Technical documentation training

LMK3H0102 Reference-Less 2-Differential or 5-Single-Ended Output PCle Gen 1-6 Compliant Programmable BAW Clock Generator

1 Features

- Integrated BAW resonator, no need for external reference
- Flexible frequency generation:
- Two channel dividers: up to three unique output frequencies from 2.5 MHz to 400 MHz
- LVCMOS outputs supported up to $200 \mathrm{MHz}: 1.8$ $\mathrm{V}, 2.5 \mathrm{~V}$, or 3.3 V
- Combination of AC-LVDS, DC-LVDS, LP-HCSL, and LVCMOS on OUT0 and OUT1 pins
- Additional LVCMOS output for generation of up to 5 LVCMOS clocks
- Total output frequency stability: $\pm 25 \mathrm{ppm}$
- 2 functional modes: $I^{2} \mathrm{C}$ or preprogrammed OTP
- Fully configurable $\mathrm{I}^{2} \mathrm{C}$ address
- Ambient temperature: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- PCle Gen 1 to Gen 6 compliant: Common Clock with or without SSC, SRNS, and SRIS
- Very low PCle jitter with SSC:
- PCle Gen 3 Common Clock jitter: 110 fs maximum (PCle limit is 1 ps)
- PCle Gen 4 Common Clock jitter: 110 fs maximum (PCle limit is 500 fs)
- PCle Gen 5 Common Clock jitter: 47 fs maximum (PCle limit is 150 fs)
- PCle Gen 6 Common Clock jitter: 28 fs maximum (PCle limit is 100 fs)
- Programmable SSC modulation depth
- Preprogrammed: $-0.1 \%,-0.25 \%,-0.3 \%$, and 0.5% down spread
- Register programmable: -0.1% to -3% down spread or $\pm 0.05 \%$ to $\pm 1.5 \%$ center spread
- 1.8 V to 3.3 V supply voltage
- Typical 65 mA current consumption for dual $100-$ MHz LP-HCSL outputs
- Internal LDOs with -93.1 dBc PSNR at 500 kHz switching noise for LP-HCSL outputs
- Start-up time: <1.5 ms
- Output-to-output skew: <50 ps
- Fail-safe digital input pins

2 Applications

- PCle Gen 1 to Gen 6 clock generation
- Server Motherboard
- NIC, SmartNIC
- Hardware Accelerator
- PCle SSD
- Add-In Card, PCle Expansion Card
- Multifunction Printer

3 Description

The LMK3H0102 is a 2-output PCle Gen 1 to Gen 6 compliant reference-less clock generator with Spread Spectrum Clocking (SSC) support. The part is based on TI proprietary Bulk Acoustic Wave (BAW) technology and provides ± 25-ppm clock outputs without any crystal or external clock reference. The device can provide two SSC clocks, two non-SSC clocks, or one SSC clock and one non-SSC clock at the same time. The device meets the full PCle compliance from Gen 1 to Gen 6, including Common Clock with or without SSC, Separate Reference No Spread (SRNS), and Separate Reference Independent Spread (SRIS).
The device can be easily configured through either GPIO pins or $I^{2} \mathrm{C}$ interface. An external DC/DC can be used to power the device. Refer to Power Supply Recommendations for detailed guidelines on power supply filtering and sourcing from DC/DC.

Package Information

PART NUMBER	PACKAGE $^{(1)}$	PACKAGE SIZE $^{(2)}$
LMK3H0102	RER $($ VQFN, 16)	$3.0 \mathrm{~mm} \times 3.0 \mathrm{~mm}$

(1) For all available packages, see Section 13.
(2) The package size (length \times width) is a nominal value and includes pins, where applicable.

Simplified Block Diagram

Table of Contents

	1 Features.. 1	9 Application and Implementation.............................. 33
	2 Applications.. 1	9.1 Application Information.. 33
	3 Description... 1	9.2 Typical Applications... 33
	4 Pin Configuration and Functions............................... 3	9.3 Power Supply Recommendations.......................... 41
	5 Specifications... 5	9.4 Layout.. 42
	5.1 Absolute Maximum Ratings................................... 5	10 Device Registers.. 43
	5.2 ESD Ratings... 5	10.1 Register Maps.. 43
	5.3 Recommended Operating Conditions...................... 5	11 Device and Documentation Support....................... 52
	5.4 Thermal Information... 5	11.1 Documentation Support..................................... 52
	5.5 Electrical Characteristics....................................... 6	11.2 Receiving Notification of Documentation Updates.. 52
	5.6 I2C Interface Specification................................... 12	11.3 Support Resources... 52
	6 Differential Voltage Measurement Terminology......... 14	11.4 Trademarks... 52
	7 Parameter Measurement Information....................... 15	11.5 Electrostatic Discharge Caution........................... 52
2	7.1 Output Format Configurations............................... 15	11.6 Glossary... 52
C	8 Detailed Description.. 17	12 Revision History.. 52
	8.1 Overview.. 17	13 Mechanical, Packaging, and Orderable
1	8.2 Functional Block Diagram.................................... 18	Information... 53
\geqslant	8.3 Feature Description... 18	13.1 Package Option Addendum................................ 57
	8.4 Device Functional Modes.................................... 23	13.2 Tape and Reel Information................................. 59
\cdots	8.5 Programming.. 30	

4 Pin Configuration and Functions

Figure 4-1. LMK3H0102 16-Pin VQFN Top View
Table 4-1. Pin Functions

PIN		TYPE ${ }^{(1)}$	DESCRIPTION
NAME	NO.		
OUTO_P, OUTO_N	8, 7	0	Clock output 0. Supports LP-HCSL (85Ω or 100Ω), LVDS or 1.8-V/2.5-V/3.3-V LVCMOS.
OUT1_P, OUT1_N	12, 11	0	Clock output 1. Supports LP-HCSL (85Ω or 100Ω), LVDS or 1.8-V/2.5-V/3.3-V LVCMOS.
REF_CTRL (REF_CLK)	15	I/O	Multifunctional pin. At power up, the state of this pin is latched to select the functionality of Pin 2, Pin 3 and Pin 4. Pull low or leave floating for I2C mode or high for OTP mode prior to power-up. After power-up, this pin can be programmed as an additional LVCMOS output (REF_CLK), active-high CLK_READY signal, or disabled (default). See REF_CTRL Operation for more details. This pin has an $880-\mathrm{k} \Omega$ internal pulldown resistor.
OE	1	1	Output Enable. Active low. 2-state logic input pin. This pin has a $75-\mathrm{k} \Omega$ internal pulldown resistor. This pin can control either OUT0 alone or OUT0 and OUT1. See Output Enable for more details. - Low/Floating: OUT0 and OUT1 enabled - High: OUT0 and OUT1 disabled
FMT_ADDR	2	1	Multifunctional pin. Functionality is determined by REF_CTRL (pin 15) at power up. See OTP Mode and I2C Mode for more details. This pin has an $880-\mathrm{k} \Omega$ internal pulldown resistor. - I2C Mode: This pin can select the I2C address, function as the output enable for OUT1, or have no function. - OTP Mode: This pin can set the output format, function as the output enable for OUT1, or have no function.

Table 4-1. Pin Functions (continued)

PIN		TYPE ${ }^{(1)}$	DESCRIPTION
NAME	NO.		
OTP_SELO/SCL, OTP_SEL1/SDA	3, 4	I, I/O	Multifunctional pin. Functionality is determined by REF_CTRL (pin 15) at power up. See OTP Mode and I2C Mode for details. These pins have $880-\mathrm{k} \Omega$ internal pulldown resistors. - I2C Mode: These pins are the I2C clock and data connections. - OTP Mode: These pins select the OTP page.
VDD	5, 14, 16	P	$1.8-\mathrm{V}, 2.5-\mathrm{V}$ or $3.3-\mathrm{V}$ device power supply. A $0.1-\mu \mathrm{F}$ capacitor must be placed as close to each of the pins as possible. For LMK3H0102V18, only provide 1.8 V to this pin.
VDDO_0, VDDO_1	10, 13	P	$1.8-\mathrm{V}, 2.5-\mathrm{V}$ or $3.3-\mathrm{V}$ OUT0 and OUT1 power supply. If VDD is 1.8 V or 2.5 V , the VDDO pins must be the same voltage as VDD. A $0.1-\mu \mathrm{F}$ capacitor must be placed as close to each of the pins as possible.
NC	6, 9	N/A	No connect. Pins can be connected to GND, VDD, or otherwise tied to any potential within the Supply Voltage range stated in the Absolute Maximum Ratings.
DAP	17	G	GND

(1) $\mathrm{I}=$ Input, $\mathrm{O}=$ Output, $\mathrm{I} / \mathrm{O}=$ Input or Output, $\mathrm{G}=\mathrm{Ground}, \mathrm{P}=$ Power.

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

		MIN	MAX	UNIT
V_{DD}	Device supply voltage	-0.3	3.9	V
V $\mathrm{V}_{\text {DDO }}$	Output supply voltage	-0.3	3.9	V
$\mathrm{V}_{\text {IN }}$	Logic input voltage ($\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DDO}}=-0.3$ to 3.9 V)	-0.3	3.9	V
	Voltage applied to OUTx_P and OUTx_N pins (when outputs are high or low)	-0.3	$V_{\text {DDO_x }}+0.3$	V
Vout	Voltage applied to OUTx_P and OUTx_N pins (when outputs are LVCMOS tri-state)	-0.3	1.89	V
	Voltage applied to OUTx_P and OUTx_N pins (when outputs are LP-HCSL or LVDS tri-state)	-0.3	1.5	V
TJ	Junction temperature		105	${ }^{\circ} \mathrm{C}$

(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

5.2 ESD Ratings

			VALUE	UNIT
$V_{\text {(ESD) }}$	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/ JEDEC JS-001, all pins ${ }^{(1)}$	± 2000	V
		Charged device model (CDM), per JEDEC specification JS-002, all pins ${ }^{(2)}$	± 500	

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

5.3 Recommended Operating Conditions

		MIN	NOM	MAX	UNIT
$V_{D D}$	Device supply voltage	1.71	1.8	1.89	V
		2.375	2.5	2.625	V
		3.135	3.3	3.465	V
$V_{\text {DDO }}$	Output supply voltage	1.71	1.8	1.89	V
		2.375	2.5	2.625	V
		3.135	3.3	3.465	V
T_{A}	Ambient temperature	-40		85	${ }^{\circ} \mathrm{C}$
T_{J}	Junction temperature	-40		105	${ }^{\circ} \mathrm{C}$
tramp	Power supply ramp time. $\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$	0.05		5	ms
$\mathrm{t}_{\text {ramp }}$	Power supply ramp time. $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$ or 3.3 V	0.05		5	ms

5.4 Thermal Information

THERMAL METRIC ${ }^{(1)}$		LMK3H0102	UNIT
		RER (QFN)	
		16 PINS	
$\mathrm{R}_{\text {өJA }}$	Junction-to-ambient thermal resistance	69.8	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJC(top) }}$	Junction-to-case (top) thermal resistance	56.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

THERMAL METRIC ${ }^{(1)}$		LMK3H0102	UNIT
		$\begin{gathered} \hline \text { RER (QFN) } \\ \hline 16 \text { PINS } \end{gathered}$	
$\mathrm{R}_{\text {өJв }}$	Junction－to－board thermal resistance	38.6	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\Psi_{\text {JT }}$	Junction－to－top characterization parameter	2.1	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\Psi_{J B}$	Junction－to－board characterization parameter	38.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJC（bot）}}$	Junction－to－case（bottom）thermal resistance	10.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$

（1）For more information about traditional and new thermal metrics，see the Semiconductor and IC Package Thermal Metrics application report．

5．5 Electrical Characteristics

$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DDO}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V}$ or $3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{A}, \min }$ to $\mathrm{T}_{\mathrm{A}, \max }$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
FREQUENCY STABILITY						
$\Delta \mathrm{f}_{\text {total }}$	Total frequency stability	All factors included：temperature variation，10－year aging，solder shift， hysteresis and initial frequency accuracy	－25		25	ppm

LP－HCSL CLOCK OUTPUT CHARACTERISTICS

$\mathrm{f}_{\text {out }}$	Output frequency		2.5		400	MHz
$\mathrm{V}_{\text {min }}$	Output low voltage（undershoot included）		－60		25	mV
$\mathrm{V}_{\text {overshoot }}$	Overshoot voltage． $\mathrm{V}_{\text {max }}-\mathrm{V}_{\mathrm{OH}}$				150	mV
$\begin{aligned} & \mathrm{V}_{\mathrm{OH}, 2.5 / 3 .} \\ & 3 \end{aligned}$	Output high voltage．VDD $=2.5 \mathrm{~V}$ or 3.3 V	code $=0$	594	625	656	mV
		code $=1$	614	647	679	mV
		code $=2$	635	668	702	mV
		code $=3$	656	690	725	mV
		code $=4$	676	712	747	mV
		code $=5$	697	733	770	mV
		code $=6$（default）	717	755	793	mV
		code $=7$	738	777	816	mV
		code $=8$	758	798	838	mV
		code $=9$	779	820	861	mV
		code $=10$	800	842	884	mV
		code $=11$	820	863	907	mV
		code $=12$	841	885	929	mV
		code $=13$	861	907	952	mV
		code $=14$	882	928	975	mV
		code $=15$	903	950	998	mV

$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DDO}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V}$ or $3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{A}, \min }$ to $\mathrm{T}_{\mathrm{A}, \max }$					
	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
$\mathrm{V}_{\mathrm{OH}, 1.8}$	Output high voltage. VDD $=1.8 \mathrm{~V}$	code $=0$	563	625688	mV
		code $=1$	582	$647 \quad 712$	mV
		code $=2$	601	$668 \quad 735$	mV
		code $=3$	621	$690 \quad 759$	mV
		code $=4$	641	712783	mV
		code $=5$	660	733 806	mV
		code $=6$ (default)	680	755831	mV
		code $=7$	699	$777 \quad 855$	mV
		code $=8$	718	798 878	mV
		code $=9$	738	$820 \quad 902$	mV
		code $=10$	758	842926	mV
		code $=11$	777	863 949	mV
		code $=12$	797	885974	mV
		code $=13$	816	907998	mV
		code $=14$	835	9281021	mV
		code $=15$	855	9501045	mV
$Z_{\text {diff }}$	LP-HCSL static differential impedance		80.75	$85 \quad 91.25$	Ω
			95	100105	Ω
$\mathrm{dV} / \mathrm{dt}$	Output slew rate (rising and falling edge)	Measured from -150 mV to +150 mV on the differential waveform, centered on the zero crossing point. OUTx_SLEW_RATE $=0^{(1)}$	2.1	3.1	V/ns
		Measured from -150 mV to +150 mV on the differential waveform, centered on the zero crossing point. OUTx_SLEW_RATE = 0	2.3	3.5	V/ns
		Measured from -150 mV to +150 mV on the differential waveform, centered on the zero crossing point. OUTx_SLEW_RATE = 1	2	3.2	V/ns
		Measured from -150 mV to +150 mV on the differential waveform, centered on the zero crossing point. OUTx_SLEW_RATE $=2$	1.7	2.8	V/ns
		Measured from -150 mV to +150 mV on the differential waveform, centered on the zero crossing point. OUTx_SLEW_RATE $=3$	1.4	2.7	V/ns
$\Delta \mathrm{dV} / \mathrm{dt}$	Rising edge rate to falling edge rate matching	See ${ }^{(1)}$		3	\%
ODC	Output duty cycle	See ${ }^{(1)}$	49.9	50.3	\%
		$\mathrm{f}_{\text {out }} \leq 325 \mathrm{MHz}$	48.8	50.8	\%
		$325 \mathrm{MHz}<\mathrm{f}_{\text {out }} \leq 400 \mathrm{MHz}$	48.6	51.8	\%
$\mathrm{t}_{\text {skew }}$	Output to output skew	Same FOD, LP-HCSL output		50	ps
$\mathrm{V}_{\text {cross }}$	Absolute crossing point voltage	See ${ }^{(1)}$	280	480	mV
$\Delta \mathrm{V}_{\text {cross }}$	Variation of $\mathrm{V}_{\text {cross }}$ over all clock edges	See ${ }^{(1)}$		30	mV
\| $\mathrm{V}_{\mathrm{RB}} \mid$	Absolute value of ring back voltage	See ${ }^{(1)}$	100		mV
$\mathrm{t}_{\text {stable }}$	Time before V_{RB} is allowed	See ${ }^{(1)}$	500		ps
$J_{\text {cycle-to- }}$ cycle	Cycle to cycle jitter, Common Clock no SSC	See ${ }^{(1)}$		150	ps

LMK3H0102
SNAS847－NOVEMBER 2023

$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DDO}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V}$ or $3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{A}, \min }$ to $\mathrm{T}_{\mathrm{A}, \max }$					
PARAMETER		TEST CONDITIONS	MIN	TYP MAX	UNIT
$\mathrm{C}_{\text {load }}$	Maximum load capacitance			15	pF
LVCMOS REFCLK CHARATERISTICS					
$\mathrm{f}_{\text {out }}$	Output frequency	See ${ }^{(2)}$	$12.5{ }^{(3)}$	200	MHz
$\mathrm{dV} / \mathrm{dt}$	Output slew rate	$\mathrm{V}_{\mathrm{DDO}}=3.3 \mathrm{~V} \pm 5 \%$, measured from 20% to $80 \%, 4.7 \mathrm{pF}$ load ${ }^{(2)}$	2.6	6.7	V/ns
		$\mathrm{V}_{\mathrm{DDO}}=2.5 \mathrm{~V} \pm 5 \%$, measured from 20% to $80 \%, 4.7 \mathrm{pF}$ load ${ }^{(2)}{ }^{(4)}$	1.8	4.5	V/ns
		$\mathrm{V}_{\mathrm{DDO}}=1.8 \mathrm{~V} \pm 5 \%$, measured from 20% to $80 \%, 4.7 \mathrm{pF}$ load ${ }^{(2)}{ }^{(4)}$	1	3.2	V/ns
$l_{\text {leak }}$	Output leakage current	Output tri-stated. $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DDO}}=3.465 \mathrm{~V}^{(2)}$ (4)	-5	5	$\mu \mathrm{A}$
$\mathrm{R}_{\text {out }}$	Output impedance		17		Ω
ODC	Output duty cycle	$\mathrm{f}_{\text {out }} \leq 156.25 \mathrm{MHz}^{(2)}$	45	55	\%
ODC	Output duty cycle	$\mathrm{f}_{\text {out }}>156.25 \mathrm{MHz}^{(2)}$	40	60	\%
$\mathrm{C}_{\text {load }}$	Maximum load capacitance	See ${ }^{(2)}$		15	pF
RJ	Random jitter	12 kHz to 20 MHz integrated jitter at 50 $\mathrm{MHz}^{(2)}$		0.5	ps

SSC CHARACTERISTICS

$\mathrm{f}_{\text {out }}$	Output frequency range that supports SSC (any output format)		2.5		200	MHz
$\mathrm{f}_{\text {SSC }}$	SSC modulation frequency		30	31.5	33	kHz
$\mathrm{f}_{\mathrm{SSC}}$ - deviation	SSC deviation (modulation depth)	Down spread (programmable)	-3		-0.1	\%
		Center spread (programmable)	± 0.05		± 1.5	\%
fssc-deviationaccuracy	SSC deviation accuracy	$\mathrm{f}_{\text {out }} \leq 100 \mathrm{MHz}$, down spread	0		0.01	\%
		$100 \mathrm{MHz}<\mathrm{f}_{\text {out }} \leq 200 \mathrm{MHz}$, down spread	0		0.05	\%
		$\mathrm{f}_{\text {out }} \leq 100 \mathrm{MHz}$, center spread	0		0.01	\%
		$100 \mathrm{MHz}<\mathrm{f}_{\text {out }} \leq 200 \mathrm{MHz}$, center spread	0		0.05	\%
df/dt	max SSC frequency slew rate	$0<\mathrm{f}_{\text {SSC-deviation }} \leq-0.5 \%$			1250	ppm/us
JITTER CHARACTERISTICS						
$J_{\text {PCle1-cc- }}$ SSC_off	PCle Gen 1 Common Clock jitter, SSC is off (jitter limit = 86 ps)	SSC disabled on both outputs			0.4	ps
$\mathrm{J}_{\mathrm{PCle}}$ 1-ccSSC_on	PCle Gen 1 Common Clock jitter, -0.5% \leq SSC < 0\% (jitter limit = 86 ps)	SSC enabled on both outputs			0.7	ps
JPCle2-ccSSC_off	PCle Gen 2 Common Clock jitter, SSC is off (jitter limit = 3 ps)	SSC disabled on both outputs		0.1	0.2	ps
$\begin{aligned} & \text { JPCle2-cc- } \\ & \text { SSC_on } \end{aligned}$	PCle Gen 2 Common Clock jitter, -0.5% \leq SSC $<0 \%$ (jitter limit = 3 ps)	SSC enabled on both outputs		0.2	0.35	ps
JPCle2SRNS	PCle Gen 2 SRNS jitter	SSC disabled on both outputs		0.1	0.26	ps
$J_{\text {PCle2- }}$ SRIS	PCle Gen 2 SRIS jitter, -0.3% s SSC < 0\%	SSC enabled on both outputs		0.2	0.36	ps
$\mathrm{J}_{\text {PCle3-cc- }}$ SSC_off	PCle Gen 3 Common Clock jitter, SSC is off (jitter limit = 1 ps)	SSC disabled on both outputs		32.8	60	fs
JPCle3-ccSSC_on	PCle Gen 3 Common Clock jitter, -0.5% \leq SSC < 0\% (jitter limit = 1 ps)	SSC enabled on both outputs		55.4	110	fs
$J_{\text {PCle3- }}$ SRNS	PCle Gen 3 SRNS jitter	SSC disabled on both outputs		35.9	67	fs
$J_{\text {PCle3- }}$ SRIS	PCle Gen 3 SRIS jitter, $-0.3 \% \leq$ SSC $<$ 0\%	SSC enabled on both outputs		155.6	317	fs
JPCle4-ccSSC_off	PCle Gen 4 Common Clock jitter, SSC is off (jitter limit = 500 fs)	SSC disabled on both outputs		32.8	60	fs

LMK3H0102

$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DDO}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V}$ or $3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{A}, \min }$ to $\mathrm{T}_{\mathrm{A}, \max }$

PARAMETER		TEST CONDITIONS	MIN TYP	MAX	UNIT
IdDo	Output supply current, per output channel	LP-HCSL. fout $\leq 100 \mathrm{MHz}$	10.1	10.8	mA
		LP-HCSL. $100 \mathrm{MHz}<\mathrm{f}_{\text {out }} \leq 200 \mathrm{MHz}$	13.2	14.1	mA
		LP-HCSL. $200 \mathrm{MHz}<\mathrm{f}_{\text {out }} \leq 300 \mathrm{MHz}$	13.7	15.1	mA
		LP-HCSL. $300 \mathrm{MHz}<\mathrm{f}_{\text {out }} \leq 400 \mathrm{MHz}$	14.4	16.4	mA
		LVDS. $\mathrm{f}_{\text {out }} \leq 100 \mathrm{MHz}$	6	8	mA
		LVDS. $100 \mathrm{MHz}<\mathrm{f}_{\text {out }} \leq 200 \mathrm{MHz}$	6.8	9.2	mA
		LVDS. $200 \mathrm{MHz}<\mathrm{f}_{\text {out }} \leq 300 \mathrm{MHz}$	7.6	10.2	mA
		LVDS. $300 \mathrm{MHz}<\mathrm{f}_{\text {out }} \leq 400 \mathrm{MHz}$	8.4	11.3	mA
		1.8 V LVCMOS. $\mathrm{f}_{\text {out }}=50 \mathrm{MHz}$	4.2	5	mA
		1.8 V LVCMOS. $\mathrm{f}_{\text {out }}=200 \mathrm{MHz}$	11.7	13.4	mA
		2.5 V LVCMOS. $\mathrm{f}_{\text {out }}=50 \mathrm{MHz}$	5.6	6.4	mA
		2.5 V LVCMOS. $\mathrm{f}_{\text {out }}=200 \mathrm{MHz}$	15.3	17.3	mA
		3.3 V LVCMOS. $\mathrm{f}_{\text {out }}=50 \mathrm{MHz}$	6.8	7.7	mA
		3.3 V LVCMOS. $\mathrm{f}_{\text {out }}=200 \mathrm{MHz}$	19.2	21.7	mA
IdDREF	REFCLK supply current	1.8 V LVCMOS. $\mathrm{f}_{\text {out }}=50 \mathrm{MHz}$	3.4	3.9	mA
		1.8 V LVCMOS. $\mathrm{f}_{\text {out }}=200 \mathrm{MHz}$	9.5	11.7	mA
		2.5 V LVCMOS. $\mathrm{f}_{\text {out }}=50 \mathrm{MHz}$	4.7	5.3	mA
		2.5 V LVCMOS. $\mathrm{f}_{\text {out }}=200 \mathrm{MHz}$	12.8	15.8	mA
		3.3 V LVCMOS. $\mathrm{f}_{\text {out }}=50 \mathrm{MHz}$	5.9	6.6	mA
		3.3 V LVCMOS. $\mathrm{f}_{\text {out }}=200 \mathrm{MHz}$	16.6	20.2	mA

PSNR CHARACTERISTICS

$\mathrm{PSNR}_{\mathrm{LVC}}$ MOS	Power Supply Noise Rejection for LVCMOS outputs ${ }^{(4)}$	10 kHz	-76.7	-61.2	dBc
		50 kHz	-80.9	-60.9	dBc
		100 kHz	-81.8	-60	dBc
		500 kHz	-84.3	-64.9	dBc
		1 MHz	-97.6	-82.1	dBc
		5 MHz	-104.3	-83.1	dBc
		10 MHz	-108.7	-94.2	dBc
$\begin{aligned} & \text { PSNR }{ }_{\text {LVD }} \\ & \mathrm{s} \end{aligned}$	Power Supply Noise Rejection for LVDS outputs ${ }^{(4)}$	10 kHz	-79.5	-74.5	dBc
		50 kHz	-83.5	-77	dBc
		100 kHz	-83	-75.3	dBc
		500 kHz	-88.3	-83.1	dBc
		1 MHz	-123.4	-106.6	dBc
		5 MHz	-115	-92.3	dBc
		10 MHz	-123.7	-108.9	dBc
$\begin{aligned} & \text { PSNR }_{\text {LP- }} \\ & \text { HCSL } \end{aligned}$	Power Supply Noise Rejection for LPHCSL outputs ${ }^{(4)}$	10 kHz	-80.1	-74.5	dBc
		50 kHz	-84.7	-76.7	dBc
		100 kHz	-84.6	-73.7	dBc
		500 kHz	-93.1	-82.9	dBc
		1 MHz	-124.6	-106.8	dBc
		5 MHz	-114.3	-92.9	dBc
		10 MHz	-123	-109.2	dBc

2-STATE LOGIC INPUT CHARACTERISTICS

$\mathrm{V}_{\text {IH-Pin2 }}$	Input high voltage for Pin 2		0.7	$\mathrm{~V}_{\mathrm{DD}}+$
0.3	V			

LMK3H0102
SNAS847 - NOVEMBER 2023

$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DDO}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V}$ or $3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{A}, \text { min }}$ to $\mathrm{T}_{\mathrm{A}, \max }$					
PARAMETER		TEST CONDITIONS	MIN	TYP MAX	UNIT
$\mathrm{V}_{\text {IL-Pin2 }}$	Input low voltage for Pin 2		$\begin{array}{r} \text { GND - } \\ 0.3 \end{array}$	$\begin{array}{r} 0.3 \\ \times V_{D D} \end{array}$	V
$\mathrm{V}_{\mathrm{IH}-\mathrm{Pin} 1}$	Input high voltage for Pin 1		1.15	$\begin{array}{r} \mathrm{V}_{\mathrm{DD}}+ \\ 0.3 \end{array}$	V
$\mathrm{V}_{\text {IL-Pin1 }}$	Input low voltage for Pin 1		-0.3	0.65	V
$\mathrm{V}_{\text {IH-Pin } 3,4}$	Input voltage high for OTP_SEL[1:0]		$\begin{aligned} & 0.7 \times \\ & V_{D D} \end{aligned}$	$\begin{array}{r} \mathrm{V}_{\mathrm{DD}}+ \\ 0.3 \end{array}$	V
$\mathrm{V}_{\text {IL-Pin } 3,4}$	Input voltage low for OTP_SEL[1:0]		$\begin{array}{r} \hline \text { GND - } \\ 0.3 \end{array}$	0.8	V
$\mathrm{V}_{\text {IH-Pin15 }}$	Input voltage high for Pin 15		$\begin{array}{r} 0.65 \times \\ V_{D D} \end{array}$	$\begin{array}{r} \mathrm{V}_{\mathrm{DD}}+ \\ 0.3 \end{array}$	V
VIL-Pin15	Input voltage low for Pin 15		-0.3	0.4	V
$\mathrm{R}_{\text {ext-up/ }}$ down-Pin1,2	Recommended external pullup or pulldown resistor for Pin 1, 2		0	110	k Ω
$R_{\text {ext-up/ }}$ downPin3,4,15	Recommended external pullup or pulldown resistor for Pin 3, 4, 15		0	$10 \quad 60$	k Ω
$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$	OE signal rise or fall time			10	ns
$\mathrm{C}_{\text {in }}$	Input capacitance			3	pF

(1) PCle test load, 15 dB loss at $4 \mathrm{GHz}, \mathrm{f}_{\text {out }}=100 \mathrm{MHz}, Z_{\text {diff }}=100 \Omega$
(2) Tested with $10 \mathrm{k} \Omega$ external pullup or pulldown resistor
(3) REFCLK can be $/ 2,14$, /8 from either FODO or FOD1. Both FODs support 100 to 400 MHz .
(4) All power supply pins are tied together. $0.1 \mu \mathrm{~F}$ capacitor placed close to each power supply pin. Apply 50 mVpp ripple and measure the spur level at the clock output
(5) Contact TI for details

5.6 I2C Interface Specification

All timing requirements referred to $\mathrm{V}_{\mathrm{IH}-\min }$ and $\mathrm{V}_{\mathrm{IL}-\max }$. Chip $\mathrm{V}_{\mathrm{DD}}=\mathrm{I}^{2} \mathrm{C} \mathrm{V}_{\mathrm{DD}}$.

PARAMETER		TEST CONDITIONS	STANDARD MODE		FAST MODE		UNIT	
		MIN	MAX	MIN	MAX			
VIL	Input low voltage			-0.3	$\begin{aligned} & 0.3 \times \\ & V_{D D} \end{aligned}$	-0.3	$\begin{gathered} 0.3 \times \\ V_{D D} \end{gathered}$	V
$\mathrm{V}_{1 \mathrm{H}}$	Input high voltage		$\begin{gathered} 0.7 \times \\ V_{D D} \end{gathered}$	$\begin{array}{r} \mathrm{V}_{\mathrm{DD}}+ \\ 0.3 \end{array}$	$\begin{array}{r} 0.7 \\ \times V_{D D} \end{array}$	$\begin{array}{r} \mathrm{V}_{\mathrm{DD}}+ \\ 0.3 \end{array}$	V	
$\mathrm{V}_{\text {hys }}$	Hysteresis of Schmitt trigger input				$\begin{gathered} 0.05 \times \\ V_{D D} \end{gathered}$		V	
$\mathrm{V}_{\text {OL1 }}$	Low level output voltage 1	At 3 mA sink current. $\mathrm{V}_{\mathrm{DD}}>2 \mathrm{~V}$	0	0.4	0	0.4	V	
$\mathrm{V}_{\text {OL2 }}$	Low level output voltage 2	At 2 mA sink current. $\mathrm{V}_{\mathrm{DD}} \leq 2 \mathrm{~V}$			0	$\begin{gathered} 0.2 x \\ V_{D D} \end{gathered}$	V	
loL	Low level output current	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	3		3		mA	
		$\mathrm{V}_{\text {OL }}=0.6 \mathrm{~V}$			6		mA	
t_{FF}	Output fall time from VIHmin to VILmax			250	$\begin{gathered} 20 \times \\ \left(\mathrm{V}_{\mathrm{DD}} /\right. \\ 5.5 \mathrm{~V}) \end{gathered}$	250	ns	
tsp	Pulse width of spikes that must be suppressed by the input filter				0	50	ns	
I_{i}	Input current each I/O pin	$0.1 \times \mathrm{V}_{\mathrm{DD}}<\mathrm{V}_{\text {IN }}<0.9 \times \mathrm{V}_{\mathrm{DD} \text { max }}$	-10	10	-10	10	$\mu \mathrm{A}$	
C_{i}	Capacitance for each I/O pin			10		10	pF	
$\mathrm{f}_{\text {SCL }}$	SCL clock frequency		0	100	0	400	kHz	
$\mathrm{t}_{\text {HD-STA }}$	Hold time (repeated) START condition	After this period, the first clock pulse is generated	4		0.6		$\mu \mathrm{s}$	

All timing requirements referred to $\mathrm{V}_{\mathrm{IH}-\min }$ and $\mathrm{V}_{\mathrm{IL}-\max }$. Chip $\mathrm{V}_{\mathrm{DD}}=\mathrm{I}^{2} \mathrm{C} \mathrm{V}_{\mathrm{DD}}$.

PARAMETER		TEST CONDITIONS	STANDARD MODE	FAST MODE	UNIT	
		MIN MAX	MIN MAX			
tlow	Low period of the SCL clock			4.7	1.3	$\mu \mathrm{s}$
thigh	High period of the SCL clock		4	0.6	$\mu \mathrm{s}$	
$\mathrm{t}_{\text {su-Sta }}$	Set-up time for a repeated START condition		4.7	0.6	$\mu \mathrm{s}$	
$t_{\text {thd-dat }}$	Data hold time	${ }^{2} \mathrm{C}$ bus devices	0	0	$\mu \mathrm{s}$	
$\mathrm{t}_{\text {SU-DAT }}$	Data set-up time		0.25	0.1	$\mu \mathrm{s}$	
t_{R}	Rise time of both SDA and SCL signals ${ }^{(1)}$		300	$20 \quad 300$	ns	
t_{F}	Fall time of both SDA and SCL signals ${ }^{(1)}$		300	$\begin{array}{cc} \hline 20 \times & \\ \left(\mathrm{V}_{\mathrm{DD}} /\right. & 300 \\ 5.5 \mathrm{~V}) & \end{array}$	ns	
$\mathrm{t}_{\text {SU-STO }}$	Set-up time for STOP condition		4	0.6	$\mu \mathrm{s}$	
$\mathrm{t}_{\text {buF }}$	Bus free time between a STOP and START condition		4.7	1.3	$\mu \mathrm{s}$	
C_{B}	Capacitive load for each bus line		400	400	pF	
$\mathrm{t}_{\mathrm{VD} \text {-DAt }}$	Data valid time		3.45	0.9	$\mu \mathrm{s}$	
$\mathrm{t}_{\mathrm{V} \text { D-ACK }}$	Data valid acknowledge time		3.45	0.9	$\mu \mathrm{s}$	
V_{NL}	Noise margin at the low level	For each connected device, including hysteresis	$\begin{aligned} & 0.1 x \\ & V_{D D} \end{aligned}$	$\begin{aligned} & 0.1 \times \\ & V_{D D} \end{aligned}$	V	
V_{NH}	Noise margin at the high level	For each connected device, including hysteresis	$\begin{aligned} & 0.2 x \\ & V_{D D} \end{aligned}$	$\begin{aligned} & 0.2 \times \\ & V_{D D} \end{aligned}$	V	

6 Differential Voltage Measurement Terminology

The differential voltage of a differential signal can be described by two different definitions, causing confusion when reading data sheets or communicating with other engineers. This section will address the measurement and description of a differential signal so that the reader is able to understand and distinguish between the two different definitions when used.

The first definition used to describe a differential signal is the absolute value of the voltage potential between the inverting and noninverting signal. The symbol for this first measurement is typically $\mathrm{V}_{\text {ID }}$ or $\mathrm{V}_{\text {OD }}$ depending on if an input or output voltage is being described.

The second definition used to describe a differential signal is to measure the potential of the noninverting signal with respect to the inverting signal. The symbol for this second measurement is V_{SS} and is a calculated parameter. Nowhere in the IC does this signal exist with respect to ground, the signal only exists in reference to the differential pair. $V_{S S}$ can be measured directly by oscilloscopes with floating references, otherwise this value can be calculated as twice the value of V_{OD} as described in the first description.
Figure 6-1 shows the two different definitions side-by-side for inputs and Figure 6-2 shows the two different definitions side-by-side for outputs. The $V_{I D}$ and $V_{O D}$ definitions show V_{A} and $V_{B} D C$ levels that the noninverting and inverting signals toggle between with respect to ground. $\mathrm{V}_{\text {SS }}$ input and output definitions show that if the inverting signal is considered the voltage potential reference, the noninverting signal voltage potential is now increasing and decreasing above and below the noninverting reference. Thus the peak-to-peak voltage of the differential signal can be measured.
$\mathrm{V}_{I D}$ and V_{OD} are often defined as volts (V) and V_{SS} is often defined as volts peak-to-peak (V_{PP}).

GND
Figure 6-1. Two Different Definitions for Differential Input Signals

Figure 6-2. Two Different Definitions for Differential Output Signals

7 Parameter Measurement Information

7．1 Output Format Configurations

This section describes the characterization test setup of each output format option in the LMK3H0102．

Figure 7－1．LVCMOS Output Configuration During Device Test

Figure 7－2．AC－LVDS Output Configuration During Device Test

Figure 7－3．DC－LVDS Output Configuration During Device Test

Figure 7－4．LP－HCSL Output Configuration During Non－PCle Device Test

Figure 7－5．LP－HCSL Output Configuration During PCle Device Test

Figure 7-6. PCle Test Configuration Using Phase Noise Analyzer

8 Detailed Description

8.1 Overview

The LMK3H0102 is a dual-channel clock generator primarily used for PCle Gen 1 to Gen 6 clock generation, either with or without Spread Spectrum Clocking (SSC). The device has an integrated Bulk Acoustic Wave (BAW) resonator and does not require any external crystal or clock reference. The device has four selectable pages of memory, referred to as OTP pages. The collection of these pages in memory is referred to as the EFUSE.
The default output configuration is two $100-\mathrm{MHz}$ clocks, each with a $100-\Omega$ LP-HCSL output format, both disabled at startup. The LMK3H0102 supports 100- Ω LP-HCSL, $85-\Omega$ LP-HCSL, LVDS and $1.8-\mathrm{V}, 2.5-\mathrm{V}$, or $3.3-\mathrm{V}$ LVCMOS output formats, as well as programmable output frequencies up to 200 MHz for single-ended outputs and 400 MHz for differential outputs. The LMK3H0102V33 is the part number for the default configuration with a 3.3 V supply voltage. The LMK3H0102V18 is the part number for the default configuration with a 1.8 V supply voltage. Custom configuration part numbers are LMK3H0102Axxx, where xxx denotes the custom configuration number.

The LMK3H0102 supports two functional modes determined by the REF_CTRL pin at power-up: One-Time Programming (OTP) mode or $I^{2} \mathrm{C}$ mode.

1. In OTP mode, one out of four OTP pages is selected by pins OTP_SEL0 and OTP_SEL1. The default output frequency across all OTP pages is 100 MHz .
2. In ${ }^{2} \mathrm{C}$ mode, the LMK3H0102 is configured by modifying the active registers. If a configuration other than the default operation is desired, the registers must be written every time at start-up.
Refer to Pin Configuration and Functions for the detailed descriptions of the device pins.
The LMK3H0102 has flexible SSC configurations, including:
3. SSC disabled on both outputs
4. SSC enabled on both outputs
5. SSC enabled on a single output

The SSC specifications and jitter performance are fully compliant to PCle Gen 1 to Gen 6. Refer to SpreadSpectrum Clocking for SSC and jitter performance details.

8．2 Functional Block Diagram

Figure 8－1．LMK3H0102 Functional Block Diagram

8．3 Feature Description

8．3．1 Device Block－Level Description

The LMK3H0102 is a reference－less clock generator with an integrated BAW oscillator．The BAW frequency， nominally 2467 MHz ，is divided down by two fractional output dividers（FODs），each of which is capable of generating frequencies between 100 MHz and 400 MHz ．Each FOD can be routed to one of two channel dividers，which divides the FOD frequency down to generate frequencies from 2.5 MHz to 200 MHz ．For generating frequencies above 200 MHz ，the edge combiner，which utilizes both FODs，must be used．In this case，the channel divider is bypassed，resulting in generated frequencies from 200 MHz to 400 MHz ． An additional LVCMOS clock，with a voltage corresponding with VDD，can be optionally generated on the REF＿CTRL pin．By default，this pin is disabled and high impedance．

8．3．2 Device Configuration Control

Figure 8－2 shows the relationships between device states，the configuration pins，device initialization，and device operational modes．OTP mode is entered when the REF＿CTRL pin is pulled high at start－up．${ }^{2}{ }^{2} \mathrm{C}$ mode is entered when the REF＿CTRL pin is pulled low at start－up．In OTP mode，the state of the OTP＿SELO／SCL and OTP＿SEL1／SDA pins determines the OTP page that is loaded into the active registers．The device is one－time programmable，meaning that the register settings stored into the internal EFUSE cannot be changed．The device can be transitioned from OTP to $I^{2} \mathrm{C}$ mode，or vice versa，by changing the state of the REF＿CTRL pin，then triggering a device power cycle by pulling VDD low，then high again．In OTP mode，a change in the level of the OTP＿SEL0 or OTP＿SEL1 pins，followed by pulling the REF＿CTRL pin high，will dynamically change the active

OTP page. The time between the first OTP_SEL pin change and pulling REF_CTRL high must be less than 350 us, otherwise the device will enter I2C Mode.
In $I^{2} \mathrm{C}$ mode, the state of the FMT_ADDR pin can determine the $I^{2} \mathrm{C}$ address of the device, with the OTP_SELO/SCL and OTP_SEL1/SDA pins re-purposed as $I^{2} \mathrm{C}$ clock and data pins, respectively. In $I^{2} \mathrm{C}$ mode, the host can update the active device registers. If using a configuration different than the programmed configuration, the registers must be written after each power cycle.

The device can be placed into a low power state by setting the PDN bit (R10[1]) to '1'. Clearing the PDN bit takes the device out of the low power state. If DEV_IDLE_STATE_SEL bit (R10[4]) is a '0' and the outputs are disabled, the device enters the low power state. Entering the low power state is required for changing the frequency of the FOD used by Channel 0 , changing the SSC configuration, and changing the output format. Tl recommends performing register writes within this low power state. Set the OTP_AUTOLOAD_DIS (R10[2]) bit to a ' 1 ' to prevent automatic loading of OTP Page 0 prior to setting PDN to ' 0 '.
There are two fields that determine the state of the device when coming out of the low power state. PIN_RESAMPLE_DIS (R10[3]) controls whether or not the FMT_ADDR, OTP_SEL0/SCL, OTP_SEL1/SDA, and REF_CTRL pins are resampled when exiting the low power state. If the pins are resampled, the device can be transitioned into OTP mode if the REF_CTRL pin is pulled high. Set this bit to a ' 1 ' to disable this functionality. OTP_AUTOLOAD_DIS controls whether or not the contents of OTP Page 0 are loaded into the device registers when exiting the low power state. If OTP_AUTOLOAD_DIS bit is a ' 1 ' and PIN_RESAMPLE_DIS is a ' 1 ', then the register contents do not change. If OTP_AUTOLOAD_DIS bit is a '0' and PIN_RESAMPLE_DIS is a ' 1 ', then the contents of OTP Page 0 are loaded to the registers. If PIN_RESAMPLE_DIS is a '0' and REF_CTRL is pulled high, then the device enters OTP Mode. In this case, OTP_SELO/SCL and OTP_SEL1/SDA control the OTP page loaded into the device registers.

Figure 8－2．LMK3H0102 Device Mode Diagram
In $I^{2} \mathrm{C}$ Mode，the device registers are from the contents of OTP Page 0．In OTP mode，these values come from one of the four OTP pages，selectable based on the state of the OTP＿SELx pins on start－up．Figure 8－3 shows interface and control blocks within the LMK3H0102，with the arrows referring to read and write access from the different embedded memories．

Figure 8－3．LMK3H0102 Interface and Control Blocks

8．3．3 OTP Mode

In this mode，the configuration pins allow for selection of one of four one－time programmable（OTP）pages，as well as output format selection．$I^{2} \mathrm{C}$ is not enabled in this mode，as the $I^{2} \mathrm{C}$ pins are repurposed for OTP page selection．Table 8－1 shows the OTP page selected based on the state of the OTP＿SELO and OTP＿SEL1 pins．In OTP mode，the FMT＿ADDR pin is ignored by default．This is overridden if OUT＿FMT＿SRC＿SEL（R9［8］）$=1$ is burnt into the OTP in the configuration．The output format is determined by Table 8－2．

Table 8－1．OTP Page Selection in OTP Mode

OTP＿SEL1 Pin	OTP＿SELO Pin	OTP Page
Low	Low	0
Low	High	1
High	Low	2
High	High	3

Table 8-2. FMT_ADDR Output Format Options

OUT_FMT_SR C_SEL	FMT_ADDR Pin	Output Format
0	X	Set by OUT0_FMT (R6[2:0])/ OUT1_FMT (R7[4:2])
1	GND	LP-HCSL 100Ω Termination
1	VDD	LP-HCSL 85Ω Termination

The EFUSE of the devices is permanently programmed and has OTP_BURNT(RO[0]) = 1. If a new configuration is desired, the configuration must be loaded through $\mathrm{I}^{2} \mathrm{C}$ on each start-up. Contact Tl for creation of a custom OTP configuration.

The following fields can be unique between the four OTP pages. All other register settings are shared between the OTP pages:

- SSC_EN: Enable or disable SSC.
- OE_0: Enable or disable OUTO.
- OE_1: Enable or disable OUT1.
- OP_TYPE_CH0: OUT0 output format type, see Output Format Types.
- OP_TYPE_CH1: OUT1 output format type, see Output Format Types.
- SSC_SETTING: SSC modulation type, see Spread Spectrum Clocking.

When OTP_SEL1 or OTP_SEL0 pin state changes, the device automatically goes through a power cycle and reloads the new OTP page. The time elapsed from when pins 3 and 4 change to a stable state in the new OTP is no more than 1.5 ms .

8.3.4 $\mathrm{I}^{2} \mathrm{C}$ Mode

In this mode, $I^{2} \mathrm{C}$ is enabled and the SCA and SDL pins function as the $I^{2} \mathrm{C}$ clock and $I^{2} \mathrm{C}$ data pins, respectively. Table 8-3 shows the four default $\mathrm{I}^{2} \mathrm{C}$ addresses selectable by the FMT_ADDR pin. The 5 MSBs of the $\mathrm{I}^{2} \mathrm{C}$ address are set in the upper five bits of I2C_ADDR (R12[14:8]).

If I2C_ADDR_LSB_SEL $(R 12[15])=0$, then the FMT_ADDR pin is ignored, and the ${ }^{2} \mathrm{C}$ address is solely determined by I2C_ADDR.

Table 8-3. $I^{2} \mathrm{C}$ Address Selection

REF_CTRL PIN $^{(1)}$	FMT_ADDR PIN $^{\text {High }}$	$\mathbf{I}^{2} \mathbf{C ~ A D D R E S S}^{(2)}$
High	N/A (I2C disabled)	
Low	0	$0 \times 68 / 0 \times D 0$
Low	1	$0 \times 69 / 0 \times D 2$
Low	Tied to SDA	$0 \times 6 \mathrm{~A} / 0 \times D 4$
Low	Tied to SCL	$0 \times 6 \mathrm{~B} / 0 \times D 8$

(1) This is the state of the REF_CTRL pin at power-up, not the live pin state.
(2) The $0 \times \mathrm{D} 0,0 \times \mathrm{D} 2,0 \times \mathrm{D} 4$, and $0 \times \mathrm{D} 8$ addresses are with the R/W bit included set to ' 0 '.

When changing the registers of the device, first set PDN to '1', write to the device registers, then set PDN to '0'.Figure 8-4 shows this process.

Figure 8-4. LMK3H0102 Programming Sequence

8.4 Device Functional Modes

8.4.1 Fail-Safe Inputs

The LMK3H0102 digital input pins are designed to support fail-safe input operation, with the exception of the REF_CTRL pin. This feature allows the user to drive the digital inputs before VDD is applied without damaging the device. Refer to Section 5.1 for more information on the maximum input voltages supported by the device.

8.4.2 Fractional Output Dividers

The LMK3H0102 contains two fractional output dividers. If all outputs are able to be generated by a single FOD, TI recommends disabling FOD1 to conserve power and improve performance. If no output channels select FOD1, then FOD1 is disabled.

8.4.2.1 FOD Operation

The internal BAW resonator is divided down by one or two Fractional Output Dividers (FODs). FODO has an SSC generator and FOD1 does not have an SSC generator. If both OUT0 and OUT1 must be SSC clocks, the two clocks must be sourced by FODO. If one SSC clock and one non-SSC clock are required at the same time, then FODO is enabled for the SSC clock and FOD1 is enabled for the non-SSC clock. If neither output clock requires SSC, then either FOD can be used.

Note

TI recommends that FODO be used as the default FOD if only one FOD is needed for an application. If both FODs are in use, TI recommends using FOD0 with OUT0 and FOD1 with OUT1.

The maximum frequency that can be generated at the clock outputs by a single FOD is 200 MHz , as the minimum channel divider value is a divide by two. To generate a greater than 200 MHz output, the edge combiner is used, bypassing the channel dividers. This requires that both FODs are enabled and have the same integer divider and fractional numerator values, and the same gain calibration values. When one of the outputs exceeds 200 MHz , the other output can only select the shared FOD frequency divided by one of the channel divider values, or be the FOD frequency. Below 200 MHz , the two FODs can be configured independently so that OUT0 and OUT1 can have different frequencies. TI recommends sourcing from a single FOD whenever possible to make sure that OUT0 and OUT1 have a deterministic phase relationship.

The FODs in the LMK3H0102 can be configured to accommodate various output frequencies through I2C programming, or in the absence of programming, the one-time programmed (OTP) settings. The FODs can be configured by setting the integer (FODx_N_DIV) and fractional (FODx_NUM) divide values. Table 8-4 shows the register locations for these fields for each FOD.

Table 8-4. FOD Integer and Numerator Divide Locations

Field	Register
FOD0_N_DIV	R0[9:3]
FODO_NUM[23:16]	R1[15:8]
FOD0_NUM[15:0]	R2[15:0]
FOD1_N_DIV	R3[15:9]
FOD1_NUM[23:16]	R6[12:5]
FOD1_NUM[15:0]	R8[15:0]

An example of how to set the integer and numerator divide values is shown in Equation 1 and Equation 2.

$$
\begin{equation*}
\text { FODx_N_DIV = floor }\left(\mathrm{F}_{\mathrm{BAW}} / \mathrm{F}_{\mathrm{FOD}}\right) \tag{1}
\end{equation*}
$$

where:

- FODx_N_DIV: Integer portion of the FOD divide value (7 bits, 6 to 24)
- $F_{\text {BAW }}$: BAW frequency, 2467 MHz plus offset, described in further detail below
- $\mathrm{F}_{\text {FOD }}$: Desired FOD frequency (100 MHz to 400 MHz)

$$
\begin{equation*}
\text { FODx_NUM }=\operatorname{int}\left(\left(\left(F_{B A W} / F_{F O D}\right)-\text { FODx_N_DIV }\right) \times 2^{24}\right) \tag{2}
\end{equation*}
$$

where FODx_NUM is the fractional portion of the FOD divide value (24 bits, that is 0 to 16777215).
The output frequency ($\mathrm{F}_{\text {OUT }}$) is related to the FOD frequency as given in Equation 3, or is equal to the FOD frequency when the edge combiner is enabled. OUTDIV can be $2,4,6,8,10,20$, or 40.

$$
\begin{equation*}
\mathrm{F}_{\text {OUT }}=\mathrm{F}_{\text {FOD }} / \text { OUTDIV } \tag{3}
\end{equation*}
$$

Use Equation 4 to calculate the actual value of the BAW frequency for a device. Users can find the value of BAWFREQ_OFFSET_FIXEDLUT by reading R238, which is a signed 16-bit value.

$$
\begin{equation*}
\mathrm{F}_{\mathrm{BAW}}=2467 \mathrm{MHz} \times(1+(\text { BAWFREQ_OFFSET_FIXEDLUT } \times 128 \mathrm{E}-9)) \tag{4}
\end{equation*}
$$

8.4.2.2 Edge Combiner

Use the edge combiner to generate output frequencies greater than 200 MHz . To use the Edge Combiner, set CH0_EDGE_COMB_EN (R3[3]) or CH1_EDGE_COMB_EN (R3[7]) to '1'. When using the edge combiner, both FODs must operate at the same exact frequency (that is, the divide values must match). The device handles this by automatically loading the divider values from FOD0 into FOD1 when either CHx_EDGE_COMB_EN bit is set to a ' 1 '. SSC on FODO is not supported when using the edge combiner, and must not be enabled. Either of the FODs can still generate the LVCMOS REF_CLK output.
For proper edge combiner operation, the following conditions must be true:

- The gain calibration codes for both FODs must be averaged. For example, if DTC1_GAIN_RT = 200, and DTC2_GAIN_RT $=220$, then both of these fields must be written to 210 . The gain calibration codes are in the protected register space. Unlock the protected registers using R12[7:0] $=0 \times 5 \mathrm{~B}$, write only the averaged gain calibration codes, and then lock the protected registers by setting R12[7:0] $=0 \times 00$. See R146, R147, and R148 for more information.
- If the edge combiner is used for OUT1 only, CHO_FOD_SEL (R3[4]) must always be set to '0' (FODO), regardless of the disable state of OUT0.

8.4.2.3 Digital State Machine

The digital state machine of the LMK3H0102 has a clock that originates from one of the FODs. The FOD selected by CHO_FOD_SEL (R3[4]) drives the input to the state machine clock divider. The total divide value is the DIG_CLK_N_DIV (R0[9:3]) field plus two. Set DIG_CLK_N_DIV such that the FOD frequency divided by the total state machine clock divide value is between 40 MHz and 50 MHz . The divider value used to set this clock is equal to the value stored in. As an example, if the frequency of FODO is 200 MHz , and CHO_FOD_SEL is a ' 0 ', then DIG_CLK_N_DIV must be set to '2', as 200 MHz divided by 4 is 50 MHz .

8.4.2.4 Spread-Spectrum Clocking

FODO supports spread-spectrum clocking (SSC). SSC can be used to reduce peak radiated emissions by modulating the output frequency. When SSC_EN (R4[0]) = '1', any outputs that are sourced from FODO have SSC. SSC_MOD_TYPE (R4[1]) selects between down-spread modulation (SSC_MOD_TYPE $=0$) or centerspread modulation (SSC_MOD_TYPE = 1). The LMK3H0102 has four built-in down-spread SSC options, as well as a custom SSC option. SSC_CONFIG_SEL (R9[11:9]) selects between the custom or preconfigured options. The preconfigured options are optimized for a 200 MHz output from FODO. Table $8-5$ details the register settings for the preconfigured SSC options. The preconfigured SSC options are optimized for 200 MHz outputs from FODO. If the edge combiner is used, then spread-spectrum clocking must be disabled.

Table 8-5. Predefined SSC Configurations

SSC_CONFIG_SEL	Down-spread SSC Depth
0×0	Custom, based on SSC_STEPS and SSC_STEP_SIZE
0×1	-0.10%
0×2	-0.25%
0×3	-0.30%
0×4	-0.50%
All other values	Reserved

If Custom SSC is selected, then SSC_STEPS (R4[14:2]) and SSC_STEP_SIZE (R5) must be configured to set the modulation depth. Use Equation 5 and Equation 6 to determine the SSC_STEPS (R4[14:2]) register settings, and use Equation 7 or Equation 8 to determine the SSC_STEP_SIZE (R5) settings. Equation 7 is for down-spread SSC and Equation 8 is for center-spread SSC.

Down-spread: SSC_STEPS $=\operatorname{int}\left(\left(\mathrm{F}_{\mathrm{FOD} 0} / \mathrm{F}_{\mathrm{MOD}}\right) / 2\right)$
Center-spread: SSC_STEPS $=\operatorname{int}\left(\left(\mathrm{F}_{\mathrm{FOD}} / \mathrm{F}_{\mathrm{MOD}}\right) / 4\right)$
where:

- $F_{\text {FODO }}$: FODO Frequency
- $F_{\text {MOD }}$: Modulation frequency, use 31.5 kHz for PCle applications

$$
\begin{align*}
& S S C_{-} S T E P_{-} S I Z E=\text { floor }\left(\left(F_{-} B A W / F_{-} F O D 0 *\left(1 /\left(1-S S C_{-} D E P T H\right)-1\right)\right) /\left(S S C_{-} S T E P S\right)^{*} D E N\right) \\
& S S C_{-} S T E P_{-} S I Z E=\text { floor }\left(\left(F_{-} B A W / F_{-} F O D 0 *\left(1 /\left(1-S S C_{-} D E P T H\right)-1 /\left(1+S S C_{-} D E P T H\right)\right)\right) /\left(2 * S S C_{-} S T E P S\right)^{*} D E N\right) \tag{8}
\end{align*}
$$

where:

- SSC_STEP_SIZE: Numerator increment value per step for SSC
- $\mathrm{F}_{\text {BAW }}$: BAW frequency, 2467 MHz . Note that the $\mathrm{F}_{\text {BAW }}$ value varies from device to device.
- SSC_DEPTH: Modulation depth, expressed as a positive value. If -0.5% depth is used, this value is 0.005
- SSC_STEPS: Result from Equation 5 for down-spread or Equation 6 for center-spread
- DEN: Fractional denominator, $2{ }^{24}$

If using a mix of SSC on one output and no SSC on a different output，there can be crosstalk between the two outputs．Contact TI to request measurement data for a specific configuration when configuring SSC on only a single output．

When modifying the SSC settings，do not set SSC＿EN to a＇1＇until the other SSC settings have been configured． Perform the following steps for configuring the SSC：

1．Set PDN to a＇1＇．
2．Set OTP＿AUTOLOAD＿DIS to a＇1＇．
3．Modify SSC＿MOD＿TYPE，SSC＿STEP＿SIZE，and SSC＿STEPS as necessary．
4．Set SSC＿EN to a＇1＇．
5．Set PDN to a＇ 0 ＇．

8．4．2．5 Integer Boundary Spurs

When the decimal portion of the FOD divide value is near an integer boundary，integer boundary spurs can occur．In general，this＂integer boundary＂is when the decimal portion is between 0.9 and 1 ，or 0 and 0.1 ．For example，if the BAW frequency is 2467 MHz ，and an output of 122.88 MHz ，then the FOD must run at 245.76 MHz ． 2467 MHz divided by 245.76 MHz is approximately 10.038 ．The decimal portion of the divide value is 0.038 ，which falls between 0 and 0.1 ，and thus means that generating a 122.88 MHz output can result in spurs in the 12 kHz to 20 MHz band on the output clock．In some cases，proper frequency planning can account for this by increasing the FOD frequency and the channel divider value．For any concerns about integer boundary spurs for a specific frequency plan，contact TI．

8．4．3 Output Behavior

8．4．3．1 Output Format Selection

This device supports LP－HCSL（both 85Ω and 100Ω internal termination），LVDS，and LVCMOS．For LVCMOS outputs，VDDO can be $1.8 \mathrm{~V}, 2.5 \mathrm{~V}$ or 3.3 V if the VDD is 3.3 V ．Otherwise，the VDDO must be the same voltage as VDD．When OUT0 and OUT1 use different formats，DC－LVDS and differential LVCMOS are 180 degrees out of phase from all other formats．

Table 8－6．Output Format via Registers

OUTO＿FMT／OUT1＿FMT	Description
0×0	LP－HCSL 100Ω Termination （default）
0×1	LP－HCSL 85 Ω Termination
0×2	AC－coupled LVDS
0×3	DC－coupled LVDS LVCMOS enabled on OUTx＿P LVCMOS disabled on OUTx＿N
0×4	LVCMOS disabled on OUTx＿P LVCMOS enabled on OUTx＿N
0×5	LVCMOS enabled on OUTx＿P LVCMOS enabled on OUTx＿N 180 degrees out of phase （1）
0×6	LVCMOS enabled on OUTx＿P LVCMOS enabled on OUTx＿N OUTx＿P and OUTx＿N in phase
0×7	

（1）For best output performance，TI recommends using 180 degree out of phase LVCMOS if both OUTx＿P and OUTx＿N traces are required．

8．4．3．1．1 Output Format Types

Figure 8－5 through Figure 8－8 display how to connect the LMK3H0102 outputs based on the output format selected．

Figure 8－5．Interfacing LMK3H0102 LVCMOS Output With an LVCMOS Receiver

Figure 8－6．Interfacing LMK3H0102 LVCMOS Output With an AC－LVDS Receiver

Figure 8－7．Interfacing LMK3H0102 LVCMOS Output With a DC－LVDS Receiver

Figure 8－8．Interfacing LMK3H0102 LVCMOS Output With an LP－HCSL Receiver

8．4．3．1．1．1 LP－HCSL Termination

For LP－HCSL outputs，the LMK3H0102 uses internal $50-\Omega$ termination resistors for the termination to GND． External termination resistors are not required．

8．4．3．2 Output Slew Rate Control

For all LVDS and LP－HCSL outputs，the slew rate can be configured．OUTO＿SLEW＿RATE（R6［4：3］）and OUT1＿SLEW＿RATE（R7［6：5］）can be used to slow down output slew rate to reduce EMI for OUT0 and OUT1， respectively．Table 8－7 shows the slew rate options available．

Table 8－7．Slew Rate Settings

OUT0＿SLEW＿RATE OUT1＿SLEW＿RATE	Slew Rate
0×0	Between 2.3 and $3.5 \mathrm{~V} / \mathrm{ns}$

Table 8-7. Slew Rate Settings (continued)

OUTO_SLEW_RATE OUT1_SLEW_RATE	Slew Rate
0×1	Between 2.0 and $3.2 \mathrm{~V} / \mathrm{ns}$
0×2	Between 1.7 and $2.8 \mathrm{~V} / \mathrm{ns}$
0×3 (default)	Between 1.4 and $2.7 \mathrm{~V} / \mathrm{ns}$

8.4.3.3 REF_CTRL Operation

At start-up, the REF_CTRL pin selects $1^{2} \mathrm{C}$ mode when low, and OTP mode when high. After start-up, REF_CTRL can be programmed to output an LVCMOS REF_CLK, which is derived from either FOD0 or FOD1 followed by an integer divider (/2, /4, /8). Alternatively, this pin can be disabled, or function as a "clock ready" signal. REF_CTRL_PIN_FUNC (R7[14:13]) controls the function of the REF_CTRL pin. Table 8-8 shows these options.

Table 8-8. REF_CTRL Function after Startup

REF_CTRL_PIN_FUNC	REF_CTRL Function
0×0	Disabled, forced low
0×1 (default)	Disabled, tri-state
0×2	REF_CLK LVCMOS output
0×3	CLK_READY output

8.4.4 Output Enable

8.4.4.1 Output Enable Control

This device supports synchronous Output Enable (OE). Synchronous OE means there is no glitch on the outputs when OE signal is asserted or deasserted.
The following table shows the enabling and disabling outputs through pin configuration and $\mathrm{I}^{2} \mathrm{C}$. Note that the OE pin must be low and OE bit must be "1" for the output to be active by default. The output enable bits are OUT0_EN (R7[1]) and OUT1_EN (R7[8]). The default configuration for LMK3H0102A001 is active low OE pin polarity with the OUTx_EN bits both set to ' 0 '.

Table 8-9. OE Functionality

OE Pin	OE Pin Polarity	Software Output Enable OUTx_EN	OUTx
High	Active low	0	Off
High	Active low	1	Off
Low	Active low	0	Off
Low	Active low	1	Running
High	Active high	0	Off
High	Active high	1	Running
Low	Active high	0	Off
Low	Active high	1	Off

8.4.4.2 Output Enable Polarity

OE pin polarity is programmable and is active low by default. When the OE pin is active low, the internal pulldown resistor is automatically enabled, and the internal pullup resistor is disabled. When the OE pin is active high, the internal pullup resistor is automatically enabled, and the internal pulldown resistor is disabled. By default, clock outputs are always enabled when the OE pin is floating. The OE pin polarity is set by OE_PIN_POLARITY (R7[0]) as '1' for active-low (default), or '0' for active-high.

8.4.4.3 Individual Output Enable

The FMT_ADDR pin can be reconfigured as a second output enable pin. Set SEPARATE_OE_EN (R11[14]) to enable this functionality. This bit is OTP programmable. When FMT_ADDR is used as an output enable pin, the OE pin controls OUTO, and the FMT_ADDR pin controls OUT1. The OE_PIN_POLARITY (R7[0]) bit applies to the OE and FMT_ADDR pins in this case.

8.4.4.4 Output Disable Behavior

When the outputs are disabled, the outputs can be either tri-state or set to the levels in Table 8-10, determined by OUT0_DISABLE_STATE (R3[5]) for OUT0 and OUT1_DISABLE_STATE (R3[6]) for OUT1.

Table 8-10. Output Disable Behavior

Output Format	OUTx_P	OUTx_N
LP-HCSL	LOW	LOW
AC-LVDS $^{(1)}$	N/A	N/A
DC-LVDS $^{(2)}$	HIGH	LOW
LVCMOS, P Only	LOW	LOW
LVCMOS, N Only	LOW	LOW
LVCMOS, Opposite Phase	HIGH	LOW
LVCMOS, In Phase	LOW	LOW

(1) DC-LVDS assumes that the outputs are DC terminated with 1000 hms .

8.4.5 Device Default Settings

Table 8-11 summarizes the default settings of the LMK3H0102V33 and LMK3H0102V18 at start-up for the four OTP pages. In $I^{2} \mathrm{C}$ mode, the Page 0 settings are loaded. For a full list of every default register setting, see Device Registers.

Table 8-11. LMK3H0102 Start-up Settings

Parameter	OTP Page 0	OTP Page 1	OTP Page 2	OTP Page 3
OUT0 Frequency	100 MHz	100 MHz	100 MHz	100 MHz
OUT0 Output Format	100- Ω LP-HCSL	LVCMOS, Opposite Phase	LVCMOS, Opposite Phase	LVCMOS, Opposite Phase
OUT0 Enable	Disable	Enable	Enable	Enable
OUT0 Slew Rate	1.4 to $2.7 \mathrm{~V} / \mathrm{ns}$			
OUT0 Amplitude	755 mV (typical)	755 mV (typical)	755 mV (typical)	755 mV (typical)
OUT0 Disable Behavior	GND	GND	GND	GND
OUT1 Frequency	100 MHz	100 MHz	100 MHz	100 MHz
OUT1 Output Format	100- ${ }^{\text {LP-HCSL }}$			
OUT1 Enable	Disable	Enable	Enable	Enable
OUT1 Slew Rate	1.4 to $2.7 \mathrm{~V} / \mathrm{ns}$			
OUT1 Amplitude	690 mV (typical)	690 mV (typical)	690 mV (typical)	690 mV (typical)
OUT1 Disable Behavior	GND	GND	GND	GND
REF_CTRL Behavior	Disabled, high impedance	Disabled, high impedance	Disabled, high impedance	Disabled, high impedance
FOD0 Frequency	200 MHz	200 MHz	200 MHz	200 MHz
FOD1 Frequency	200 MHz	200 MHz	200 MHz	200 MHz
SSC Enable	Disable	Enable	Enable	Disable
SSC Modulation Type	Down-spread	Down-spread	Down-spread	Down-spread
SSC Modulation Depth	0\%	-0.5\%	-0.3\%	0\%

8．5 Programming

The host（DSP，Microcontroller，FPGA，and so forth）configures and monitors the LMK3H0102 through the ${ }^{2} \mathrm{C}$ port．The host reads and writes to a collection of control bits called the register set．The device blocks can be controlled and monitored through a specific grouping of bits located within the register space．In the absence of the host，the LMK3H0102 can be configured to operate in OTP mode from one of four of the on－chip OTP pages，stored in the internal EFUSE，depending on the state of REF＿CTRL and OTP＿SELx pins．The EFUSE is one－time programmed by TI ，and is not rewritable．This means that the values of the registers that are automatically loaded from the EFUSE at power－up cannot be customized．However，the values of the registers can be changed subsequently via the $\mathrm{I}^{2} \mathrm{C}$ register interface．Within the device registers，there are certain bits that have read／write access．Other bits are read－only（an attempt to write to a read only bit does not change the state of the bit）．Certain device registers and bits are reserved meaning that the fields must not be changed from the default reset state．

8．5．1 $I^{2} \mathrm{C}$ Serial Interface

The $I^{2} \mathrm{C}$ port on the LMK3H0102 works as a peripheral device and supports both the $100-\mathrm{kHz}$ standard mode and $400-\mathrm{kHz}$ fast－mode operations．Fast mode imposes a glitch tolerance requirement on the control signals． Therefore，the input receivers ignore pulses of less than $50-\mathrm{ns}$ duration．The $1^{2} \mathrm{C}$ timing requirements are provided in the I2C Interface Specification．Figure 8－9 shows the timing diagram．

Figure 8－9． $\mathrm{I}^{2} \mathrm{C}$ Timing Diagram
The LMK3H0102 is accessed through a 7－bit peripheral address transmitted as part of an $\mathrm{I}^{2} \mathrm{C}$ packet．Only the device with a matching peripheral address responds to subsequent $I^{2} \mathrm{C}$ commands．In $I^{2} \mathrm{C}$ mode，the LMK3H0102 allows up to four unique peripheral devices to occupy the I2C bus based on the pin strapping of FMT＿ADDR（tied to VDD，GND，SDA，or SCL）．By default，the device peripheral address is 0b11010xx（the two LSBs are determined by the FMT＿ADDR pin）．The full address can be configured through $I^{2} \mathrm{C}$ ．
During the data transfer through the $I^{2} \mathrm{C}$ interface，one clock pulse is generated for each data bit transferred．The data on the SDA line must be stable during the high period of the clock．The high or low state of the data line can change only when the clock signal on the SCL line is low．The start data transfer condition is characterized by a high－to－low transition on the SDA line while SCL is high．The stop data transfer condition is characterized by a low－to－high transition on the SDA line while SCL is high．The start and stop conditions are always initiated by the controller．Every byte on the SDA line must be eight bits long．Each byte must be followed by an acknowledge bit and bytes are sent MSB first．The LMK3H0102 has an 8－bit register address，followed by a 16－bit data word．

The acknowledge bit（A）or non－acknowledge bit（ A^{\prime} ）is the 9th bit attached to any 8－bit data byte and is always generated by the receiver to inform the transmitter that the byte has been received（when $A=0$ ）or not（when A^{\prime} $=0$ ）．$A=0$ is done by pulling the SDA line low during the 9 th clock pulse and $A^{\prime}=0$ is done by leaving the SDA line high during the 9th clock pulse．

The ${ }^{2} \mathrm{C}$ controller initiates the data transfer by asserting a start condition which initiates a response from all peripheral devices connected to the serial bus．Based on the 8－bit address byte sent by the controller over the SDA line（consisting of the 7－bit peripheral address（MSB first）and an R／W＇bit），the device whose address corresponds to the transmitted address responds by sending an acknowledge bit．All other devices on the bus remain idle while the selected device waits for data transfer with the controller．

After the data transfer occurs，stop conditions are established．In write mode，the controller asserts a stop condition to end data transfer during the 10th clock pulse following the acknowledge bit for the last data byte from the peripheral．In read mode，the controller receives the last data byte from the peripheral but does not pull SDA low during the 9th clock pulse．This is known as a non－acknowledge bit．By receiving the non－acknowledge bit，the peripheral knows the data transfer is finished and enters the idle mode．The controller then takes the data line low during the low period before the 10th clock pulse，and high during the 10th clock pulse to assert a stop condition．Figure 8－10 and Figure 8－11 show the sequence for block writes and block reads using the LMK3H0102，respectively．

1	7		1	1	8	1
S	Target Address	Wr_{r}	A	Register	A	

Figure 8－10．Generic Block Write Sequence

Figure 8－11．Generic Block Read Sequence

8．5．2 One－Time Programming Sequence

The upper register space includes all registers from R13 onward，as well as I2C＿ADDR（R12［15：8］）．Unlocking the upper register space is performed by writing $0 \times 5 B$ to UNLOCK＿PROTECTED＿REG（R12［7：0］），leaving I2C＿ADDR unchanged．If using the edge combiner，performing the unlock first is required before modifying R146，R147，and R148．

There are six fields that can have different values depending on the EFUSE page loaded at device start－up．
－OUTO Output Format
－OUTO Enable
－OUT1 Output Format
－OUT1 Enable

- SSC Enable
- SSC Configuration (either preconfigured or custom)

All other fields retain the same value across all four EFUSE pages. For generating custom configurations, contact TI.

9 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and Tl does not warrant its accuracy or completeness. Tl's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

9.1 Application Information

The LMK3H0102 is a reference-less BAW-based clock generator that can be used to provide reference clocks for various applications, including PCle reference clocking and 1Gb/10Gb Ethernet Switches.

9.2 Typical Applications

9.2.1 Application Block Diagram Examples

Figure 9-1. 1Gb/10 Gb Ethernet Switch

Figure 9-2. 10 Gb Ethernet Switch

Figure 9－3．PCle Applications

9．2．2 Design Requirements

Consider a typical PCle application．In a system such as this，the clocks are expected to be available upon request without the need for any additional device－level programming．The default device configuration outputs two 100 MHz LP－HCSL clocks，both disabled by default．A typical output clock requirement in this application is two 100 MHz LP－HCSL clocks．A 33 MHz clock is added to show how to configure the REF＿CLK output as well． The section below describes the detailed design procedure to generate the required output frequencies for the above PCle scenario using the LMK3H0102．

9．2．3 Detailed Design Procedure

Design of all aspects of the LMK3H0102 is straightforward，and software support is available to assist in frequency planning and part programming．This design procedure gives a straightforward outline of the process．
1．Frequency Planning
a．The first step of designing an LMK3H0102 configuration is to determine the FOD frequencies that are required to generate the required output frequencies．The process is as such：
i．If the output frequencies are greater than 200 MHz ，the frequencies must both be the same，and cannot use SSC．If the frequencies are different，or require SSC，then this frequency plan cannot be supported by the device．
－In the case of two identical frequencies greater than 200 MHz ，the edge combiner must be enabled，the FOD divider values must match，and REF＿CLK，if used，can be sourced from either FOD．
ii．If both output frequencies are the same，and have the same SSC settings（that is，both use SSC or both do not use SSC），only one FOD is required．
iii．If both output frequencies are different，but have the same SSC settings，the outputs can share an FOD to conserve current．If both frequencies can be generated from dividing a single valid FOD frequency by the channel divider options，then the second FOD can be disabled．Otherwise，both FODs must be used．If both outputs require SSC，then this frequency plan cannot be supported by the LMK3H0102 device．
iv．If one output requires SSC and the other does not，then the SSC output must use FODO and the non－SSC output must use FOD1．
b．If SSC is being used，determine whether or not a preconfigured down－spread modulation，a custom down－spread modulation，or a center－spread modulation is required for the application．If a custom configuration is required，follow the steps outlined in Spread－Spectrum Clocking．
c．Set the digital clock divider such that the digital clock frequency is as close to 50 MHz as possible．
d．Determine the REF＿CTRL pin functionality．If this is used as an additional LVCMOS reference clock， verify that the desired frequency can be generated based on the FODO and FOD1 frequencies，as the divider range for the REF＿CLK output is $/ 2, / 4$ ，or $/ 8$ only．
i．Keep in mind that if SSC is used on FODO，and the REF＿CLK source is FODO，this output now has SSC as well．
2．Setting the Output Formats
a. The output formats that are required are based upon the clock format needed in the system. For PCle applications, this is most often a $100-\mathrm{MHz}$ LP-HCSL clock. The internal termination resistance value must be chosen such that the impedance matches the input impedance of the receiver. Note that the termination scheme is different for AC-LVDS and DC-LVDS - an AC-LVDS receiver requires an AC-LVDS output from the LMK3H0102.
b. For differential outputs, the slew rate is selectable, from the slowest range ($1.4 \mathrm{~V} / \mathrm{ns}$ to $2.5 \mathrm{~V} / \mathrm{ns}$) to the fastest range ($2.3 \mathrm{~V} / \mathrm{ns}$ to $3.4 \mathrm{~V} / \mathrm{ns}$).
c. For LP-HCSL outputs of either termination scheme, the amplitude is selectable between 625 mV and 885 mV .
d. For LVCMOS outputs, the P and N phases can be in phase, opposite, or individually enabled or disabled. This allows for the generation of up to five LVCMOS clocks between OUTO, OUT1, and the REF_CTRL pin.
i. For LVCMOS outputs, the VDDO_x voltage MUST match the VDD voltage if VDD is 1.8 V or 2.5 V .
3. Output Enable Behavior
a. The output enable pin is active low by default, with an internal pulldown resistor to GND. If this functionality is not desired, then OE_PIN_POLARITY can be set to ' 0 ' to change the behavior of the OE pin to active-high. If this is done, the internal pulldown is disabled, and an internal pullup to VDD is used.
b. Determine whether or not both outputs being disabled means that the device enters low-power mode. While this is able to conserve current, low-power mode is not recommended for any applications where the clocks must turn back on quickly, such as PCle clocking.
For the PCle example, the following settings are required:

1. One FOD can be used to generate both LP-HCSL outputs. As such, FODO can be set to have an output frequency of 200 MHz , with Channel Divider 0 set to divide by two. Alternatively, FODO can be set to 400 MHz with a divider by four. Both configurations are valid. Both output drivers select Channel Divider 0, and are both set to LP-HCSL.
a. DIG_CLK_N_DIV must be set to two to set the state machine clock properly. The state machine clock must be as close to 50 MHz as possible without exceeding this frequency. Equation 9 shows the relationship between the digital state machine frequency, the frequency selected by the CHO_FOD_SEL multiplexer, and the DIG_CLK_N_DIV field. Write the DIG_CLK_N_DIV field only while the device is in the low power state.
2. FOD1 can be used to generate the $33-\mathrm{MHz}$ LVCMOS clock, as FODO cannot support 33 MHz in addition to 100 MHz . The REF_CLK divider options are divides by two, four, or eight. While dividing by two does not yield any valid configurations, both 132 MHz with a divide by four and 264 MHz with a divide by 8 are valid options.

$$
\begin{equation*}
F_{\text {DIG }}=\frac{F_{C H O_{-} F O D_{2} S E L}}{2+\text { DIG_CLK_C_D }^{2}} \tag{9}
\end{equation*}
$$

where $\mathrm{F}_{\text {DIG }}$ is the digital state machine clock frequency and $\mathrm{F}_{\mathrm{CHO} \text { _FOD_SEL }}$ is the frequency selected by the CHO_FOD_SEL multiplexer

9.2.4 Example: Changing Output Frequency

If the user wants to change the output from $100-\mathrm{MHz}$ LP-HCSL on OUTO and OUT1 to $24-\mathrm{MHz}$ differential LVCMOS clocks on OUTO and OUT1,- with an additional LVCMOS clock on the REF_CTRL pin, the value of the BAWFREQ_OFFSET_FIXEDLUT field for this example is 0×3701. The steps for changing the frequency are as follows:

1. Determine the BAW frequency of the device. This is critical for all following calculations. From Equation 4, if BAWFREQ_OFFSET_FIXEDLUT is 0×3701, then the BAW frequency of this device is approximately 2471.446441856.
2. Determine the channel divider settings and required FOD frequency. If the output frequency is 24 MHz , and the range of the FODs is from 100 MHz to 400 MHz , then a channel divider value of at least 5 is required to generate the output. As there is not a divide by 5 option, and REF_CLK must also have a clock (see

CH0_DIV, CH1_DIV, and REF_CLK_DIV), a divide by 8 is required. From here, 24 MHz times 8 yields an FOD output frequency of 192 MHz . If OUT1 were a different frequency, then using FOD1 can be required if both frequencies cannot be generated by dividing down from the same FOD frequency.
3. Set the FOD divide values. Use Equation 1 to calculate the integer divide value FODO_N_DIV $=$ floor $(2471.446441856 / 192)=12$. From Equation 2, the numerator divide value FODO_NUM = $\operatorname{int}\left(((2471.446441856 / 192)-12) \times 2^{24}\right)=14631693$
4. Write the desired settings to the device registers. This includes the divider settings listed above, as well as the output driver settings. Follow the procedure outlined in Figure 8-4:
a. Set $\mathrm{PDN}=1$.
b. Set FODO_N_DIV = 12 and FODO_NUM = 14631693.
c. Set CH0_DIV, and REF_CLK_DIV to divide by 8 (by default, OUT1_CH_SEL is set to select Channel Divider 0).
d. Set OUT0_FMT and OUT1_FMT to select Differential LVCMOS as the output format.
e. Set REF_CTRL_PIN_FUNC to output REF_CLK.
f. Set OTP_AUTOLOAD_DIS to 1 (disable the OTP Page 0 autoload feature).
g. Set DIG_CLK_N_DIV = 2 to set the digital state machine clock to 48 MHz , based on Equation 9
h. Set PDN $=0$

The time required for the frequency change to take affect is typically on the order of 1 ms between issuing PDN
$=0$ and the output clocks starting at the desired frequency.

9.2.5 Crosstalk

Performance degradation can occur in the LMK3H0102 due to crosstalk in the device when the outputs are operating at different frequencies. Table 9-1 displays the performance of the LMK3H0102 outputs for common LVCMOS frequencies. Contact TI for measurement of additional combinations for impact of crosstalk on output performance.

Table 9-1. LMK3H0102 LVCMOS Output Crosstalk ${ }^{(1)}$

FODO Frequency (MHz)	FOD1 Frequency (MHz)s	OUTO Frequency (MHz) ${ }^{(2)}$	OUT1 Frequency $(\mathrm{MHz})^{(2)}$	Typical OUTO RMS Jitter (fs)	Typical OUT1 RMS Jitter (fs)
240	240	24	24	220	226
240	250	24	25	852	716
240	270	24	27	457	371
240	200	24	50	832	779
250	240	25	24	784	717
250	250	25	25	340	308
250	270	25	27	757	787
250	200	25	50	215	516
270	240	27	24	429	367
270	250	27	25	913	641
270	270	27	27	310.	285
270	200	27	50	865	930
200	240	50	24	806	548
200	250	50	25	559	287
200	270	50	27	913	704
200	200	50	50	403	348

(1) Measured over $25^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$ using differential LVCMOS output formats using VDD $=$ VDDO_ $\mathrm{x}=3.3 \mathrm{~V}$, no SSC.
(2) OUT0 and OUT1 are generated using FOD0 and FOD1, respectively.
(3) RMS Jitter measured over the 12 kHz to 5 MHz integration bandwidth.

9.2.6 Application Curves

Agilent E5052A Signal Source Analyzer

OUTO: 100 MHz LP-HCSL
OUT1: 100 MHz LP-HCSL
Temperature: $25^{\circ} \mathrm{C}$
12k - 20M RMS Jitter: 125 fs
Figure 9-4. 100-MHz LP-HCSL Output for PCle Application, Measured on OUTO

OUTO： 125 MHz LP－HCSL
OUT1： 125 MHz LP－HCSL Temperature： $25^{\circ} \mathrm{C}$
12k－20M RMS Jitter： 107 fs
Figure 9－5．125－MHz LP－HCSL Output，Measured on OUTO

OUT0: 156.25 MHz LP-HCSL
OUT1: 156.25 MHz LP-HCSL
Temperature: $25^{\circ} \mathrm{C}$
12k - 20M RMS Jitter: 99 fs
Figure 9-6. 156.25-MHz LP-HCSL Output, Measured on OUTO

OUT0: 125 MHz LP-HCSL
OUT1: 156.25 MHz LP-HCSL Temperature: $25^{\circ} \mathrm{C}$
12k - 20M RMS Jitter: 167 fs
Figure 9-7. 125-MHz LP-HCSL on OUTO with 156.25-MHz LP-HCSL on OUT1

OUTO: 125 MHz LP-HCSL
OUT1: 156.25 MHz LP-HCSL
Temperature: $25^{\circ} \mathrm{C}$
12k - 20M RMS Jitter: 186 fs
Figure 9-8. 156.25-MHz LP-HCSL on OUT1 with 125 MHz-LP-HCSL on OUTO

9.3 Power Supply Recommendations

9.3.1 Power-Up Sequencing

The LMK3H0102 provides multiple power supply pins. Each power supply supports 1.8 V , 2.5 V , or 3.3 V . Internal low-dropout regulators (LDO) source the internal blocks and allow each pin to be supplied with individual supply voltages. The VDD pin supplies the control pins, the serial interface, and the REF_CTRL pin. Therefore, any pullup resistors must be connected to the same domain as VDD.
If an output is not used, connect the corresponding VDDO_x rail to VDD. If the VDD and VDDO_x rails are the same voltage, TI recommends connecting these together directly. If VDD and the VDDO_x rails differ, VDD must ramp first, with VDDO_x no more than 5 ms after.

9.3.2 Decoupling Power Supply Inputs

Do not tie VDD and VDDO pins to ground. Use a separate ferrite bead to isolate the VDD and the VDDO supplies. If OUT0 and OUT1 are different frequencies, a separate ferrite bead must be used for each VDDO supply. For each supply voltage pin, a $0.1-\mu \mathrm{F}$ or $1-\mu \mathrm{F}$ capacitor must be placed very close to the pin.

9．4 Layout

9．4．1 Layout Guidelines

For this example，follow these guidelines：
－Isolate outputs using a GND shield．Route all outputs as differential pairs．
－Isolate outputs to adjacent outputs when generating multiple frequencies．
－Avoid impedance jumps in the fan－in and fan－out areas when possible．
－Use five vias to connect the thermal pad to a solid GND plane．Full－through vias are preferred．
－Place decoupling capacitors with small capacitance values very close to the supply pins．Place the decoupling capacitors on the same layer or on the bottom layer directly underneath the device．Larger values can be placed more far away．Ferrite beads are recommended to isolate the different output supplies and the VDD supply．
－Use multiple vias to connect wide supply traces to the respective power planes．

9．4．2 Layout Example

Below are printed circuit board（PCB）layout examples that show the application of thermal design practices and a low－inductance ground connection between the device DAP and the PCB．

Figure 9－9．PCB Layout Example for LMK3H0102，Top Layer

Figure 9－10．PCB Layout Example for LMK3H0102，Bottom Layer

10 Device Registers

10.1 Register Maps

Table 10-1 lists the LMK3H0102 Device registers. All register offset address not listed in Table 10-1 can be considered as reserved locations and the register contents must not be modified.

Table 10-1. LMK3H0102 Registers

Address	Acronym	Section
0×0	R0	Go
0×1	R1	Go
0×2	R2	Go
0×3	R3	Go
0×4	R4	Go
0×5	$R 5$	Go
0×6	$R 6$	Go
0×7	R7	Go
0×8	$R 8$	Go
0×9	R9	Go
$0 \times A$	$R 10$	Go
$0 \times B$	$R 11$	Go
$0 \times C$	$R 12$	Go
0×92	$R 146$	Go
0×93	$R 147$	Go
0×94	$R 148$	Go
$0 \times E E$	$R 238$	Go

Complex bit access types are encoded to fit into small table cells. Table 10-2 shows the codes that are used for access types in this section.

Table 10-2. LMK3H0102 Access Type Codes

Access Type	Code	Description
Read Type		
R	R	Read
Write Type		
W	W	Write
WL	W	Write
	L	Locked, requires
		UNLOCK_PROTECT
		ED_REG (R12[7:0]) $=$
		0x5B to unlock and
	write successfully	

10.1.1 R0 Register (Address $=0 \times 0$) [reset $=0 \times 0861$]

RO is shown in Table 10-3.
Return to the Summary Table.

Table 10－3．R0 Register Field Descriptions

Bit	Field	Type	Reset	Description
$15: 10$	DIG＿CLK＿N＿DIV	R／W	0×02	Digital State Machine clock rate．Derived from the FOD frequency sourced by the CH0＿FOD＿SEL multiplexer．The target for the frequency is 50 MHz maximum．The actual divide value is the DIG＿CLK＿N＿DIV value plus 2．This field is stored in the EFUSE．
$9: 3$	FOD0＿N＿DIV	R／W	0x0C	Integer Ratio of BAW frequency to FODO frequency．This field is stored in the EFUSE．
$2: 1$	Reserved	R	N／A	Reserved，do not write to this field．
0	OTP＿BURNT	R／WL	0×1	Indicates that the EFUSE has been programmed．If this field is＇1＇，the EFUSE is programmed．

10．1．2 R1 Register（Address $=0 \times 1$ ）［reset $=0 \times 5599$ ］

R1 is shown in Table 10－4．
Return to the Summary Table．
Table 10－4．R1 Register Field Descriptions

Bit	Field	Type	Reset	Description
$15: 8$	FOD0＿NUM［23：16］	R／W	0×55	High byte of the FOD0 fractional divide value．The value of this field changes from device to device．This field is stored in the EFUSE．
$7: 0$	ADC＿CLK＿N＿DIV	R／W	0×99	ADC clock frequency in MHz，derived directly from BAW．Default is ceil（2467／16）－ 2 $=0 \times 9 B$. This field is stored in the EFUSE． TI does not recommend modifying the value of this field．

10．1．3 R2 Register（Address $=0 \times 2$ ）［reset $=0 \times 28 F$ ］

R2 is shown in Table 10－5．
Return to the Summary Table．
Table 10－5．R2 Register Field Descriptions

Bit	Field	Type	Reset	Description
$15: 0$	FOD0＿NUM［15：0］	R／W	$0 x C 28 F$	Lower two bytes of the FOD0 fractional divide value．The value of this field changes from device to device．This field is stored in the EFUSE．

10．1．4 R3 Register（Address $=0 \times 3$ ）［reset $=0 \times 1801$ ］
R3 is shown in Table 10－6．
Return to the Summary Table．
Table 10－6．R3 Register Field Descriptions

Bit	Field	Type	Reset	Description
$15: 9$	FOD1＿N＿DIV	R／W	0x0C	Integer Ratio of BAW frequency to FOD1 frequency．This field is stored in the EFUSE．
8	CH1＿FOD＿SEL	R／W	0×0	Selects the FOD to use as the input source for Channel Divider 1．This field is stored in the EFUSE． Oh：FOD0． 1h：FOD1．
7	CH1＿EDGE＿COMB＿EN	R／W	0×0	Selects between using Channel Divider 1 or using the Edge Combiner as the input source for Output Driver 1．This field is stored in the EFUSE． Oh：Channel Divider 1 input 1h：Edge Combiner input

Table 10－6．R3 Register Field Descriptions（continued）

Bit	Field	Type	Reset	Description
6	OUT1＿DISABLE＿STATE	R／W	0x0	When OUT1 is disabled，this bit selects whether the OUT1＿P and OUT1＿N pins are forced to GND or tri－state．This field is stored in the EFUSE． Oh：Forced to GND on disable． 1h：Tri－state on disable．
5	OUT0＿DISABLE＿STATE	R／W	0x0	When OUTO is disabled，this bit selects whether the OUTO＿P and OUTO＿N pins are forced to GND or tri－state．This field is stored in the EFUSE． Oh：Forced to GND on disable． 1h：Tri－state on disable．
4	CHO＿FOD＿SEL	R／W	0x0	Selects the FOD to use as the input source for Channel Divider 0 ．This field is stored in the EFUSE． Oh：FODO． 1h：FOD1．
3	CH0＿EDGE＿COMB＿EN	R／W	0x0	Selects between using Channel Divider 0 or using the Edge Combiner as the input source for Output Driver 0 ．This field is stored in the EFUSE． Oh：Channel Divider 0 input 1h：Edge Combiner input
2：0	CHO＿DIV	R／W	0x1	Divider value for Channel Divider 0．This field is stored in the EFUSE． Oh：Channel Divider disabled．Set CHO＿DIV to＇0＇when using the edge combiner for OUTO． 1h：FOD／ 2 2h：FOD／ 4 3h：FOD／ 6 4h：FOD／ 8 5h：FOD／ 10 6h：FOD／ 20 7h：FOD／ 40

10．1．5 R4 Register（Address $=0 \times 4$ ）［reset $=0 \times 0000$ ］
R4 is shown in Table 10－7．
Return to the Summary Table．
Table 10－7．R4 Register Field Descriptions

Bit	Field	Type	Reset	Description
15	Reserved	R	N／A	Reserved，do not write to this field．
$14: 2$	SSC＿STEPS	R／W	0×0000	Number of steps in each segment of the triangular profile for SSC．See Spread Spectrum Clocking for instructions to calculate this value．This field is stored in the EFUSE．
1	SSC＿MOD＿TYPE	R／W	0×0	Selects between down－spread or center－spread modulation for custom SSC configurations．This field is stored in the EFUSE． Oh：Down－spread modulation． 1h：Center－spread modulation．
0	SSC＿EN	R／W	$0 x 0$	Enable SSC．This field is stored in the EFUSE． Oh：SSC Disabled． 1h：SSC Enabled．

10．1．6 R5 Register（Address $=0 \times 5$ ）［reset $=0 \times 0000]$

R5 is shown in Table 10－8．
Return to the Summary Table．

Table 10-8. R5 Register Field Descriptions

Bit	Field	Type	Reset	Description
$15: 0$	SSC_STEP_SIZE	R/W	0×0000	Numerator increment value per step for SSC. See Spread Spectrum Clocking for instructions to calculate this value. This field is stored in the EFUSE.

10.1.7 R6 Register (Address $=0 \times 6$) [reset $=0 \times 2 A A 0]$

$R 6$ is shown in Table 10-9.
Return to the Summary Table.
Table 10-9. R6 Register Field Descriptions

Bit	Field	Type	Reset	Description
15:13	CH1_DIV	R/W	0x0	Divider value for Channel Divider 1. This field is stored in the EFUSE. Oh: Channel Divider disabled. Set CH1_DIV to '0' when using the edge combiner for OUT1. 1h: FOD / 2 2h: FOD / 4 3h: FOD / 6 4h: FOD / 8 5h: FOD / 10 6h: FOD / 20 7h: FOD / 40
12:5	FOD1_NUM[23:16]	R/W	0x55	High byte of the FOD1 fractional divide value. The value of this field changes from device to device. This field is stored in the EFUSE.
4:3	OUTO_SLEW_RAT E	R/W	0x3	Slew rate control for OUTO. This field is stored in the EFUSE. Only applies to differential output formats. Oh: Between 2.3 and $3.5 \mathrm{~V} / \mathrm{ns}$. 1h: Between 2.0 and $3.2 \mathrm{~V} / \mathrm{ns}$. 2h: Between 1.7 and $2.8 \mathrm{~V} / \mathrm{ns}$. 3h: Between 1.4 and $2.7 \mathrm{~V} / \mathrm{ns}$.
2:0	OUTO_FMT	R/W	0x0	Selects the output format for OUTO. This field is stored in the EFUSE. Oh: LP-HCSL 100Ω Termination. 1h: LP-HCSL 85Ω Termination. 2h: AC-coupled LVDS. 3h: DC-coupled LVDS. 4h: LVCMOS, OUTx_P enabled, OUTx_N disabled. 5h: LVCMOS, OUTx_P disabled, OUTx_N enabled. 6h: LVCMOS, OUTx_P enabled, OUTx_N enabled, 180 degrees out of phase. 7h: LVCMOS, OUTx_P enabled, OUTx_N enabled, OUTx_P and OUTx_N in phase.

10.1.8 R7 Register (Address $=0 \times 7$) [reset $=0 \times 6503$]

R7 is shown in Table 10-10.
Return to the Summary Table.
Table 10-10. R7 Register Field Descriptions

Bit	Field	Type	Reset	Description
15	Reserved	N/A	0×0	Reserved, do not write to this field.
$14: 13$	REF_CTRL_PIN_F UNC	R/W	0×1	Sets the function of the REF_CTRL pin. This field is stored in the EFUSE. Oh: REF_CTRL pin disabled, pulled to GND. 1h: REF_CTRL pin disabled, tri-state. 2h: REF_CTRL pin functions as an additional LVCMOS REF_CLK output. 3h: REF_CTRL pin functions as "clock ready" signal.

Table 10-10. R7 Register Field Descriptions (continued)

Bit	Field	Type	Reset	Description
12:11	REF_CLK_DIV	R/W	0x0	REF_CLK output divisor value when REF_CTRL is used as REF_CLK. This field is stored in the EFUSE. Oh: REF_CLK disabled. 1h: FOD / 2. 2h: FOD / 4. 3h: FOD / 8.
10	Reserved	R/W	0x1	Reserved. Do not write any value other than '1' to this field.
9	$\begin{aligned} & \text { REF_CLK_FOD_S } \\ & \mathrm{EL} \end{aligned}$	R/W	0x0	Select the FOD used to generate the REF_CLK output. This field is stored in the EFUSE. Oh: FODO. 1h: FOD1.
8	OUT1_EN	R/W	0×0	Output Enable bit for OUT1. This field is stored in the EFUSE. Oh: OUT1 is disabled. 1 h : OUT1 is enabled.
7	OUT1_CH_SEL	R/W	0x0	Selects the source for OUT1. If the Edge Combiner is enabled, then this bit is ignored. This field is stored in the EFUSE. Oh: OUT1 is sourced from Channel Divider 0 if CHO_EDGE_COMB_EN is a ' 0 ', or the Edge Combiner if CHO_EDGE_COMB_EN is a ' 1 '. 1 h : OUT1 is sourced from Channel Divider 1 if CH1_EDGE_COMB_EN is a ' 0 ', or the Edge Combiner if CH1_EDGE_COMB_EN is a ' 1 '.
6:5	OUT1_SLEW_RAT E	R/W	0x0	Slew rate control for OUT1. This field is stored in the EFUSE. Only applies to differential output formats. Oh: Between 2.3 and $3.5 \mathrm{~V} / \mathrm{ns}$. 1h: Between 2.0 and $3.2 \mathrm{~V} / \mathrm{ns}$. 2h: Between 1.7 and $2.8 \mathrm{~V} / \mathrm{ns}$. 3h: Between 1.4 and $2.7 \mathrm{~V} / \mathrm{ns}$.
4:2	OUT1_FMT	R/W	0x0	Selects the output format for OUT1. This field is stored in the EFUSE. Oh: LP-HCSL $100-\Omega$ Termination. 1h: LP-HCSL 85- Ω Termination. 2h: AC-coupled LVDS. 3h: DC-coupled LVDS. 4h: LVCMOS, OUTx_P enabled, OUTx_N disabled. 5h: LVCMOS, OUTx_P disabled, OUTx_N enabled. 6h: LVCMOS, OUTx_P enabled, OUTx_N enabled, 180 degrees out of phase. 7h: LVCMOS, OUTx_P enabled, OUTx_N enabled, OUTx_P and OUTx_N in phase.
1	OUTO_EN	R/W	0x0	Output Enable bit for OUTO. This field is stored in the EFUSE. Oh: OUTO is disabled. 1h: OUTO is enabled.
0	OE_PIN_POLARIT Y	R/W	0x1	OE pin polarity selection. This bit does not affect the polarity of the OUTx_EN bits, only the OE pin. This field is stored in the EFUSE. Oh: OE is active high (OE tied to VDD enables outputs). 1 h : OE is active low (OE tied to GND enables outputs).

10.1.9 R8 Register (Address $=0 \times 8$) [reset $=0 \times 28 \mathrm{~F}$]

R8 is shown in Table 10-11.
Return to the Summary Table.

Table 10－11．R8 Register Field Descriptions

Bit	Field	Type	Reset	Description
$15: 0$	FOD1＿NUM［15：0］	R／W	0xC28F	Lower two bytes of the FOD1 fractional divide value．The value of this field changes from device to device．This field is stored in the EFUSE．

10．1．10 R9 Register（Address $=0 \times 9$ ）［reset $=0 \times 0066$ ］

R9 is shown in Table 10－12．
Return to the Summary Table．
Table 10－12．R9 Register Field Descriptions

Bit	Field	Type	Reset	Description
$15: 12$	OTP＿ID	R／W	0×3	Configurable field for identifying the OTP configuration．Can be used in I2C mode as a 4－bit spare field．This field is stored in the EFUSE．
$11: 9$	SSC＿CONFIG＿SEL	R／W	0×0	SSC modulation configuration．If center－spread modulation is desired，then custom SSC configuration is required．Four preconfigured down－spread modulation depths are also available．Any other modulation depths require custom SSC configuration． This field is stored in the EFUSE． The preconfigured SSC options are specifically for 100 MHz clock outputs．For other output frequencies，TI recommends creating a custom SSC configuration． oh：Custom SSC Configuration－see Spread Spectrum Clocking for details on creating a custom configuration． 1h：-0.10% preconfigured down－spread． 2h：-0.25% preconfigured down－spread． $3 \mathrm{~h}:-0.30 \%$ preconfigured down－spread． 4h：-0.50% preconfigured down－spread． All other values：Reserved
8				

Table 10-12. R9 Register Field Descriptions (continued)

Bit	Field	Type	Reset	Description
3:0	OUTO_LPHSCL_A MP_SEL	R/W	0x6	OUTO output swing level when using LP-HCSL output format. This field is stored in the EFUSE. Oh: 625 mV . 1h: 647 mV . 2h: 668 mV . 3h: 690 mV . 4h: 712 mV . 5h: 733 mV . 6h: 755 mV . 7h: 777 mV . 8h: 798 mV . 9h: 820 mV . Ah: 842 mV . Bh: 863 mV . Ch: 885 mV . Dh: 907 mV . Eh: 928 mV . Fh: 950 mV .

10.1.11 R10 Register (Address = 0xA) [reset = 0x0010]

R10 is shown in Table 10-13.
Return to the Summary Table.
Table 10-13. R10 Register Field Descriptions

Bit	Field	Type	Reset	Description
15	Reserved	R/W	0x0	Reserved. Only write '0' to this bit.
$14: 11$	PROD_REVID	R	N/A	Product revision identifier.
10	CLK_READY	R	N/A	CLK_READY status. The REF_CTRL pin mirrors this status signal when the pin functions as a "clock ready" signal.
9	Reserved	R	N/A	Reserved, do not write to this field.
8	RB_PIN_15	R	N/A	Readback of the REF_CTRL pin.
7	RB_PIN_4	R	N/A	Readback of the OTP_SEL1/SDA pin.
6	RB_PIN_3	R	N/A	Readback of the OTP_SELO/SCL pin.
5	RB_PIN_2	R	N/A	Readback of the FMT_ADDR pin.
4	DEV_IDLE_STATE_ SEL	R/W	0x1	This bit controls the behavior of the device when both outputs are disabled. Placing the device into a low-power state is not recommended for PCle applications, as the time to re-enable the clocks is extended. This field is stored in the EFUSE. Oh: When both outputs are disabled, the outputs are muted, and the device is placed into a low-power state. 1h: When both outputs are disabled, the outputs are muted. The device does not enter a low-power state.
3	PIN_RESAMPLE_D IS	R/W	0x0	This bit controls the resampling of the device pins when exiting the low power mode. Write this bit while in the low power mode. TI recommends keeping this bit as a '1' unless the functionality is explicitly desired. Oh: Pin resampling is enabled. When exiting the low power mode, the FMT_ADDR, OTP_SELo/SCL, OTP_SEL1/SDA, and FMT_ADDR pins are resampled. If FMT_ADDR is high, the device enters OTP Mode. 1h: Pin resampling is disabled. When exiting the low power mode, the FMT_ADDR, OTP_SELO/SCL, OTP_SEL1/SDA, and FMT_ADDR pins are not resampled. The device remains in I2C Mode.

Table 10-13. R10 Register Field Descriptions (continued)

Bit	Field	Type	Reset	Description
2	OTP_AUTOLOAD_ DIS	R/W	0×0	This bit controls the behavior of the device when exiting the low power mode. Write this bit while in the low power mode. TI recommends keeping this bit as a '1' unless the functionality is explicitly desired. Oh: OTP autoload is enabled. When exiting the low power mode, the contents of OTP Page 0 are written to the device registers. 1h: OTP autoload is disabled. When exiting the low power mode, the contents of OTP Page 0 are not written to the device registers.
1	PDN	R/W	0×0	Writing a '1' to this bit puts the device into a low power state.
0	Reserved	R/W	0×0	Reserved. Only write '0' to this bit.

10.1.12 R11 Register (Address = 0xB) [reset = 0x0000]

R11 is shown in Table 10-14.
Return to the Summary Table.
Table 10-14. R11 Register Field Descriptions

Bit	Field	Type	Reset	Description
15	Reserved	R/W	0×0	Reserved. Only write '0' to this bit.
14	SEPARATE_OE_E N	R/W	0×0	This bit enables the separate output enable functionality of the device. If this bit is a '1', then OUT_FMT_SRC_SEL and I2C_ADDR_LSB_SEL must be set to '0'. This field is stored in the EFUSE. Oh: Pin 1 is the output enable for OUT0 and OUT1. 1h: Pin 1 is the output enable for OUT0, Pin 2 is the output enable for OUT1.
$13: 0$	Reserved	R/W	0×0000	Reserved, do not write to this field.

10.1.13 R12 Register (Address $=0 \times C$) [reset $=0 \times 5800$]

R12 is shown in Table 10-15.
Return to the Summary Table.
Table 10-15. R12 Register Field Descriptions

Bit	Field	Type	Reset	Description
15	I2C_ADDR_LSB_S EL_	R/WL	0×1	I2C peripheral address source. If this bit is a '1', SEPARATE_OE_EN must be '0'. This field is stored in the EFUSE. Oh: I2C peripheral address comes entirely from the I2C_ADDR field. 1h: The two lowest bits of the I2C peripheral address come from the FMT_ADDR pin, all other bits come from R12[14:10].
$14: 8$	I2C_ADDR	R/WL	0×68	I2C peripheral address. After writing to this field, the device responds to the new I2C address. This field is stored in the EFUSE.
$7: 0$	UNLOCK_PROTEC TED_REG	R/W	0×00	This field locks all registers from R13 onward, in addition to R12[15:8]. Registers R13 onward are largely device calibration registers, and must not have their contents modified. These registers can be read from normally regardless of the unlock status. 5Bh: Unlocks register writes for R12[15:8] and above. Any other value: $\mathrm{R} 12[15: 8]$ and above ignore all writes.

10.1.14 R146 Register (Address $=0 \times 92$) [reset $=0 \times 0000$]

R146 is shown in Table 10-16.
Return to the Summary Table.

Table 10-16. R146 Register Field Descriptions

Bit	Field	Type	Reset	Description
$15: 13$	Reserved	R/WL	0×0	Reserved, do not write to this field.
$12: 5$	DTC1_GAIN_RT	R/WL	0×00	Room temperature gain calibration code for FOD0. The value of this field varies from device to device. This must be averaged with DTC2_GAIN_RT when using the edge combiner. This field is stored in the EFUSE.
$4: 0$	DTC1_GAIN_DELT A_CT	R/WL	0×00	Cold temperature gain calibration code for FOD0. The value of this field varies from device to device. This must be averaged with DTC2_GAIN_DELTA_CT when using the edge combiner. This field is stored in the EFUSE.

10.1.15 R147 Register (Address $=0 \times 93$) [reset $=0 \times 0000$]

R147 is shown in Table 10-17.
Return to the Summary Table.
Table 10-17. R147 Register Field Descriptions

Bit	Field	Type	Reset	Description
$15: 11$	Reserved	R/WL	0×00	Reserved, do not write to this field.
$13: 8$	DTC2_GAIN_DELT A_CT	R/WL	0×00	Cold temperature gain calibration code for FOD1. The value of this field varies from device to device. This must be averaged with DTC1_GAIN_DELTA_CT when using the edge combiner. This field is stored in the EFUSE.
$7: 0$	DTC1_GAIN_DELT A_HT	R/WL	0×00	Hot temperature gain calibration code for FODO. The value of this field varies from device to device. This must be averaged with DTC2_GAIN_DELTA_HT when using the edge combiner. This field is stored in the EFUSE.

10.1.16 R148 Register (Address $=0 \times 94$) [reset $=0 \times 0000$]

R148 is shown in Table 10-18.
Return to the Summary Table.
Table 10-18. R148 Register Field Descriptions

Bit	Field	Type	Reset	Description
$15: 14$	Reserved	R/WL	0×0	Reserved, do not write to this field.
$13: 8$	DTC2_GAIN_DELT A_HT	R/WL	0×00	Hot temperature gain calibration code for FOD1. The value of this field varies from device to device. This must be averaged with DTC1_GAIN_DELTA_HT when using the edge combiner. This field is stored in the EFUSE.
$7: 0$	DTC2_GAIN_RT	R/WL	0×00	Room temperature gain calibration code for FOD1. The value of this field varies from device to device. This must be averaged with DTC1_GAIN_RT when using the edge combiner. This field is stored in the EFUSE.

10.1.17 R238 Register (Address $=0 \times E E$) [reset $=0 \times 0000$]

R246 is shown in Table 10-19.
Return to the Summary Table.
Table 10-19. R246 Register Field Descriptions

Bit	Field	Type	Reset	Description
$15: 0$	BAWFREQ_OFFSE T_FIXEDLUT	R/WL	0×0000	Offset value from 2467 MHz for the BAW frequency. Signed 16-bit integer value. This field is stored in the EFUSE. Each bit of this fields corresponds to 128 ppm of frequency deviation. This field varies from part to part. This field is for calculation purposes only, the device does not use this register for any internal calculation. Do NOT write to this field.

11 Device and Documentation Support

TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below.

11.1 Documentation Support

11.1.1 Related Documentation

For documentation related to the evaluation module, refer to the LMK3H0102EVM user's guide.

11.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on Notifications to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.3 Support Resources

TI E2E ${ }^{\text {TM }}$ support forums are an engineer's go-to source for fast, verified answers and design help - straight from the experts. Search existing answers or ask your own question to get the quick design help you need.
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect Tl's views; see TI's Terms of Use.

11.4 Trademarks

TI E2E ${ }^{\text {TM }}$ is a trademark of Texas Instruments.
All trademarks are the property of their respective owners.

11.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.6 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

12 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

DATE	REVISION	NOTES
November 2023	$*$	Initial Release

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGE OUTLINE

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M
2. This drawing is subject to change without notice
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.

TEXAS
InSTRUMENTS
www.ti.com

EXAMPLE BOARD LAYOUT

RER0016A

NOTES: (continued)
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
5. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged or tented.

Texas
INSTRUMENTS
www.ti.com

EXAMPLE STENCIL DESIGN

RER0016A

NOTES: (continued)
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations

Texas
INSTRUMENTS
www.ti.com

INSTRUMENTS

13.1 Package Option Addendum

Packaging Information

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ${ }^{(2)}$	Lead/Ball Finish ${ }^{(6)}$	$\begin{aligned} & \text { MSL Peak } \\ & \text { Temp }{ }^{(3)} \end{aligned}$	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking ${ }^{(4)(5)}$
PLMK3H0102R ERT	ACTIVE	TQFN	RER0016A	16	250	TBD	Call TI	Call TI	-40 to 85	PLMK3H
LMK3H0102V3 3RERR	PREVIEW	TQFN	RER0016A	16	3000	RoHS \& Green	NIPDAU	Level-2-260C	-40 to 85	3HV33
LMK3H0102V1 8RERR	PREVIEW	TQFN	RER0016A	16	3000	RoHS \& Green	NIPDAU	Level-2-260C	-40 to 85	3HV18
LMK3H0102A0 01RERR	PREVIEW	TQFN	RER0016A	16	3000	RoHS \& Green	NIPDAU	Level-2-260C	-40 to 85	3HA001
LMK3H0102A0 06RERR	PREVIEW	TQFN	RER0016A	16	3000	RoHS \& Green	NIPDAU	Level-2-260C	-40 to 85	3HA006
LMK3H0102A0 15RERR	PREVIEW	TQFN	RER0016A	16	3000	RoHS \& Green	NIPDAU	Level-2-260C	-40 to 85	3HA015
LMK3H0102A0 16RERR	PREVIEW	TQFN	RER0016A	16	3000	RoHS \& Green	NIPDAU	Level-2-260C	-40 to 85	3HA016

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PRE_PROD Unannounced device, not in production, not available for mass market, nor on the web, samples not available.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined
Pb-Free (RoHS): Tl's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, $\mathrm{Tl} \mathrm{Pb}-\mathrm{Free}$ products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material).
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5) Multiple Device markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

SNAS847－NOVEMBER 2023
Important Information and Disclaimer：The information provided on this page represents Tl＇s knowledge and belief as of the date that it is provided．TI bases its knowledge and belief on information provided by third parties，and makes no representation or warranty as to the accuracy of such information．Efforts are underway to better integrate information from third parties． TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals．TI and TI suppliers consider certain information to be proprietary，and thus CAS numbers and other limited information may not be available for release． In no event shall TI＇s liability arising out of such information exceed the total purchase price of the TI part（s）at issue in this document sold by TI to Customer on an annual basis．

13.2 Tape and Reel Information

Reel Width (W1)
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	$\begin{gathered} \text { A0 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { B0 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { K0 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathrm{P} 1 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { W } \\ (\mathrm{mm}) \end{gathered}$	Pin1 Quadrant
LMK3H0102V33RERR	TQFN	RER0016A	16	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
LMK3H0102V18RERR	TQFN	RER0016A	16	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
LMK3H0102A001RERR	TQFN	RER0016A	16	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
LMK3H0102A006RERR	TQFN	RER0016A	16	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
LMK3H0102A015RERR	TQFN	RER0016A	16	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
LMK3H0102A016RERR	TQFN	RER0016A	16	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other Tl intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to Tl's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.
TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2024, Texas Instruments Incorporated

