2) This device is a high performance integrated circuit with ESD handling precautions. Handling of this device should only be done at ESD protected work stations. The device is rated to a HBM-ESD of > 2 kV, a MM-ESD of > 200 V, and a CDM-ESD of > 1.2 kV.

(3) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.

Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient Temperature</td>
<td>T<sub>A</sub></td>
<td>-40</td>
<td>25</td>
<td>85</td>
<td>°C</td>
</tr>
<tr>
<td>Power Supply Voltage</td>
<td>V<sub>CC</sub></td>
<td>3.15</td>
<td>3.3</td>
<td>3.45</td>
<td>V</td>
</tr>
</tbody>
</table>

Package Thermal Resistance

<table>
<thead>
<tr>
<th>Package</th>
<th>θ<sub>JA</sub></th>
<th>θ<sub>J-PAD</sub> (Thermal Pad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>48-Lead WQFN</td>
<td>27.4 °C/W</td>
<td>5.8 °C/W</td>
</tr>
</tbody>
</table>

(1) Specification assumes 16 thermal vias connect the die attach pad to the embedded copper plane on the 4-layer JEDEC board. These vias play a key role in improving the thermal performance of the WQFN. It is recommended that the maximum number of vias be used in the board layout.

Electrical Characteristics

(3.15 V ≤ Vcc ≤ 3.45 V, -40 °C ≤ T_A ≤ 85 °C, Differential Inputs/Outputs; Vboost=0; except as specified. Typical values represent most likely parametric norms at Vcc = 3.3 V, T_A = 25 °C, and at the Recommended Operation Conditions at the time of product characterization and are not ensured).

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>I<sub>CC</sub></td>
<td>Power Supply Current<sup>(2)</sup></td>
<td>Entire device; CLKout0 & CLKout3 enabled in Bypass Mode</td>
<td>175</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Entire device; All Outputs Off (no emitter resistors placed)</td>
<td>86</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I<sub>PD</sub></td>
<td>Power Down Current</td>
<td>POWERDOWN = 1</td>
<td>1</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f<sub>OSC/square</sub></td>
<td>Reference Oscillator Input Frequency Range for Square Wave</td>
<td>AC coupled; Differential (V<sub>CC</sub>)</td>
<td>1</td>
<td>MHz</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>V<sub>OSC/square</sub></td>
<td>Square Wave Input Voltage for OSCin and OSCin*</td>
<td>AC coupled; Differential (V<sub>CC</sub>)</td>
<td>0.2</td>
<td>Vpp</td>
<td>1.6</td>
<td></td>
</tr>
</tbody>
</table>

(1) The Electrical Characteristics table lists ensured specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not ensured.

(2) See CURRENT CONSUMPTION / POWER DISSIPATION CALCULATIONS for more current consumption / power dissipation calculation information.
Electrical Characteristics (1) (continued)

(3.15 V ≤ Vcc ≤ 3.45 V, -40 °C ≤ TA ≤ 85 °C, Differential Inputs/Outputs; Vboost=0; except as specified. Typical values represent most likely parametric norms at Vcc = 3.3 V, TA = 25 °C, and at the Recommended Operation Conditions at the time of product characterization and are not ensured).

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>fCOMP</td>
<td>Phase Detector Frequency</td>
<td>VCPout = Vcc/2, PLL_CP_GAIN = 1x</td>
<td>40 MHz</td>
<td>100</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VCPout = Vcc/2, PLL_CP_GAIN = 4x</td>
<td></td>
<td>400</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VCPout = Vcc/2, PLL_CP_GAIN = 16x</td>
<td></td>
<td>1600</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VCPout = Vcc/2, PLL_CP_GAIN = 32x</td>
<td></td>
<td>3200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICPoutCP</td>
<td>Charge Pump Source Current</td>
<td>VCPout = Vcc/2, PLL_CP_GAIN = 1x</td>
<td>-100</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VCPout = Vcc/2, PLL_CP_GAIN = 4x</td>
<td>-400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VCPout = Vcc/2, PLL_CP_GAIN = 16x</td>
<td>-1600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VCPout = Vcc/2, PLL_CP_GAIN = 32x</td>
<td>-3200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICPoutSINK</td>
<td>Charge Pump Sink Current</td>
<td>0.5 V < VCPout < Vcc - 0.5 V</td>
<td>2 nA</td>
<td></td>
<td>10 nA</td>
<td>nA</td>
</tr>
<tr>
<td>ICPoutTRI</td>
<td>Charge Pump TRI-STATE Current</td>
<td>0.5 V < VCPout < Vcc - 0.5 V</td>
<td>3 %</td>
<td></td>
<td>10 %</td>
<td>%</td>
</tr>
<tr>
<td>ICPout/MIS</td>
<td>Magnitude of Charge Pump Sink vs. Source Current Mismatch</td>
<td>VCPout = Vcc / 2, TA = 25°C</td>
<td>3 %</td>
<td></td>
<td>10 %</td>
<td>%</td>
</tr>
<tr>
<td>ICPoutVTUNE</td>
<td>Magnitude of Charge Pump Current vs. Charge Pump Voltage Variation</td>
<td>VCPout = Vcc / 2, TA = 25°C</td>
<td>4 %</td>
<td></td>
<td>10 %</td>
<td>%</td>
</tr>
<tr>
<td>ICPoutTEMP</td>
<td>Magnitude of Charge Pump Current vs. Temperature Variation</td>
<td></td>
<td>4 %</td>
<td></td>
<td>10 %</td>
<td>%</td>
</tr>
<tr>
<td>PN10kHz</td>
<td>Pll 1/f Noise at 10 kHz Offset (2) Normalized to 1 GHz Output Frequency</td>
<td>PLL_CP_GAIN = 1x</td>
<td>-117</td>
<td></td>
<td></td>
<td>dBc/Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PLL_CP_GAIN = 32x</td>
<td>-122</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PN1Hz</td>
<td>Normalized Phase Noise Contribution (1)</td>
<td>PLL_CP_GAIN = 1x</td>
<td>-219</td>
<td></td>
<td></td>
<td>dBc/Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PLL_CP_GAIN = 32x</td>
<td>-224</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(3) A specification in modeling PLL in-band phase noise is the 1/f flicker noise, LPLL_flicker(f), which is dominant close to the carrier. Flicker noise has a 10 dB/decade slope. PN10kHz is normalized to a 10 kHz offset and a 1 GHz carrier frequency. PN10kHz = LPLL_flicker(10 kHz) - 20log(Fout / 1 GHz), where LPLL_flicker(f) is the single side band phase noise of only the flicker noise's contribution to total noise, L(f). To measure LPLL_flicker(f) it is important to be on the 10 dB/decade slope close to the carrier. A high compare frequency and a clean crystal are important to isolating this noise source from the total phase noise, L(f). LPLL_flicker(f) can be masked by the reference oscillator performance if a low power or noisy source is used. The total PLL inband phase noise performance is the sum of LPLL_flicker(f) and LPLL_flat(f).

(4) A specification in modeling PLL in-band phase noise is the Normalized Phase Noise Contribution, LPLL_flat(f), of the PLL and is defined as PN1Hz = LPLL_flat(f) − 20log(N) − 10log(fCOMP). LPLL_flat(f) is the single side band phase noise measured at an offset frequency, f, in a 1 Hz Bandwidth and fCOMP is the phase detector frequency of the synthesizer. LPLL_flat(f) contributes to the total noise, L(f). To measure LPLL_flat(f) the offset frequency, f, must be chosen sufficiently smaller then the loop bandwidth of the PLL, and yet large enough to avoid a substantial noise contribution from the reference and flicker noise. LPLL_flat(f) can be masked by the reference oscillator performance if a low power or noisy source is used.
Electrical Characteristics

(3.15 V ≤ Vcc ≤ 3.45 V, -40 °C ≤ T_A ≤ 85 °C, Differential Inputs/Outputs; Vboost=0; except as specified. Typical values represent most likely parametric norms at Vcc = 3.3 V, T_A = 25 °C, and at the Recommended Operation Conditions at the time of product characterization and are not ensured).

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>fVCO</td>
<td>VCO Tuning Range</td>
<td>LMK03002/LMK03002C</td>
<td>1566</td>
<td>1724</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Allowable Temperature Drift for Continuous Lock</td>
<td>After programming R15 for lock, no changes to output configuration are permitted to ensure continuous lock.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LMK03002/LMK03002C</td>
<td>125</td>
<td>°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_Fout</td>
<td>Output Power to a 50 Ω load driven by Fout</td>
<td>LMK03002/LMK03002C; T_A = 25 °C</td>
<td>2</td>
<td>dBm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_Vtune</td>
<td>Fine Tuning Sensitivity</td>
<td>(The lower sensitivity indicates the typical sensitivity at the lower end of the tuning range, the higher sensitivity at the higher end of the tuning range)</td>
<td>11 to 15</td>
<td>MHz/V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J_RMS_Fout</td>
<td>Fout RMS Period Jitter</td>
<td>LMK03002</td>
<td>800</td>
<td>fs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LMK03002C</td>
<td>400</td>
<td>fs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L(Fout)</td>
<td>Fout Single Side Band Phase Noise</td>
<td>LMK03002</td>
<td>10 kHz Offset</td>
<td>-89</td>
<td>dBc/Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LMK03002C</td>
<td>100 kHz Offset</td>
<td>-113</td>
<td>dBc/Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LMK03002</td>
<td>1 MHz Offset</td>
<td>-135</td>
<td>dBc/Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LMK03002C</td>
<td>10 MHz Offset</td>
<td>-155</td>
<td>dBc/Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LMK03002</td>
<td>10 kHz Offset</td>
<td>-91</td>
<td>dBc/Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LMK03002C</td>
<td>100 kHz Offset</td>
<td>-115</td>
<td>dBc/Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LMK03002</td>
<td>1 MHz Offset</td>
<td>-137</td>
<td>dBc/Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LMK03002C</td>
<td>10 MHz Offset</td>
<td>-156</td>
<td>dBc/Hz</td>
<td></td>
</tr>
</tbody>
</table>

Clock Distribution Section

(7) - LVPECL Clock Outputs

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Additive RMS Jitter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jitter_{ADD}</td>
<td>Additive RMS Jitter</td>
<td>R_L = 100 Ω Distribution Path = 800 MHz Bandwidth = 12 kHz to 20 MHz</td>
<td>20</td>
<td>fs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CLKoutX_MUX = Bypass</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>75</td>
<td>fs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CLKoutX_MUX = Divided</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>CLKoutX_DIV = 4</td>
<td></td>
</tr>
<tr>
<td>t_{LOW}</td>
<td>CLKoutX to CLKoutY</td>
<td>Equal loading and identical clock configuration Termination = 50 Ω to Vcc - 2 V</td>
<td>-30</td>
<td>±3</td>
<td>30</td>
<td>ps</td>
</tr>
<tr>
<td>V_{OH}</td>
<td>Output High Voltage</td>
<td>Termination = 50 Ω to Vcc - 2 V</td>
<td>Vcc - 0.98</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OL}</td>
<td>Output Low Voltage</td>
<td>CLKoutX output frequency = 200 MHz</td>
<td>Vcc - 1.8</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OD}</td>
<td>Differential Output Voltage</td>
<td></td>
<td>660</td>
<td>810</td>
<td>965</td>
<td>mV</td>
</tr>
</tbody>
</table>

(5) Allowable Temperature Drift for Continuous Lock is how far the temperature can drift in either direction and stay in lock from the ambient temperature and programmed state at which the device was when register R15 was programmed. The action of programming the R15 register, even to the same value, activates a frequency calibration routine. This implies that the device will work over the entire frequency range, but if the temperature drifts more than the maximum allowable drift for continuous lock, then it will be necessary to reprogram the R15 register to ensure that the device stays in lock. Regardless of what temperature the device was initially programmed at, the ambient temperature can never drift outside the range of -40 °C ≤ T_A ≤ 85 °C without violating specifications. For this specification to be valid, the programmed state of the device must not change after R15 is programmed.

(6) VCO phase noise is measured assuming the VCO is the dominant noise source due to a 75 Hz loop bandwidth. Over frequency, the phase noise typically varies by 1 to 2 dB, with the worst case performance typically occurring at the highest frequency. Over temperature, the phase noise typically varies by 1 to 2 dB, assuming the device is not reprogrammed. Reprogramming R15 will run the frequency calibration routine for optimum phase noise.

(7) The Clock Distribution Section includes all parts of the device except the PLL and VCO sections. Typical Additive Jitter specifications apply to the clock distribution section only and is in RMS form addition to the jitter from the VCO.

(8) Specification is ensured by characterization and is not tested in production.
Electrical Characteristics (1) (continued)

(3.15 V ≤ Vcc ≤ 3.45 V, -40 °C ≤ T_A ≤ 85 °C, Differential Inputs/Outputs; Vboost=0; except as specified. Typical values represent most likely parametric norms at Vcc = 3.3 V, T_A = 25 °C, and at the Recommended Operation Conditions at the time of product characterization and are not ensured).

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_HH</td>
<td>High-Level Input Voltage</td>
<td>V_HH = Vcc</td>
<td>2.0</td>
<td>Vcc</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_LL</td>
<td>Low-Level Input Voltage</td>
<td></td>
<td>0.8</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_HH</td>
<td>High-Level Input Current</td>
<td>V_HH = Vcc</td>
<td>-5.0</td>
<td>5.0</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>I_LL</td>
<td>Low-Level Input Current</td>
<td>V_LL = 0</td>
<td>-40.0</td>
<td>5.0</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>V_HL</td>
<td>High-Level Output Voltage</td>
<td>I_OH = +500 µA</td>
<td>Vcc - 0.4</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_LL</td>
<td>Low-Level Output Voltage</td>
<td>I_OH = -500 µA</td>
<td>0.4</td>
<td>V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Digital MICROWIRE Interfaces (10)

V_HH	High-Level Input Voltage	V_HH = Vcc	1.6	Vcc	V
V_LL	Low-Level Input Voltage		0.4	V	
I_HH	High-Level Input Current	V_HH = Vcc	-5.0	5.0	µA
I_LL	Low-Level Input Current	V_LL = 0	-5.0	5.0	µA

MICROWIRE Timing

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_CS</td>
<td>Data to Clock Set Up Time</td>
<td>See Figure 3</td>
<td>25</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_CH</td>
<td>Data to Clock Hold Time</td>
<td>See Figure 3</td>
<td>8</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_CWH</td>
<td>Clock Pulse Width High</td>
<td>See Figure 3</td>
<td>25</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_CWL</td>
<td>Clock Pulse Width Low</td>
<td>See Figure 3</td>
<td>25</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_ES</td>
<td>Clock to Enable Set Up Time</td>
<td>See Figure 3</td>
<td>25</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_EWH</td>
<td>Enable to Clock Set Up Time</td>
<td>See Figure 3</td>
<td>25</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_EWH</td>
<td>Enable Pulse Width High</td>
<td>See Figure 3</td>
<td>25</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(9) Applies to GOE, LD, and SYNC*.

(10) Applies to CLKuWire, DATAuWire, and LEuWire.

Serial Data Timing Diagram

Data bits set on the DATAuWire signal are clocked into a shift register, MSB first, on each rising edge of the CLKuWire signal. On the rising edge of the LEuWire signal, the data is sent from the shift register to the addressed register determined by the LSB bits. After the programming is complete the CLKuWire, DATAuWire, and LEuWire signals should be returned to a low state. It is recommended that the slew rate of CLKuWire, DATAuWire, and LEuWire should be at least 30 V/µs.
Charge Pump Current Specification Definitions

I_1 = Charge Pump Sink Current at $V_{CPout} = V_{cc} - \Delta V$
I_2 = Charge Pump Sink Current at $V_{CPout} = \frac{V_{cc}}{2}$
I_3 = Charge Pump Sink Current at $V_{CPout} = \Delta V$
I_4 = Charge Pump Source Current at $V_{CPout} = V_{cc} - \Delta V$
I_5 = Charge Pump Source Current at $V_{CPout} = \frac{V_{cc}}{2}$
I_6 = Charge Pump Source Current at $V_{CPout} = \Delta V$

ΔV = Voltage offset from the positive and negative supply rails. Defined to be 0.5 V for this device.

Charge Pump Output Current Magnitude Variation vs. Charge Pump Output Voltage

$$I_{CPout} \text{ Vs } V_{CPout} = \frac{|I_1| - |I_3|}{|I_1| + |I_3|} \times 100\%$$

Charge Pump Sink Current vs. Charge Pump Output Source Current Mismatch

$$I_{CPout} \text{ Sink vs } I_{CPout} \text{ Source} = \frac{|I_2| - |I_5|}{|I_2| + |I_5|} \times 100\%$$

Charge Pump Output Current Magnitude Variation vs. Temperature

$$I_{CPout} \text{ Vs } T_A = \frac{|I_2|}{|I_2|} \text{ at } T_A = 25^\circ C \times 100\%$$

$$= \frac{|I_5|}{|I_5|} \text{ at } T_A = 25^\circ C \times 100\%$$
Typical Performance Characteristics

LVPECL Differential Output Voltage (V_{OD})

- **Vboost = 1**
- **Vboost = 0**

Figure 4.

LVPECL Output Noise Floor

- **Vboost = 0**
- **Vboost = 1**

Figure 5.

Delay Noise Floor (Adds to Output Noise Floor)

- **Delay = 2250 ps**
- **Delay = 1800 ps**
- **Delay = 900 ps**
- **Delay = 450 ps**
- **Delay = 0 ps**

Figure 6.
FUNCTIONAL DESCRIPTION

The LMK03002/LMK03002C precision clock conditioners combine the functions of jitter cleaning/reconditioning, multiplication, and distribution of a reference clock. The devices integrate a Voltage Controlled Oscillator (VCO), a high performance Integer-N Phase Locked Loop (PLL), a partially integrated loop filter, and four LVPECL clock output distribution blocks.

The devices include internal 3rd and 4th order poles to simplify loop filter design and improve spurious performance. The 1st and 2nd order poles are off-chip to provide flexibility for the design of various loop filter bandwidths.

The LMK03002/LMK03002C includes a 1.64 GHz VCO. The VCO output is optionally accessible on the Fout port. Internally, the VCO output goes through a VCO Divider to feed the various clock distribution blocks.

Each clock distribution block includes a programmable divider, a phase synchronization circuit, a programmable delay, a clock output mux, and an LVPECL output buffer. This allows multiple integer-related and phase-adjusted copies of the reference to be distributed to four system components.

The clock conditioners come in a 48-pin WQFN package and are footprint compatible with other clocking devices in the same family.

BIAS PIN

To properly use the device, bypass Bias (pin 36) with a low leakage 1 µF capacitor connected to Vcc. This is important for low noise performance.

LDO BYPASS

To properly use the device, bypass LDObyp1 (pin 9) with a 10 µF capacitor and LDObyp2 (pin 10) with a 0.1 µF capacitor.

OSCILLATOR INPUT PORT (OSCin, OSCin*)

The purpose of OSCin is to provide the PLL with a reference signal. The OSCin port must be AC coupled, refer to SYSTEM LEVEL DIAGRAM in Application Information. The OSCin port may be driven single endedly by AC grounding OSCin* with a 0.1 µF capacitor.

LOW NOISE, FULLY INTEGRATED VCO

The LMK03002/LMK03002C devices contain a fully integrated VCO. In order for proper operation the VCO uses a frequency calibration algorithm. The frequency calibration algorithm is activated any time that the R15 register is programmed. Once R15 is programmed the temperature may not drift more than the maximum allowable drift for continuous lock, ΔT_{CL}, or else the VCO is not ensured to stay in lock.

For the frequency calibration algorithm to work properly OSCin must be driven by a valid signal when R15 is programmed.

CLKout DELAYS

Each individual clock output includes a delay adjustment. Clock output delay registers (CLKoutX_DLY) support a 150 ps step size and range from 0 to 2250 ps of total delay.
LVPECL OUTPUTS

Each LVPECL output may be disabled individually by programming the CLKoutX_EN bits. All the outputs may be disabled simultaneously by pulling the GOE pin low or programming EN_CLKout_Global to 0.

The duty cycle of the LVPECL clock outputs are shown in the table below.

<table>
<thead>
<tr>
<th>VCO_DIV</th>
<th>CLKoutX_MUX</th>
<th>Duty Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any</td>
<td>Divided, or Divided and Delayed</td>
<td>50%</td>
</tr>
<tr>
<td>2, 4, 6, 8</td>
<td>Any</td>
<td>50%</td>
</tr>
<tr>
<td>3</td>
<td>Bypassed, or Delayed</td>
<td>33%</td>
</tr>
<tr>
<td>5</td>
<td>Bypassed, or Delayed</td>
<td>40%</td>
</tr>
<tr>
<td>7</td>
<td>Bypassed, or Delayed</td>
<td>43%</td>
</tr>
</tbody>
</table>

GLOBAL CLOCK OUTPUT SYNCHRONIZATION

The SYNC* pin synchronizes the clock outputs. When the SYNC* pin is held in a logic low state, the divided outputs are also held in a logic low state. The bypassed outputs will continue to operate normally. Shortly after the SYNC* pin goes high, the divided clock outputs are activated and will all transition to a high state simultaneously. All the outputs, divided and bypassed, will now be synchronized. Clocks in the bypassed state are not affected by SYNC* and are always synchronized with the divided outputs.

The SYNC* pin must be held low for greater than one clock cycle of the output of the VCO Divider, also known as the distribution path. Once this low event has been registered, the outputs will not reflect the low state for four more cycles. This means that the outputs will be low on the fifth rising edge of the distribution path. Similarly once the SYNC* pin becomes high, the outputs will not simultaneously transition high until four more distribution path clock cycles have passed, which is the fifth rising edge of the distribution path. See the timing diagram in Figure 7 for further detail. The clocks are programmed as CLKout0_MUX = Bypassed, CLKout1_MUX = Divided, CLKout1_DIV = 2, CLKout2_MUX = Divided, and CLKout2_DIV = 4. To synchronize the outputs, after the low SYNC* event has been registered, it is not required to wait for the outputs to go low before SYNC* is set high.

![Figure 7. SYNC* Timing Diagram](image)

The SYNC* pin provides an internal pull-up resistor as shown on the Functional Block Diagram. If the SYNC* pin is not terminated externally the clock outputs will operate normally. If the SYNC* function is not used, clock output synchronization is not ensured.
CLKout OUTPUT STATES

Each clock output may be individually enabled with the CLKoutX_EN bits. Each individual output enable control bit is gated with the Global Output Enable input pin (GOE) and the Global Output Enable bit (EN_CLKout_Global).

All clock outputs can be disabled simultaneously if the GOE pin is pulled low by an external signal or EN_CLKout_Global is set to 0.

<table>
<thead>
<tr>
<th>CLKoutX_EN bit</th>
<th>EN_CLKout_Global bit</th>
<th>GOE pin</th>
<th>Clock X Output State</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Don't care</td>
<td>0</td>
<td>Don't care</td>
<td>Off</td>
</tr>
<tr>
<td>0</td>
<td>Don't care</td>
<td>Don't care</td>
<td>Off</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>High / No Connect</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

When an LVPECL output is in the Off state, the outputs are at a voltage of approximately 1 volt.

GLOBAL OUTPUT ENABLE AND LOCK DETECT

The GOE pin provides an internal pull-up resistor as shown on the Functional Block Diagram. If it is not terminated externally, the clock output states are determined by the Clock Output Enable bits (CLKoutX_EN) and the EN_CLKout_Global bit.

By programming the PLL_MUX register to Digital Lock Detect Active High (see PLL_MUX[3:0] – Multiplexer Control for LD Pin), the Lock Detect (LD) pin can be connected to the GOE pin in which case all outputs are set low automatically if the synthesizer is not locked.

POWER ON RESET

When supply voltage to the device increases monotonically from ground to Vcc, the power on reset circuit sets all registers to their default values, see Table 1 for more information on default register values. Voltage should be applied to all Vcc pins simultaneously.

DIGITAL LOCK DETECT

The PLL digital lock detect circuitry compares the difference between the phase of the inputs of the phase detector to a RC generated delay of ε. To indicate a locked state the phase error must be less than the ε RC delay for 5 consecutive reference cycles. Once in lock, the RC delay is changed to approximately δ. To indicate an out of lock state, the phase error must become greater δ. The values of ε and δ are shown in the table below:

<table>
<thead>
<tr>
<th>ε</th>
<th>δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 ns</td>
<td>20 ns</td>
</tr>
</tbody>
</table>

To utilize the digital lock detect feature, PLL_MUX must be programmed for "Digital Lock Detect (Active High)" or "Digital Lock Detect (Active Low)." When one of these modes is programmed the state of the LD pin will be set high or low as determined by the description above as shown in Figure 8.

When the device is in power down mode and the LD pin is programmed for a digital lock detect function, LD will show a "no lock detected" condition which is low or high given active high or active low circuitry respectively.

The accuracy of this circuit degrades at higher comparison frequencies. To compensate for this, the DIV4 word should be set to one if the comparison frequency exceeds 20 MHz. The function of this word is to divide the comparison frequency presented to the lock detect circuit by 4.
Figure 8. Digital Lock Detect Flowchart
General Programming Information

The LMK03002/LMK03002C devices are programmed using several 32-bit registers which control the device's operation. The registers consist of a data field and an address field. The last 4 register bits, ADDR[3:0] form the address field. The remaining 28 bits form the data field DATA[27:0].

During programming, LEuWire is low and serial data is clocked in on the rising edge of CLKuWire (MSB first). When LEuWire goes high, data is transferred to the register bank selected by the address field. Only registers R0, R4 to R8, R11, and R13 to R15 need to be programmed for proper device operation. After programming, CLKuWire, DATAuWire, LEuWire should remain low to prevent spurious.

For the frequency calibration algorithm to work properly OSCin must be driven by a valid signal when R15 is programmed. Any changes to the PLL R divider or OSCin require R15 to be programmed again to activate the frequency calibration routine.

RECOMMENDED PROGRAMMING SEQUENCE

The recommended programming sequence involves programming R0 with the reset bit set (RESET = 1) to ensure the device is in a default state. Registers are programmed in order with R15 being the last register programmed. An example programming sequence is shown below.

- Program R0 with the reset bit set (RESET = 1). This ensures the device is in a default state.
- Program R4 to R7 as necessary with desired clocks with appropriate enable, mux, divider, and delay settings.
- Program R8 for optimum phase noise performance.
- Program R9 with Vboost setting if necessary. Optional, only needed to set Vboost = 1.
- Program R11 with DIV4 setting if necessary.
- Program R13 with oscillator input frequency and internal loop filter values.
- Program R14 with Fout enable bit, global clock output bit, power down setting, PLL mux setting, and PLL R divider.
- Program R15 with PLL charge pump gain, VCO divider, and PLL N divider. Also starts frequency calibration routine.
LMK03002/LMK03002C Register Map

REG	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
R0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R9	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R11	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	1	0	0	1	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0
R13	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0	0	0
R14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	1	0
R15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1

Data [27:0]

- A3 A2 A1 A0
- R0 RESET
- R4 CLKout0_MUX [1:0]
- R5 CLKout1_MUX [1:0]
- R6 CLKout2_MUX [1:0]
- R7 CLKout3_MUX [1:0]
- R8 Vref
- R9 Divider
- R11 PLL_MUX
- R13 OSCin_FREQ
- R14 EN_Fout
- R15 PLL_CP_GAIN [1:0]
REGISTERS R0, R4 to R7

Registers R4 through R7 control the four clock outputs. Register R3 controls CLKout0, Register R4 controls CLKout1, and so on. There is one additional bit in register R0 called RESET. The X in CLKoutX_MUX, CLKoutX_DIV, CLKoutX_DLY, and CLKoutX_EN denote the actual clock output which may be from 0 to 3.

Table 1. POR Register Defaults

<table>
<thead>
<tr>
<th>Bit Name</th>
<th>Default Bit Value</th>
<th>Bit State</th>
<th>Bit Description</th>
<th>Register</th>
<th>Bit Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESET</td>
<td>0</td>
<td>No reset, normal operation</td>
<td>Reset to power on defaults</td>
<td>R0</td>
<td>31</td>
</tr>
<tr>
<td>CLKoutX_MUX</td>
<td>0</td>
<td>Bypassed</td>
<td>CLKoutX mux mode</td>
<td>R0 to R7</td>
<td>18:17</td>
</tr>
<tr>
<td>CLKoutX_EN</td>
<td>0</td>
<td>Disabled</td>
<td>CLKoutX enable</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>CLKoutX_DIV</td>
<td>1</td>
<td>Divide by 2</td>
<td>CLKoutX clock divide</td>
<td></td>
<td>15:8</td>
</tr>
<tr>
<td>CLKoutX_DLY</td>
<td>0</td>
<td>0 ps</td>
<td>CLKoutX clock delay</td>
<td></td>
<td>7:4</td>
</tr>
<tr>
<td>Vboost</td>
<td>0</td>
<td>Normal Mode</td>
<td>Output Power Control</td>
<td>R9</td>
<td>16</td>
</tr>
<tr>
<td>DIV4</td>
<td>0</td>
<td>PDF ≤ 20 MHz</td>
<td>Phase Detector Frequency</td>
<td>R11</td>
<td>15</td>
</tr>
<tr>
<td>OSCin_FREQ</td>
<td>10</td>
<td>10 MHz OSCin</td>
<td>OSCin Frequency in MHz</td>
<td>R13</td>
<td>21:14</td>
</tr>
<tr>
<td>VCO_R4_LF</td>
<td>0</td>
<td>Low (~200 Ω)</td>
<td>R4 internal loop filter values</td>
<td></td>
<td>13:11</td>
</tr>
<tr>
<td>VCO_R3_LF</td>
<td>0</td>
<td>Low (~600 Ω)</td>
<td>R3 internal loop filter values</td>
<td></td>
<td>10:8</td>
</tr>
<tr>
<td>VCO_C3_C4_LF</td>
<td>0</td>
<td>C3 = 0 pF, C4 = 10 pF</td>
<td>C3 and C4 internal loop filter values</td>
<td></td>
<td>7:4</td>
</tr>
<tr>
<td>EN_Fout</td>
<td>0</td>
<td>Fout disabled</td>
<td>Fout enable</td>
<td>R14</td>
<td>28</td>
</tr>
<tr>
<td>EN_CLKout_Global</td>
<td>1</td>
<td>Normal - CLKouts normal</td>
<td>Global clock output enable</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>POWERDOWN</td>
<td>0</td>
<td>Normal - Device active</td>
<td>Device power down</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>PLL_MUX</td>
<td>0</td>
<td>Disabled</td>
<td>Multiplexer control for LD pin</td>
<td>R15</td>
<td>23:20</td>
</tr>
<tr>
<td>PLL_R</td>
<td>10</td>
<td>R divider = 10</td>
<td>PLL R divide value</td>
<td></td>
<td>19:8</td>
</tr>
<tr>
<td>PLL_CP_GAIN</td>
<td>0</td>
<td>100 μA</td>
<td>Charge pump current</td>
<td></td>
<td>31:30</td>
</tr>
<tr>
<td>VCO_DIV</td>
<td>2</td>
<td>Divide by 2</td>
<td>VCO divide value</td>
<td></td>
<td>29:26</td>
</tr>
<tr>
<td>PLL_N</td>
<td>760</td>
<td>N divider = 760</td>
<td>PLL N divide value</td>
<td></td>
<td>25:8</td>
</tr>
</tbody>
</table>

RESET bit – R0 only

This bit is only in register R0. The use of this bit is optional and it should be set to '0' if not used. Setting this bit to a '1' forces all registers to their power on reset condition and therefore automatically clears this bit. If this bit is set, all other R0 bits are ignored and R0 needs to be programmed again if used with its proper values and RESET = 0.

CLKoutX_MUX[1:0] – Clock Output Multiplexers

These bits control the Clock Output Multiplexer for each clock output. Changing between the different modes changes the blocks in the signal path and therefore incurs a delay relative to the bypass mode. The different MUX modes and associated delays are listed below.

<table>
<thead>
<tr>
<th>CLKoutX_MUX[1:0]</th>
<th>Mode</th>
<th>Added Delay Relative to Bypass Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Bypassed (default)</td>
<td>0 ps</td>
</tr>
<tr>
<td>1</td>
<td>Divided</td>
<td>100 ps</td>
</tr>
<tr>
<td>2</td>
<td>Delayed</td>
<td>400 ps</td>
</tr>
<tr>
<td>3</td>
<td>Divided and Delayed</td>
<td>500 ps</td>
</tr>
</tbody>
</table>
CLKoutX_DIV[7:0] – Clock Output Dividers

These bits control the clock output divider value. In order for these dividers to be active, the respective CLKoutX_MUX (see CLKoutX_MUX[1:0] – Clock Output Multiplexers) bit must be set to either "Divided" or "Divided and Delayed" mode. After all the dividers are programmed, the SYNC* pin must be used to ensure that all edges of the clock outputs are aligned (see GLOBAL CLOCK OUTPUT SYNCHRONIZATION). The Clock Output Dividers follow the VCO Divider so the final clock divide for an output is VCO Divider × Clock Output Divider. By adding the divider block to the output path a fixed delay of approximately 100 ps is incurred.

The actual Clock Output Divide value is twice the binary value programmed as listed in the table below.

<table>
<thead>
<tr>
<th>CLKoutX_DIV[7:0]</th>
<th>Clock Output Divider value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0 0 0 0 0</td>
<td>Invalid</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 1</td>
<td>2 (default)</td>
</tr>
<tr>
<td>0 0 0 0 0 0 1 0</td>
<td>4</td>
</tr>
<tr>
<td>0 0 0 0 0 1 1 0</td>
<td>6</td>
</tr>
<tr>
<td>0 0 0 0 1 0 0 0</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1 1 1 1 1 1 1</td>
<td>510</td>
</tr>
</tbody>
</table>

CLKoutX_DLY[3:0] – Clock Output Delays

These bits control the delay stages for each clock output. In order for these delays to be active, the respective CLKoutX_MUX (see CLKoutX_MUX[1:0] – Clock Output Multiplexers) bit must be set to either "Delayed" or "Divided and Delayed" mode. By adding the delay block to the output path a fixed delay of approximately 400 ps is incurred in addition to the delay shown in the table below.

<table>
<thead>
<tr>
<th>CLKoutX_DLY[3:0]</th>
<th>Delay (ps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 (default)</td>
</tr>
<tr>
<td>1</td>
<td>150</td>
</tr>
<tr>
<td>2</td>
<td>300</td>
</tr>
<tr>
<td>3</td>
<td>450</td>
</tr>
<tr>
<td>4</td>
<td>600</td>
</tr>
<tr>
<td>5</td>
<td>750</td>
</tr>
<tr>
<td>6</td>
<td>900</td>
</tr>
<tr>
<td>7</td>
<td>1050</td>
</tr>
<tr>
<td>8</td>
<td>1200</td>
</tr>
<tr>
<td>9</td>
<td>1350</td>
</tr>
<tr>
<td>10</td>
<td>1500</td>
</tr>
<tr>
<td>11</td>
<td>1650</td>
</tr>
<tr>
<td>12</td>
<td>1800</td>
</tr>
<tr>
<td>13</td>
<td>1950</td>
</tr>
<tr>
<td>14</td>
<td>2100</td>
</tr>
<tr>
<td>15</td>
<td>2250</td>
</tr>
</tbody>
</table>

CLKoutX_EN bit – Clock Output Enables

These bits control whether an individual clock output is enabled or not. If the EN_CLKout_Global bit (see EN_CLKout_Global bit – Global Clock Output Enable) is set to zero or if GOE pin is held low, all CLKoutX_EN bit states will be ignored and all clock outputs will be disabled. See CLKout OUTPUT STATES for more information on CLKout states.

<table>
<thead>
<tr>
<th>CLKoutX_EN bit</th>
<th>Conditions</th>
<th>CLKoutX State</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>EN_CLKout_Global bit = 1</td>
<td>Disabled (default)</td>
</tr>
<tr>
<td></td>
<td>GOE pin = High / No Connect</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Enabled</td>
</tr>
</tbody>
</table>
REGISTER R8
The programming of register R8 provides optimum phase noise performance.

REGISTER R9
The programming of register R9 is optional. If it is not programmed the bit Vboost will be defaulted to 0, which is the test condition for all electrical characteristics.

Vboost – Voltage Boost
By enabling this bit, the voltage output levels for all clock outputs is increased. Also, the noise floor is improved.

<table>
<thead>
<tr>
<th>Vboost</th>
<th>Typical LVPECL Voltage Output (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>810</td>
</tr>
<tr>
<td>1</td>
<td>865</td>
</tr>
</tbody>
</table>

REGISTER R11
This register only has one bit and only needs to be programmed in the case that the phase detector frequency is greater than 20 MHz and digital lock detect is used. Otherwise, it is automatically defaulted to the correct values.

DIV4 – High Phase Detector Frequencies and Lock Detect
This bit divides the frequency presented to the digital lock detect circuitry by 4. It is necessary to get a reliable output from the digital lock detect output in the case of a phase detector frequency frequency greater than 20 MHz.

<table>
<thead>
<tr>
<th>DIV4</th>
<th>Digital Lock Detect Circuitry Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Not divided; Phase Detector Frequency ≤ 20 MHz (default)</td>
</tr>
<tr>
<td>1</td>
<td>Divided by 4; Phase Detector Frequency > 20 MHz</td>
</tr>
</tbody>
</table>
REGISTER R13

VCO_C3_C4_LF[3:0] – Value for Internal Loop Filter Capacitors C3 and C4

These bits control the capacitor values for C3 and C4 in the internal loop filter.

<table>
<thead>
<tr>
<th>VCO_C3_C4_LF[3:0]</th>
<th>Loop Filter Capacitors</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C3 (pF)</td>
<td>C4 (pF)</td>
</tr>
<tr>
<td>0</td>
<td>0 (default)</td>
<td>10 (default)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>110</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>110</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>110</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>160</td>
</tr>
<tr>
<td>7</td>
<td>50</td>
<td>160</td>
</tr>
<tr>
<td>8</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>100</td>
<td>60</td>
</tr>
<tr>
<td>10</td>
<td>150</td>
<td>110</td>
</tr>
<tr>
<td>11</td>
<td>150</td>
<td>60</td>
</tr>
<tr>
<td>12 to 15</td>
<td>Invalid</td>
<td></td>
</tr>
</tbody>
</table>

VCO_R3_LF[2:0] – Value for Internal Loop Filter Resistor R3

These bits control the R3 resistor value in the internal loop filter. The recommended setting for VCO_R3_LF[2:0] = 0 for optimum phase noise and jitter.

<table>
<thead>
<tr>
<th>VCO_R3_LF[2:0]</th>
<th>R3 Value (kΩ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Low (~600 Ω) (default)</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>5 to 7</td>
<td>Invalid</td>
</tr>
</tbody>
</table>

VCO_R4_LF[2:0] – Value for Internal Loop Filter Resistor R4

These bits control the R4 resistor value in the internal loop filter. The recommended setting for VCO_R4_LF[2:0] = 0 for optimum phase noise and jitter.

<table>
<thead>
<tr>
<th>VCO_R4_LF[2:0]</th>
<th>R4 Value (kΩ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Low (~200 Ω) (default)</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>5 to 7</td>
<td>Invalid</td>
</tr>
</tbody>
</table>
OSCin_FREQ[7:0] – Oscillator Input Calibration Adjustment

These bits are to be programmed to the OSCin frequency. If the OSCin frequency is not an integral multiple of 1 MHz, then round to the closest value.

<table>
<thead>
<tr>
<th>OSCin_FREQ[7:0]</th>
<th>OSCin Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 MHz</td>
</tr>
<tr>
<td>2</td>
<td>2 MHz</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>10</td>
<td>10 MHz (default)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>200</td>
<td>200 MHz</td>
</tr>
<tr>
<td>201 to 255</td>
<td>Invalid</td>
</tr>
</tbody>
</table>

REGISTER R14

PLL_R[11:0] – R Divider Value

These bits program the PLL R Divider and are programmed in binary fashion. Any changes to PLL_R require R15 to be programmed again to active the frequency calibration routine.

<table>
<thead>
<tr>
<th>PLL_R[11:0]</th>
<th>PLL R Divide Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>Invalid</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0</td>
<td>10 (default)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td>
<td>4095</td>
</tr>
</tbody>
</table>
PLL_MUX[3:0] – Multiplexer Control for LD Pin

These bits set the output mode of the LD pin. The table below lists several different modes.

<table>
<thead>
<tr>
<th>PLL_MUX[3:0]</th>
<th>Output Type</th>
<th>LD Pin Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Hi-Z</td>
<td>Disabled (default)</td>
</tr>
<tr>
<td>1</td>
<td>Push-Pull</td>
<td>Logic High</td>
</tr>
<tr>
<td>2</td>
<td>Push-Pull</td>
<td>Logic Low</td>
</tr>
<tr>
<td>3</td>
<td>Push-Pull</td>
<td>Digital Lock Detect (Active High)</td>
</tr>
<tr>
<td>4</td>
<td>Push-Pull</td>
<td>Digital Lock Detect (Active Low)</td>
</tr>
<tr>
<td>5</td>
<td>Push-Pull</td>
<td>Analog Lock Detect</td>
</tr>
<tr>
<td>6</td>
<td>Open Drain NMOS</td>
<td>Analog Lock Detect</td>
</tr>
<tr>
<td>7</td>
<td>Open Drain PMOS</td>
<td>Analog Lock Detect</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Invalid</td>
</tr>
<tr>
<td>9</td>
<td>Push-Pull</td>
<td>N Divider Output/2 (50% Duty Cycle)</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>Invalid</td>
</tr>
<tr>
<td>11</td>
<td>Push-Pull</td>
<td>R Divider Output/2 (50% Duty Cycle)</td>
</tr>
<tr>
<td>12 to 15</td>
<td></td>
<td>Invalid</td>
</tr>
</tbody>
</table>

"Logic High" and "Logic Low" allow the PLL_MUX pin to be used as a general purpose output. These modes are also useful when debugging to verify programming. The Digital Lock Detect operation is covered in DIGITAL LOCK DETECT.

Analog Lock Detect outputs the state of the charge pump on the LD pin. While the charge pump is on, the LD pin is low. While the charge pump is off, the LD pin is high. By using two resistors, a capacitor, diode, and comparator a lock detect circuit may be constructed. When in lock the charge pump will only turn on momentarily once every period of the phase detector frequency. "N Divider Output/2" and "R Divider Output/2" output half the frequency of the phase detector on the LD pin. When the device is locked, these frequencies should be the same. These options are useful for debugging.

NOTE
For more information on lock detect circuits, see chapter 32 of PLL Performance, Simulation and Design Handbook, Fourth Edition by Dean Banerjee.

POWERDOWN bit – Device Power Down

This bit can power down the device. Enabling this bit powers down the entire device and all blocks, regardless of the state of any of the other bits or pins.

<table>
<thead>
<tr>
<th>POWERDOWN bit</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Normal Operation (default)</td>
</tr>
<tr>
<td>1</td>
<td>Entire Device Powered Down</td>
</tr>
</tbody>
</table>

EN_CLKout_Global bit – Global Clock Output Enable

This bit overrides the individual CLKoutX_EN bits (see CLKoutX_EN bit – Clock Output Enables). When this bit is set to 0, all clock outputs are disabled, regardless of the state of any of the other bits or pins. See CLKout OUTPUT STATES for more information on CLKout states.

<table>
<thead>
<tr>
<th>EN_CLKout_Global bit</th>
<th>Clock Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>All Off</td>
</tr>
<tr>
<td>1</td>
<td>Normal Operation (default)</td>
</tr>
</tbody>
</table>
EN_Fout bit – Fout port enable

This bit enables the Fout pin.

<table>
<thead>
<tr>
<th>EN_Fout bit</th>
<th>Fout Pin Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Disabled (default)</td>
</tr>
<tr>
<td>1</td>
<td>Enabled</td>
</tr>
</tbody>
</table>
REGISTER R15

Programming R15 also activates the frequency calibration routine.

PLL_N[17:0] – PLL N Divider

These bits program the divide value for the PLL N Divider. The PLL N Divider follows the VCO Divider and precedes the PLL phase detector. Since the VCO Divider is also in the feedback path from the VCO to the PLL Phase Detector, the total N divide value, \(N_{\text{Total}}\), is also influenced by the VCO Divider value. \(N_{\text{Total}} = \text{PLL N Divider} \times \text{VCO Divider}\). The VCO frequency is calculated as, \(f_{\text{VCO}} = f_{\text{OSCin}} \times \text{PLL N Divider} \times \text{VCO Divider} / \text{PLL R Divider}\). Since the PLL N divider is a pure binary counter there are no illegal divide values for PLL_N[17:0] except for 0.

<table>
<thead>
<tr>
<th>PLL_N[17:0]</th>
<th>PLL N Divider Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
<td>Invalid</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1</td>
<td>1</td>
</tr>
<tr>
<td>. .</td>
<td>...</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 0 760 (default)</td>
<td>760 (default)</td>
</tr>
<tr>
<td>. .</td>
<td>...</td>
</tr>
<tr>
<td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 262143</td>
<td>262143</td>
</tr>
</tbody>
</table>

VCO_DIV[3:0] – VCO Divider

These bits program the divide value for the VCO Divider. The VCO Divider follows the VCO output and precedes the clock distribution blocks. Since the VCO Divider is in the feedback path from the VCO to the PLL phase detector the VCO Divider contributes to the total N divide value, \(N_{\text{Total}}\). \(N_{\text{Total}} = \text{PLL N Divider} \times \text{VCO Divider}\). The VCO Divider can not be bypassed. See PLL_N[17:0] – PLL N Divider (PLL N Divider) for more information on setting the VCO frequency.

<table>
<thead>
<tr>
<th>VCO_DIV[3:0]</th>
<th>VCO Divider Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0</td>
<td>Invalid</td>
</tr>
<tr>
<td>0 0 0 1</td>
<td>2 (default)</td>
</tr>
<tr>
<td>0 0 1 1</td>
<td>3</td>
</tr>
<tr>
<td>0 1 0 0</td>
<td>4</td>
</tr>
<tr>
<td>0 1 0 1</td>
<td>5</td>
</tr>
<tr>
<td>0 1 1 0</td>
<td>6</td>
</tr>
<tr>
<td>0 1 1 1</td>
<td>7</td>
</tr>
<tr>
<td>1 0 0 0</td>
<td>8</td>
</tr>
<tr>
<td>1 0 0 1</td>
<td>Invalid</td>
</tr>
<tr>
<td>. . . .</td>
<td>...</td>
</tr>
<tr>
<td>1 1 1 1</td>
<td>Invalid</td>
</tr>
</tbody>
</table>

PLL_CP_GAIN[1:0] – PLL Charge Pump Gain

These bits set the charge pump gain of the PLL.

<table>
<thead>
<tr>
<th>PLL_CP_GAIN[1:0]</th>
<th>Charge Pump Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1x (default)</td>
<td>2 16x</td>
</tr>
<tr>
<td>1 4x</td>
<td>3 32x</td>
</tr>
</tbody>
</table>
Application Information

SYSTEM LEVEL DIAGRAM

Figure 9 shows an LMK03000 family device used in a typical application. In this setup the clock may be multiplied, reconditioned, and redistributed. Both the OSCin/OSCin* and CLKoutX/CLKoutX* pins can be used in a single-ended or a differential fashion, which is discussed later in this datasheet. The GOE pin needs to be high for the outputs to operate. One technique sometimes used is to take the output of the LD (Lock Detect) pin and use this as an input to the GOE pin. If this is done, then the outputs will turn off if lock detect circuit detects that the PLL is out of lock. The loop filter actually consists of seven components, but four of these components that for the third and fourth poles of the loop filter are integrated in the chip. The first and second pole of the loop filter are external.

BIAS PIN
To properly use the device, bypass Bias (pin 36) with a low leakage 1 µF capacitor connected to Vcc. This is important for low noise performance.

LDO BYPASS
To properly use the device, bypass LDObyp1 (pin 9) with a 10 µF capacitor and LDObyp2 (pin 10) with a 0.1 µF capacitor.
The internal charge pump is directly connected to the integrated loop filter components. The first and second pole of the loop filter are externally attached as shown in Figure 10. When the loop filter is designed, it must be stable over the entire frequency band, meaning that the changes in $K_{V_{tune}}$ from the low to high band specification will not make the loop filter unstable. The design of the loop filter is application specific and can be rather involved, but is discussed in depth in the Clock Conditioner Owner's Manual provided by Texas Instruments. When designing with the integrated loop filter of the LMK03000 family, considerations for minimum resistor thermal noise often lead one to the decision to design for the minimum value for integrated resistors, R3 and R4. Both the integrated loop filter resistors and capacitors (C3 and C4) also restrict how wide the loop bandwidth the PLL can have. However, these integrated components do have the advantage that they are closer to the VCO and can therefore filter out some noise and spurs better than external components. For this reason, a common strategy is to minimize the internal loop filter resistors and then design for the largest internal capacitor values that permit a wide enough loop bandwidth. In some situations where spurs requirements are very stringent and there is margin on phase noise, it might make sense to design for a loop filter with integrated resistor values that are larger than their minimum value.
CURRENT CONSUMPTION / POWER DISSIPATION CALCULATIONS

Due to the myriad of possible configurations, Table 2 serves to provide enough information to allow the user to calculate estimated current consumption of the device. Unless otherwise noted Vcc = 3.3 V, TA = 25 °C.

Table 2. Block Current Consumption

<table>
<thead>
<tr>
<th>Block</th>
<th>Condition</th>
<th>Current Consumption at 3.3 V (mA)</th>
<th>Power Dissipated in device (mW)</th>
<th>Power Dissipated in LVPECL emitter resistors (mW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entire device, core current</td>
<td>All outputs off; No LVPECL emitter resistors connected</td>
<td>86.0</td>
<td>283.8</td>
<td>-</td>
</tr>
<tr>
<td>Clock buffers (internal)</td>
<td>The clock buffers are enabled anytime one of CLKout0 through CLKout3 are enabled</td>
<td>9</td>
<td>29.7</td>
<td>-</td>
</tr>
<tr>
<td>Output buffers</td>
<td>Fout buffer, EN_Fout = 1</td>
<td>14.5</td>
<td>47.8</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>LVPECL output, bypass mode (includes 120 Ω emitter resistors)</td>
<td>40</td>
<td>72</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>LVPECL output, disabled mode (includes 120 Ω emitter resistors)</td>
<td>17.4</td>
<td>38.3</td>
<td>19.1</td>
</tr>
<tr>
<td></td>
<td>LVPECL output, disabled mode. No emitter resistors placed; open outputs</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Divide circuitry per output</td>
<td>Divide enabled, divide = 2</td>
<td>5.3</td>
<td>17.5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Divide enabled, divide > 2</td>
<td>8.5</td>
<td>28.0</td>
<td>-</td>
</tr>
<tr>
<td>Delay circuitry per output</td>
<td>Delay enabled, delay < 8</td>
<td>5.8</td>
<td>19.1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Delay enabled, delay > 7</td>
<td>9.9</td>
<td>32.7</td>
<td>-</td>
</tr>
<tr>
<td>Entire device</td>
<td>CLKout0 & CLKout3 enabled in bypass mode</td>
<td>175</td>
<td>457.5</td>
<td>120</td>
</tr>
</tbody>
</table>

From Table 2 the current consumption can be calculated in any configuration. For example, the current for the entire device with two LVPECL (CLKout0 and CLKout3) outputs in bypass mode can be calculated by adding up the following blocks: core current, clock buffers, and two LVPECL output buffer currents. There will also be two LVPECL outputs drawing emitter current, but some of the power from the current draw is dissipated in the external 120 Ω resistors which doesn’t add to the power dissipation budget for the device. If delays or divides are switched in, then the additional current for these stages needs to be added as well.

For power dissipated by the device, the total current entering the device is multiplied by the voltage at the device minus the power dissipated in any emitter resistors connected to any of the LVPECL outputs. If no emitter resistors are connected to the LVPECL outputs, this power will be 0 watts. For example, in the case of two LVPECL (CLKout0 & CLKout3) outputs operating at 3.3 volts, we calculate 3.3 V × (86 + 9 + 40 + 40) mA = 3.3 V × 175 mA = 577.5 mW. Because two LVPECL outputs (CLKout0 and CLKout3) have the emitter resistors hooked up and the power dissipated by these resistors is 60 mW for each clock, the total device power dissipation is 533.9 mW - 120 mW = 457.5 mW.

When the LVPECL output is active, ~1.9 V is the average voltage on each output as calculated from the LVPECL \(V_{OH} \) & \(V_{OL} \) typical specification. Therefore the power dissipated in each emitter resistor is approximately \((1.9 \text{ V})^2 / 120 \text{ Ω} = 30 \text{ mW}\). When the LVPECL output is disabled, the emitter resistor voltage is ~1.07 V. Therefore the power dissipated in each emitter resistor is approximately \((1.07 \text{ V})^2 / 120 \text{ Ω} = 9.5 \text{ mW}\).
THERMAL MANAGEMENT

Power consumption of the LMK03002/LMK03002C devices can be high enough to require attention to thermal management. For reliability and performance reasons the die temperature should be limited to a maximum of 125 °C. That is, as an estimate, T_A (ambient temperature) plus device power consumption times θ_{JA} should not exceed 125 °C.

The package of the device has an exposed pad that provides the primary heat removal path as well as excellent electrical grounding to the printed circuit board. To maximize the removal of heat from the package a thermal land pattern including multiple vias to a ground plane must be incorporated on the PCB within the footprint of the package. The exposed pad must be soldered down to ensure adequate heat conduction out of the package. A recommended land and via pattern is shown in Figure 11. More information on soldering WQFN packages can be obtained at www.ti.com.

![Figure 11. Recommended Land and Via Pattern](image)

To minimize junction temperature it is recommended that a simple heat sink be built into the PCB (if the ground plane layer is not exposed). This is done by including a copper area of about 2 square inches on the opposite side of the PCB from the device. This copper area may be plated or solder coated to prevent corrosion but should not have conformal coating (if possible), which could provide thermal insulation. The vias shown in Figure 11 should connect these top and bottom copper layers and to the ground layer. These vias act as “heat pipes” to carry the thermal energy away from the device side of the board to where it can be more effectively dissipated.
TERMINATION AND USE OF CLOCK OUTPUTS (DRIVERS)

When terminating clock drivers keep in mind these guidelines for optimum phase noise and jitter performance:

- Transmission line theory should be followed for good impedance matching to prevent reflections.
- Clock drivers should be presented with the proper loads. For example:
 - LVDS drivers are current drivers and require a closed current loop.
 - LVPECL drivers are open emitter and require a DC path to ground.
- Receivers should be presented with a signal biased to their specified DC bias level (common mode voltage) for proper operation. Some receivers have self-biasing inputs that automatically bias to the proper voltage level. In this case, the signal should normally be AC coupled.

It is possible to drive a non-LVPECL or non-LVDS receiver with a LVDS or LVPECL driver as long as the above guidelines are followed. Check the datasheet of the receiver or input being driven to determine the best termination and coupling method to be sure that the receiver is biased at its optimum DC voltage (common mode voltage). For example, when driving the OSCin/OSCin* input of the LMK03000 family, OSCin/OSCin* should be AC coupled because OSCin/OSCin* biases the signal to the proper DC level, see Figure 9. This is only slightly different from the AC coupled cases described in Termination for AC Coupled Differential Operation because the DC blocking capacitors are placed between the termination and the OSCin/OSCin* pins, but the concept remains the same, which is the receiver (OSCin/OSCin*) set the input to the optimum DC bias voltage (common mode voltage), not the driver.

Termination for DC Coupled Differential Operation

For DC coupled operation of an LVPECL driver, terminate with 50 Ω to Vcc - 2 V as shown in Figure 12. Alternatively terminate with a Thevenin equivalent circuit (120 Ω resistor connected to Vcc and an 82 Ω resistor connected to ground with the driver connected to the junction of the 120 Ω and 82 Ω resistors) as shown in Figure 13 for Vcc = 3.3 V.

![Figure 12. Differential LVPECL Operation, DC Coupling](image1)

![Figure 13. Differential LVPECL Operation, DC Coupling, Thevenin Equivalent](image2)
Termination for AC Coupled Differential Operation

AC coupling allows for shifting the DC bias level (common mode voltage) when driving different receiver standards. Since AC coupling prevents the driver from providing a DC bias voltage at the receiver it is important to ensure the receiver is biased to its ideal DC level.

LVPECL drivers require a DC path to ground. When AC coupling an LVPECL signal use 120 Ω emitter resistors close to the LVPECL driver to provide a DC path to ground as shown in Figure 14. For proper receiver operation, the signal should be biased to the DC bias level (common mode voltage) specified by the receiver. The typical DC bias voltage (common mode voltage) for LVPECL receivers is 2 V. A Thevenin equivalent circuit (82 Ω resistor connected to Vcc and a 120 Ω resistor connected to ground with the driver connected to the junction of the 82 Ω and 120 Ω resistors) is a valid termination as shown in Figure 14 for Vcc = 3.3 V. Note this Thevenin circuit is different from the DC coupled example in Figure 13.

![Figure 14. Differential LVPECL Operation, AC Coupling, Thevenin Equivalent](image-url)
Termination for Single-Ended Operation

A balun can be used with LVPECL drivers to convert the balanced, differential signal into an unbalanced, single-ended signal.

It is possible to use an LVPECL driver as one or two separate 800 mV p-p signals. When DC coupling one of the LMK03000 family clock LVPECL drivers, the termination should still be 50 ohms to Vcc - 2 V as shown in Figure 15. Again the Thevenin equivalent circuit (120 Ω resistor connected to Vcc and an 82 Ω resistor connected to ground with the driver connected to the junction of the 120 Ω and 82 Ω resistors) is a valid termination as shown in Figure 16 for Vcc = 3.3 V.

![Figure 15. Single-Ended LVPECL Operation, DC Coupling](image1)

When AC coupling an LVPECL driver use a 120 Ω emitter resistor to provide a DC path to ground and ensure a 50 ohm termination with the proper DC bias level for the receiver. The typical DC bias voltage for LVPECL receivers is 2 V (see Termination for AC Coupled Differential Operation). If the other driver is not used it should be terminated with either a proper AC or DC termination. This latter example of AC coupling a single-ended LVPECL signal can be used to measure single-ended LVPECL performance using a spectrum analyzer or phase noise analyzer. When using most RF test equipment no DC bias (0 V DC) is expected for safe and proper operation. The internal 50 ohm termination the test equipment provides correctly terminates the LVPECL driver being measured as shown in Figure 17. When using only one LVPECL driver of a CLKoutX/CLKoutX* pair, be sure to properly terminate the unused driver.

![Figure 16. Single-Ended LVPECL Operation, DC Coupling, Thevenin Equivalent](image2)

![Figure 17. Single-Ended LVPECL Operation, AC Coupling](image3)
Conversion to LVCMOS Outputs

To drive an LVCMOS input with an LMK03000 family LVDS or LVPECL output, an LVPECL/LVDS to LVCMOS converter such as TI's DS90LV018A, DS90LV028A, DS90LV048A, etc. is required. For best noise performance, LVPECL provides a higher voltage swing into input of the converter.

OSCin INPUT

In addition to LVDS and LVPECL inputs, OSCin can also be driven with a sine wave. The OSCin input can be driven single-ended or differentially with sine waves. The configurations for these are shown in Figure 18 and Figure 19.

Figure 20 shows the recommended power level for sine wave operation for both differential and single-ended sources over frequency. The part will operate at power levels below the recommended power level, but as power decreases the PLL noise performance will degrade. The VCO noise performance will remain constant. At the recommended power level the PLL phase noise degradation from full power operation (8 dBm) is less than 2 dB.
MORE THAN EIGHT OUTPUTS WITH AN LMK03000 FAMILY DEVICE

The LMK03000 family devices include eight or less outputs. When more than 8 outputs are required the footprint compatible LMK01000 family may be used for clock distribution. By using an LMK03000 device with eight LMK01000 family devices up to 64 clocks may be distributed in many different LVDS / LVPECL combinations. It's possible to distribute more than 64 clocks by adding more LMK01000 family devices. Refer to AN-1864 (SNAA060) for more details on how to do this.
REVISION HISTORY

Changes from Revision D (April 2013) to Revision E	Page
• Changed layout of National Data Sheet to TI format | 32
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMK03002CISQ/NOPB</td>
<td>ACTIVE</td>
<td>WQFN</td>
<td>RHS</td>
<td>48</td>
<td>250</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>SN</td>
<td>Level-3-260C-168 HR</td>
<td>-40 to 85</td>
<td>K03002CI</td>
</tr>
<tr>
<td>LMK03002CISQX/NOPB</td>
<td>ACTIVE</td>
<td>WQFN</td>
<td>RHS</td>
<td>48</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>SN</td>
<td>Level-3-260C-168 HR</td>
<td>-40 to 85</td>
<td>K03002CI</td>
</tr>
<tr>
<td>LMK03002ISQ/NOPB</td>
<td>ACTIVE</td>
<td>WQFN</td>
<td>RHS</td>
<td>48</td>
<td>250</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>SN</td>
<td>Level-3-260C-168 HR</td>
<td>-40 to 85</td>
<td>K03002 I</td>
</tr>
<tr>
<td>LMK03002ISQX/NOPB</td>
<td>ACTIVE</td>
<td>WQFN</td>
<td>RHS</td>
<td>48</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>SN</td>
<td>Level-3-260C-168 HR</td>
<td>-40 to 85</td>
<td>K03002 I</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
Tape and Reel Information

TAPE DIMENSIONS

<table>
<thead>
<tr>
<th>A0</th>
<th>Dimension designed to accommodate the component width</th>
</tr>
</thead>
<tbody>
<tr>
<td>B0</td>
<td>Dimension designed to accommodate the component length</td>
</tr>
<tr>
<td>K0</td>
<td>Dimension designed to accommodate the component thickness</td>
</tr>
<tr>
<td>W</td>
<td>Overall width of the carrier tape</td>
</tr>
<tr>
<td>P1</td>
<td>Pitch between successive cavity centers</td>
</tr>
</tbody>
</table>

Reel Dimensions

- **Reel Diameter**
- **Reel Width (W1)**

Quadrant Assignments for PIN 1 Orientation in Tape

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin 1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMK03002CISQ/NOPB</td>
<td>QFN</td>
<td>48</td>
<td>250</td>
<td>178.0</td>
<td>16.4</td>
<td>7.3</td>
<td>7.3</td>
<td>1.3</td>
<td>12.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LMK03002CISQX/NOPB</td>
<td>QFN</td>
<td>48</td>
<td>2500</td>
<td>330.0</td>
<td>16.4</td>
<td>7.3</td>
<td>7.3</td>
<td>1.3</td>
<td>12.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LMK03002ISQ/NOPB</td>
<td>QFN</td>
<td>48</td>
<td>250</td>
<td>178.0</td>
<td>16.4</td>
<td>7.3</td>
<td>7.3</td>
<td>1.3</td>
<td>12.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LMK03002ISQX/NOPB</td>
<td>QFN</td>
<td>48</td>
<td>2500</td>
<td>330.0</td>
<td>16.4</td>
<td>7.3</td>
<td>7.3</td>
<td>1.3</td>
<td>12.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>

All dimensions are nominal.
TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMK03002CISQ/NOPB</td>
<td>WQFN</td>
<td>RHS</td>
<td>48</td>
<td>250</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LMK03002CISQX/NOPB</td>
<td>WQFN</td>
<td>RHS</td>
<td>48</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>38.0</td>
</tr>
<tr>
<td>LMK03002ISQ/NOPB</td>
<td>WQFN</td>
<td>RHS</td>
<td>48</td>
<td>250</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LMK03002ISQX/NOPB</td>
<td>WQFN</td>
<td>RHS</td>
<td>48</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>38.0</td>
</tr>
</tbody>
</table>

www.ti.com 20-Sep-2016
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.
NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.