LMR436x0, 36-V, 1-A/2-A Buck Converter with 1.5 µA I_Q in 4-mm² HotRod™ QFN

1 Features
- Miniature solution size and low component cost
 - 2-mm × 2-mm HotRod™ package with wettable flanks
 - Internal compensation
- Optimized for ultra-low EMI requirements
 - Spread spectrum reduces peak emissions
 - Pin selectable FPWM mode for constant frequency at light loads with MODE/SYNC pin
 - F_SW synchronization with MODE/SYNC pin
- Designed for industrial automotive applications
 - Junction temperature range: –40°C to +150°C
 - Supports 42-V transients
 - Supports 3-V_MIN minimum
 - Adjustable up to 95% of V_IN, 3.3-V and 5-V fixed V_OUT options available
- > 85% efficiency at 1 mA
 - 1.5-µA I_Q (switching) at 24 V_IN, 3.3 fixed V_OUT
- Suitable for scalable power supplies
 - Adjustable F_SW: 200 kHz - 2.2 MHz with RT pin
 - Pin compatible with:
 - LMR36506 (65 V, 600 mA)
 - LMR36503 (65 V, 300 mA)

2 Applications
- Advanced driver assistance systems: radar ECU
- Infotainment and cluster: head unit, eCall
- Body electronics and lighting

3 Description
The LMR436x0 is the industry’s smallest 36 V, 2 A and 1 A synchronous step-down DC/DC converters in 2-mm × 2-mm HotRod™ package. This easy-to-use converter supports a wide input voltage range of 3.0V to 36 V with transients up to 42 V. The transient tolerance reduces the necessary design effort to protect against input overvoltage and meets the surge immunity requirements of IEC 61000-4-5.

The control architecture and feature-set are optimized for an ultra-small solution size. The device uses peak current mode control to minimize output capacitance. The LMR436x0 minimizes input filter size by utilizing pseudo-random spread spectrum, a low-EMI HotRod™ package, and an optimized pin-out. The MODE/SYNC and RT pin variants can be used to set or synchronize the frequency between 200 kHz and 2.2 MHz to avoid noise sensitive frequency bands.

The rich feature set of the is designed to simplify implementation for a wide range of automotive end equipments.

The compact solution size and rich feature set of LMR436x0 simplifies implementation for a wide range of industrial applications.

Device Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE(1)</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMR43620</td>
<td>VQFN-HR (9)</td>
<td>2.00 mm × 2.00 mm</td>
</tr>
<tr>
<td>LMR43610</td>
<td>VQFN-HR (9)</td>
<td>2.00 mm × 2.00 mm</td>
</tr>
</tbody>
</table>

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Typical Solution Size

Efficiency: V_OUT = 3.3 V (Fixed), 2.2 MHz
4 Device and Documentation Support

4.1 Documentation Support

4.1.1 Related Documentation

For related documentation see the following:

- Texas Instruments, Thermal Design by Insight not Hindsight Application Report
- Texas Instruments, Semiconductor and IC Package Thermal Metrics Application Report
- Texas Instruments, Thermal Design Made Simple with LM43603 and LM43602 Application Report
- Texas Instruments, PowerPAD™ Thermally Enhanced Package Application Report
- Texas Instruments, PowerPAD™ Made Easy Application Report
- Texas Instruments, Using New Thermal Metrics Application Report
- Texas Instruments, Layout Guidelines for Switching Power Supplies Application Report
- Texas Instruments, Simple Switcher PCB Layout Guidelines Application Report
- Texas Instruments, Construction Your Power Supply- Layout Considerations Seminar
- Texas Instruments, Low Radiated EMI Layout Made Simple with LM4360x and LM4600x Application Report

4.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on Subscribe to updates to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

4.3 Support Resources

TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

4.4 Trademarks

HotRod™, PowerPAD™, and are trademarks of TI.
TI E2E™ is a trademark of Texas Instruments.
All trademarks are the property of their respective owners.

4.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

4.6 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.
5 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
EXAMPLE BOARD LAYOUT

RPE0009A VQFN-HR - 1.0 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

LAND PATTERN EXAMPLE
EXPOSED METAL SHOWN
SCALE: 30X

SOLDER MASK DETAILS

NOTES: (continued)

3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
4. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.
SOLDER PASTE EXAMPLE
BASED ON 0.125 MM THICK STENCIL
SCALE: 30X

PADS 1 & 8:
90% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE
PAD 9:
85% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE

NOTES: (continued)
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate
design recommendations.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead finish/ Ball material</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMR43610MB3RPER</td>
<td>PREVIEW</td>
<td>VQFN-HR</td>
<td>RPE</td>
<td>9</td>
<td>3000</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>-40 to 150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMR43620MB5RPER</td>
<td>PREVIEW</td>
<td>VQFN-HR</td>
<td>RPE</td>
<td>9</td>
<td>3000</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>-40 to 150</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) **RoHS:** TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) **Lead finish/Ball material** - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALLFAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI’s Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2021, Texas Instruments Incorporated