

LP5861 SNVSC54 - JANUARY 2022

LP5861 18-Channel LED Driver With 8-Bit Analog and 8-/16-Bit PWM Dimming

1 Features

- Operating voltage range:
 - V_{CC}/V_{LFD} range: 2.7 V to 5.5 V
 - Logic pins compatible with 1.8 V, 3.3 V, and 5 V
- 18 constant current sinks with high precision:
 - 0.1 mA-50 mA per current sink when V_{CC} ≥ 3.3
 - Device-to-device error: ±5%
 - Channel-to-channel error: ±5%
 - Phase-shift for balanced transient power
- Ultra-low power consumption:
 - Shutdown mode: I_{CC} ≤ 2 uA when EN = Low
 - Standby mode: I_{CC} ≤ 10 uA when EN = High and CHIP_EN = 0 (data retained)
 - Active mode: I_{CC} = 3 mA (typ.) when channel current = 5 mA
- Flexible dimming options:
 - Individual ON and OFF control for each LED dot
 - Analog dimming (current gain control)
 - Global 3-bit Maximum Current (MC) setting for all LED dots
 - 3 groups of 7-bit Color Current (CC) setting for red, green, and blue
 - · Individual 8-bit Dot Current (DC) setting for each LED dot
 - PWM dimming with audible-noise-free frequency
 - Global 8-bit PWM dimming for all LED dots
 - 3 programmable groups of 8-bit PWM dimming for LED dot arbitrary mapping
 - Individual 8-bit or 16-bit PWM dimming for each LED dot
- Full addressable SRAM to minimize data traffic
- Individual LED dot open and short detection
- Deghosting and low brightness compensation
- Interface options:
 - 1-MHz (max.) I²C interface when IFS = Low
 - 12-MHz (max.) SPI interface when IFS = High

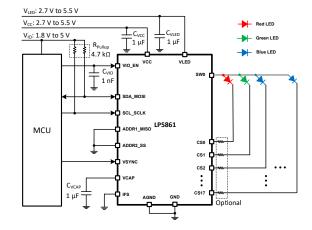
2 Applications

- LED animation and indication for:
 - Keyboard, mouse, and gaming accessories
 - Major and smart home appliances
 - Smart speaker, wired and wireless speaker
 - Audio mixer, DJ equipment, and broadcast
- Access equipment, switches, and servers
- Constant current sinks for optical module

3 Description

Electronic devices are becoming smarter, requiring to use larger quantity of LEDs for animation and indication purposes and high performance LED matrix driver is required to improve user experience with small solution size.

The LP586x devices are a family of high performance LED matrix drivers. The device integrates 18 constant current sinks with N (N = 1/2/4/6/8/11) switching MOSFETs to support N × 18 LED dots or N × 6 RGB LEDs. The LP5861 integrates 1 MOSFET for up to 18 LED dots or 6 RGB LEDs.


The LP5861 supports both analog dimming and PWM dimming methods. For analog dimming, each LED dot can be adjusted with 256 steps. For PWM dimming, the integrated 8-bit or 16-bit configurable PWM generators enable smooth and audible-noisefree dimming control. Each LED dot can also be arbitrarily mapped into 8-bit Group PWM to achieve dimming control together.

The LP5861 device implements full addressable SRAM to minimize the data traffic. The ghostcancellation circuitry is integrated to eliminate both upside and downside ghosting. The LP5861 also supports LED open and short detection functions. Both 1-MHz (maximum) I²C and 12-MHz (maximum) SPI are available in LP5861.

Device Information

PART NUMBER	PACKAGE ⁽¹⁾	BODY SIZE (NOM)
LP5861	VQFN (32)	4 mm × 4 mm

For all available packages, see the orderable addendum at the end of the data sheet.

Simplified Schematic

Table of Contents

1 Features1	8.4 Device Functional Modes	20
2 Applications1	8.5 Programming	
3 Description1	8.6 Register Maps	
4 Revision History2	9 Application and Implementation	
5 Device Comparison3	9.1 Application Information	. 64
6 Pin Configuration and Functions4	9.2 Typical Application	
7 Specifications6	10 Power Supply Recommendations	
7.1 Absolute Maximum Ratings6	11 Layout	. 69
7.2 ESD Ratings6	11.1 Layout Guidelines	
7.3 Recommended Operating Conditions6	11.2 Layout Example	. 69
7.4 Thermal Information6	12 Device and Documentation Support	70
7.5 Electrical Characteristics7	12.1 Receiving Notification of Documentation Updates.	.70
7.6 Timing Requirements8	12.2 Support Resources	. 70
7.7 Typical Characteristics11	12.3 Trademarks	
8 Detailed Description13	12.4 Electrostatic Discharge Caution	.70
8.1 Overview13	12.5 Glossary	.70
8.2 Functional Block Diagram13	13 Mechanical, Packaging, and Orderable	
8.3 Feature Description13	Information	. 71

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

DATE	REVISION	NOTES
January 2022	*	Initial release

5 Device Comparison

PART NUMBER	MATERIAL	LED DOT NUMBER	PACKAGE ⁽²⁾	SOFTWARE COMPATIBLE
LP5861	LP5861RSMR	18 × 1 = 18	VQFN-32	
I DE060	LP5862RSMR	18 × 2 = 36	VQFN-32	
LP5862	LP5862DBTR	10 * 2 - 30	TSSOP-38	
LP5864	LP5864RSMR	18 × 4 = 72	VQFN-32	
LF3004	LP5864MRSMR ⁽¹⁾		VQI N-32	
	LP5866RKPR		VQFN-40	Yes
LP5866	LP5866DBTR	18 × 6 = 108	TSSOP-38	
	LP5866MDBTR ⁽¹⁾		1330F-30	
LP5868	LP5868RKPR	18 × 8 = 144	VQFN-40	
1.05000	LP5861RKPR	10 × 11 = 100	VOEN 40	
LP5860	LP5861MRKPR ⁽¹⁾	18 × 11 = 198 VQFN-40		

 ⁽¹⁾ Extended Temperature devices, supporting -55°C to approximately 125°C operating ambient temperature.
 (2) The same packages are hardware compatible.

6 Pin Configuration and Functions

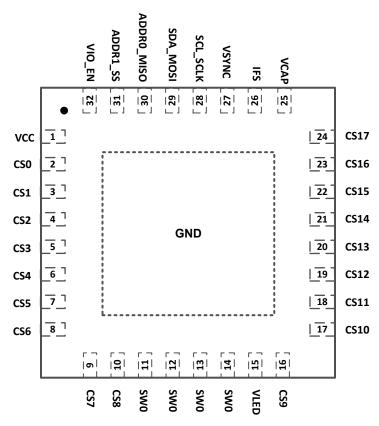


Figure 6-1. LP5861 RSM Package 32-Pin VQFN with Exposed Thermal Pad Top View

Table 6-1. Pin Functions

PIN		I/O	DESCRIPTION	
NO.	NAME	- 1/0	DESCRIPTION	
1	VCC	Power	Power supply for device. A 1-µF capacitor must be connected between this pin with GND and be placed as close to the device as possible.	
2	CS0	0	Current sink 0. If not used, this pin must be left floating.	
3	CS1	0	Current sink 1. If not used, this pin must be left floating.	
4	CS2	0	Current sink 2. If not used, this pin must be left floating.	
5	CS3	0	Current sink 3. If not used, this pin must be left floating.	
6	CS4	0	Current sink 4. If not used, this pin must be left floating.	
7	CS5	0	Current sink 5. If not used, this pin must be left floating.	
8	CS6	0	Current sink 6. If not used, this pin must be left floating.	
9	CS7	0	Current sink 7. If not used, this pin must be left floating.	
10	CS8	0	Current sink 8. If not used, this pin must be left floating.	
11/12/13/14	SW0	0	High-side PMOS switch output. All four pinsmust be tied together. If not used, this pin must be left floating.	
15	VLED	Power	Power input for high-side switches.	
16	CS9	0	Current sink 9. If not used, this pin must be left floating.	
17	CS10	0	Current sink 10. If not used, this pin must be left floating.	
18	CS11	0	Current sink 11. If not used, this pin must be left floating.	
19	CS12	0	Current sink 12. If not used, this pin must be left floating.	
20	CS13	0	Current sink 13. If not used, this pin must be left floating.	

Table 6-1. Pin Functions (continued)

P	IN	I/O	DESCRIPTION		
NO.	NAME	1/0	DESCRIPTION		
21	CS14	0	Current sink 14. If not used, this pin must be left floating.		
22	CS15	0	Current sink 15. If not used, this pin must be left floating.		
23	CS16	0	Current sink 16. If not used, this pin must be left floating.		
24	CS17	0	Current sink 17. If not used, this pin must be left floating.		
25	VCAP	0	Internal LDO output. A 1-μF capacitor must be connected between this pin with GND. Place the capacitor as close to the device as possible.		
26	IFS	I	Interface type select. I ² C is selected when IFS is low. SPI is selected when IFS is high. A resistor must be connected between VIO and this pin.		
27	VSYNC	I	External synchronize signal for display mode 2 and mode 3.		
28	SCL_SCLK	I	I ² C clock input or SPI clock input. Pull up to VIO when configured as I ² C.		
29	SDA_MOSI	I/O	I ² C data input or SPI leader output follower input. Pull up to VIO when configured as I ² C.		
30	ADDR0_MISO	I/O	I ² C address select 0 or SPI leader input follower output		
31	ADDR1_SS	I	I ² C address select 1 or SPI follower select		
32	VIO_EN	Power,I	Power supply for digital circuits and chip enable. A 1-nF capacitor must be connected between this pin with GND and be placed as close to the device as possible.		
Exposed Thermal Pad	GND	Ground	Common ground plane		

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

		MIN	MAX	UNIT
Voltage on V _{CC} / V _{LED} / VIO / EN / CS / SW / SDA / SCL / SCLK / MOSI / MISO / SS / ADDR0 / ADDR1 / VSYNC / IFS		-0.3	6	V
Voltage on VCAP		-0.3	2	V
TJ	Junction temperature	-55	150	°C
T _{stg}	Storage temperature	-65	150	°C

⁽¹⁾ Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

7.2 ESD Ratings

			VALUE	UNIT
V	V _(ESD) Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/ JEDEC JS-001, all pins ⁽¹⁾	±3000	V
V _(ESD)	Electrostatic discriarge	Charged device model (CDM), per ANSI/ESDA/ JEDEC JS-002, all pins ⁽²⁾	±1000	V

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM MAX	UNIT
Input voltage on V _{CC}	Supply voltage	2.7	5.5	V
Input voltage on V _{LED}	LED supply voltage	2.7	5.5	V
Input voltage on VIO_EN		1.65	5.5	V
Voltage on SDA / SCL / SCLK / MOSI / MISO / SS / ADDRx / VSYNC / IFS			VIO	V
T _A	Operating ambient temperature	-40	85	°C
T _A	Operating ambient temperature - LP5860MRKPR, LP5864MRSMR, and LP5866MDBTR only	-55	125	°C

7.4 Thermal Information

		LP5864, LP5862, LP5861	
	THERMAL METRIC(1)	RSM (VQFN)	UNIT
		32 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	32.9	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	29.2	°C/W
R _{0JB}	Junction-to-board thermal resistance	12.3	°C/W
$\Psi_{ m JT}$	Junction-to-top characterization parameter	0.4	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	12.3	°C/W
R _{θJC(bot)}	Junction-to-case (bottom) thermal resistance	3.7	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Submit Document Feedback

7.5 Electrical Characteristics

 V_{CC} = 3.3V, V_{LED} = 3.8V, VIO = 1.8V and T_A = -40°C to +85°C (T_A = -55°C to +125°C for LP5860MRKPR, LP5864MRSMR, and LP5866MDBTR); Typical values are at T_A = 25°C (unless otherwise specified)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Power su	ıpplies					
V _{CC}	Device supply voltage		2.7		5.5	V
V _{UVR}	Undervoltage restart	V _{CC} rising, Test mode			2.5	V
V _{UVF}	Undervoltage shutdown	V _{CC} falling, Test mode	1.9			V
V _{UV_HYS}	Undervoltage shutdown hysteresis			0.3		V
V _{CAP}	Internal LDO output	V _{CC} = 2.7 V to 5.5 V		1.78		V
	Shutdown supply current I _{SHUTDOWN}	V_{EN} = 0 V, CHIP_EN = 0 (bit), measure the total current from V_{CC} and V_{LED}		0.1	1	μΑ
I _{CC}	Standby supply current I _{STANDBY}	V_{EN} = 3.3 V, CHIP_EN = 0 (bit), measure the total current from V_{CC} and V_{LED}		5.5	10	μΑ
	Active mode supply current I _{NORMAL}	V_{EN} = 3.3 V, CHIP_EN = 1 (bit), all channels I _{OUT} = 5 mA (MC = 1, CC = 127, DC = 256), measure the current from V _{CC}		4.3	6	mA
V _{LED}	LED supply voltage		2.7		5.5	V
V _{VIO}	VIO supply voltage		1.65		5.5	V
I _{VIO}	VIO supply current	Interface idle			5	μA
Output S	tages					
	Constant current sink output range (CS0	2.7 V <= V _{CC} < 3.3 V, PWM = 100%	0.1		40	mA
I _{CS}	- CS17)	V _{CC} >= 3.3 V PWM = 100%	0.1		50	mA
I _{LKG}	Leakage current (CS0 – CS17)	channels off, up_deghost = 0, V _{CS} =5V		0.1	1	μA
	Device to device current error, I _{ERR_DD} = (I _{AVE} —I _{SET}) / I _{SET} × 100%	All channels ON. Current set to 0.1 mA. MC = 0 CC = 42 DC = 25 PWM = 100%	-7		7	%
		All channels ON. Current set to 1 mA. MC = 2 CC = 127 DC = 25 PWM = 100%	-5		5	%
I _{ERR_DD}		All channels ON. Current set to 10 mA. MC = 2 CC = 127 DC = 255 PWM = 100%	-3.5		3.5	%
		All channels ON. Current set to 25 mA. MC=7 CC=64 DC=255 PWM=100%	-3.5		3.5	%
		All channels ON. Current set to 50 mA. MC = 7 CC = 127 DC = 255 PWM = 100%	-3		3	%
		All channels ON. Current set to 0.1 mA. MC = 0 CC = 42 DC = 25 PWM = 100%	-5.5		5.5	%
		All channels ON. Current set to 1 mA. MC = 2 CC = 127 DC = 25 PWM = 100%	-5		5	%
I _{ERR_CC}	Channel to channel current error, I _{ERR_CC} = (I _{OUTX} -I _{AVE})/I _{AVE} ×100%	All channels ON. Current set to 10 mA. MC = 2 CC = 127 DC = 255 PWM = 100%	-4		4	%
		All channels ON. Current set to 25 mA. MC = 7 CC = 64 DC = 255 PWM = 100%	-3.5		3.5	%
		All channels ON. Current set to 50 mA. MC = 7 CC = 127 DC = 255 PWM = 100%	-3		3	%
£	LED DIAM fraguence	PWM_Fre = 1, PWM = 100%		62.5		KHz
f _{PWM}	LED PWM frequency	PWM Fre = 0, PWM = 100%		125		KHz

7.5 Electrical Characteristics (continued)

 V_{CC} = 3.3V, V_{LED} = 3.8V, VIO = 1.8V and T_A = -40°C to +85°C (T_A = -55°C to +125°C for LP5860MRKPR, LP5864MRSMR, and LP5866MDBTR); Typical values are at T_A = 25°C (unless otherwise specified)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		I _{OUT} = 50 mA, decreasing output voltage, when the LED current has dropped 5%			0.45	V
V_{SAT}	Output saturation voltage	I _{OUT} = 30 mA, decreasing output voltage, when the LED current has dropped 5%			0.4	V
		I _{OUT} = 10 mA, decreasing output voltage, when the LED current has dropped 5%			0.35	V
		V _{LED} = 2.7 V, I _{SW} = 200 mA		450	550	mΩ
R_{SW}	High-side PMOS ON resistance	V _{LED} = 3.8 V, I _{SW} = 200 mA		380	500	mΩ
		V _{LED} = 5 V, I _{SW} = 200 mA		310	450	mΩ
Logic Inte	erfaces					
V _{LOGIC_IL}	Low-level input voltage, SDA, SCL, SCLK, MOSI, SS, ADDRx, VSYNC, IFS			(0.3 x VIO	V
V _{LOGIC_IH}	High-level input voltage, SDA, SCL, SCLK, MOSI, SS, ADDRx, VSYNC, IFS		0.7 × VIO			V
V _{EN_IL}	Low-level input voltage of EN				0.4	V
V _{EN_IH}	High-level input voltage of EN	When V _{CAP} powered up	1.4			V
I _{LOGIC_I}	Input current, SDA, SCL, SCLK, MOSI, SS, ADDRx		-1		1	μΑ
V _{LOGIC_O}	Low-level output voltage, SDA, MISO	I _{PULLUP} = 3 mA			0.4	V
V _{LOGIC_O}	High-level output voltage, MISO	I _{PULLUP} = –3 mA	0.7 x VIO			V
Protectio	n Circuits				'	
V _{LOD_TH}	Thershold for channel open detection			0.25		V
V _{LSD_TH}	Thershold for channel short detection		\	/ _{LED} – 1		V
T _{TSD}	Thermal-shutdown junction temperature			150		°C
T _{HYS}	Thermal shutdown temperature hysteresis			15		°C

7.6 Timing Requirements

		MIN	NOM	MAX	UNIT
MISC. Timi	ng Requirements			•	
f _{OSC}	Internal oscillator frequency		31.2		MHz
f _{OSC_ERR}	Device to device oscillator frequency error	-3%		3%	
t _{POR_H}	Wait time from UVLO disactive to device NORMAL			500	μs
t _{CHIP_EN}	Wait time from setting Chip_EN (Register) =1 to device NORMAL			100	μs
t _{RISE}	LED output rise time		10		ns
t _{FALL}	LED output fall time		15		ns
t _{VSYNC_H}	The minimum high-level pulse width of VSYNC	200			μs
SPI timing	requirements			•	
f _{SCLK}	SPI Clock frequency			12	MHz
1	Cycle time	83.3			ns
2	SS active lead-time	50			ns
3	SS active leg time	50			ns
4	SS inactive time	50			ns
5	SCLK low time	36			ns
6	SCLK high time	36			ns
7	MOSI set-up time	20			ns

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

7.6 Timing Requirements (continued)

		MIN	NOM	MAX	UNIT
8	MOSI hold time	20			ns
9	MISO disable time			30	ns
10	MISO data valid time			35	ns
C _b	Bus capacitance	5		40	pF
I ² C fast ı	mode timing requirements	<u> </u>		·	
f _{SCL}	I ² C clock frequency	0		400	KHz
1	Hold time (repeated) START condition	600			ns
2	Clock low time	1300			ns
3	Clock high time	600			ns
4	Set-up time for a repeated START condition	600			ns
5	Data hold time	0			ns
6	Data set-up time	100			ns
7	Rise time of SDA and SCL			300	ns
8	Fall time of SDA and SCL			300	ns
9	Set-up time for STOP condition	600			ns
10	Bus free time between a STOP and a START condition	1.3			μs
I ² C fast ı	mode plus timing requirements	1		'	
f _{SCL}	I ² C clock frequency	0		400	KHz
1	Hold time (repeated) START condition	600			ns
2	Clock low time	1300			ns
3	Clock high time	600			ns
4	Setup time for a repeated START condition	600			ns
5	Data hold time	0			ns
6	Data setup time	100			ns
7	Rise time of SDA and SCL			300	ns
8	Fall time of SDA and SCL			300	ns
9	Set-up time for STOP condition	600			ns
10	Bus free time between a STOP and a START condition	1.3			μs

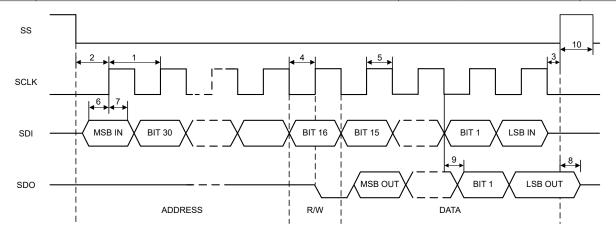


Figure 7-1. SPI Timing Parameters

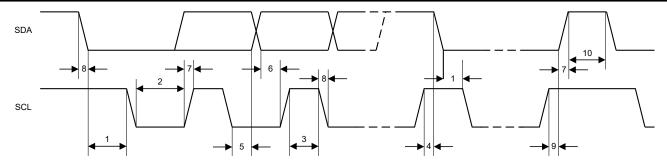
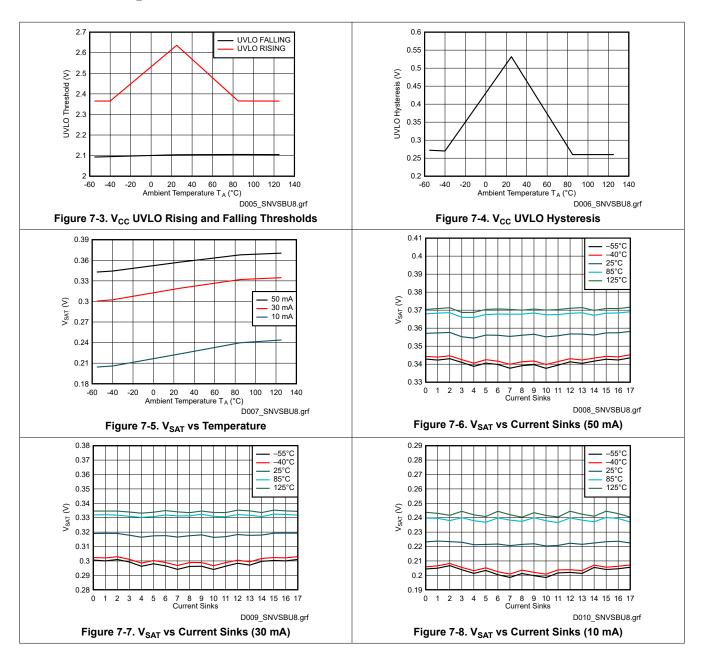
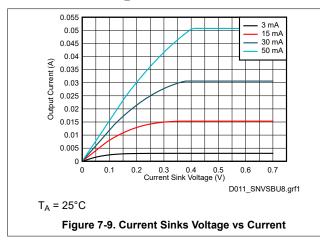



Figure 7-2. I²C Timing Parameters

7.7 Typical Characteristics


Unless specified otherwise, typical characteristics apply over the full ambient temperature range ($-55^{\circ}C < T_A < +125^{\circ}C$ for LP5860MRKPR, LP5864MRSMR, and LP5866MDBTR while $-40^{\circ}C < T_A < +85^{\circ}C$ for the other devices), $V_{CC} = 3.3$ V, $V_{IO} = 3.3$ V, $V_{LED} = 5$ V, I_{LED} Peak = 50 mA, $C_{VLED} = 1$ μ F, $C_{VCC} = 1$ μ F.

7.7 Typical Characteristics (continued)

Unless specified otherwise, typical characteristics apply over the full ambient temperature range ($-55^{\circ}C < T_A < +125^{\circ}C$ for LP5860MRKPR, LP5864MRSMR, and LP5866MDBTR while $-40^{\circ}C < T_A < +85^{\circ}C$ for the other devices), V_{CC} = 3.3 V, V_{IO} = 3.3 V, V_{LED} = 5 V, $I_{LED\ Peak}$ = 50 mA, C_{VLED} = 1 μ F, C_{VCC} = 1 μ F.

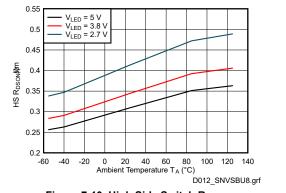
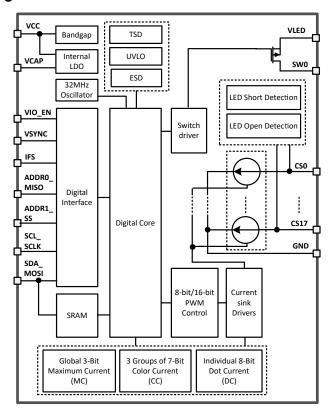


Figure 7-10. High Side Switch R_{DSON}

8 Detailed Description


8.1 Overview

The LP5861 is an 18 channels LED driver. The device integrates 18 high-precision constant-current sinks. One LP5861 device can drive up to 18 LED dots or 6 RGB pixels by directly driving the LEDs.

The LP5861 supports both analog dimming and PWM dimming methods. For analog dimming, the current gain of each individual LED dot can be adjusted with 256 steps through 8-bits dot correction. For PWM dimming, the integrated 8-bits or 16-bits configurable, > 20-KHz PWM generators for each LED dot enable smooth, vivid animation effects without audible noise. Each LED can also be mapped into a 8-bits group PWM to achieve the group control with minimum data traffic.

The LP5861 device implements full addressable SRAM. The device supports entire SRAM data refresh and partial SRAM data update on demand to minimize the data traffic. The LP5861 implements the ghost cancellation circuit to eliminate both upside and downside ghosting. The LP5861 also uses low brightness compensation technology to support high density LED pixels. Both 1-MHz (maximum) I²C and 12-MHz (maximum) SPI interfaces are available in the LP5861.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Analog Dimming (Current Gain Control)

Analog dimming of LP5861 is achieved by configuring the current gain control. There are several methods to control the current gain of each LED.

- · Global 3-bits Maximum Current (MC) setting without external resistor
- 3 Groups of 7-bits Color Current (CC) setting
- Individual 8-bit Dot Current (DC) setting

Global 3-Bits Maximum Current (MC) Setting

The MC is used to set the maximum current I_{OUT_MAX} for each current sink and this current is the maximum peak current for each LED dot. The MC can be set with 3-bits (8 steps) from 3 mA to 50 mA. When the device is powered on, the MC data is set to default value, which is 15 mA.

For data refresh Mode 1, MC data is effective immediately after new data updated. For Mode 2 and Mode 3, to avoid unexpected MC data change during high speed data refreshing, MC data must be changed when all channels are off and new MC data is only be updated when the 'Chip_EN' bit in Chip_en register is set to 0, and after the 'Chip_EN' returns to 1, the new MC data is effective. 'Down_Deghost' and 'Up_Deghost' in Dev_config3 work in the similar way with MC.

Table 8-1. Maximum Current (MC) Register Setting

3-BITS MAXIMUM_C	URRENT REGISTER	l _{OUT_MAX}
Binary	Decimal	mA
000	0	3
001	1	5
010	2	10
011 (default)	3 (default)	15 (default)
100	4	20
101	5	30
110	6	40
111	7	50

3 Groups of 7-Bits Color Current (CC) Setting

The LP5861 device is able to adjust the output current of three color groups separately. For each color, the device has 7-bits data in 'CC_Group1', 'CC_Group2', and 'CC_Group3'. Thus, all color group currents can be adjusted in 128 steps from 0% to 100% of the maximum output current, I_{OUT_MAX}.

The 18 current sinks have fixed mapping to the three color groups:

- CC-Group 1: CS0, CS3, CS6, CS9, CS12, CS15
- CC-Group 2: CS1, CS4, CS7, CS10, CS13, CS16
- CC-Group 3: CS2, CS5, CS8, CS11, CS14, CS17

Table 8-2. 3 Groups of 7-bits Color Current (CC) Setting

7-BITS CC_GROUP1/CC_GRO	UP2/CC_GROUP3 REGISTER	RATIO OF OUTPUT CURRENT TO I _{OUT_MAX}
Binary	Decimal	%
000 0000	0	0
000 0001	1	0.79
000 0010	2	1.57
100 0000 (default)	64 (default)	50.4 (default)
111 1101	125	98.4
111 1110	126	99.2
111 1111	127	100

Individual 8-bit Dot Current (DC) Setting

The LP5861 can individually adjust the output current of each LED by using dot current function through DC setting. The device allows the brightness deviations of the LEDs to adjusted be individually. Each output DC is programmed with a 8-bit depth, so the value can be adjusted with 256 steps within the range from 0% to 100% of ($I_{OUT_MAX} \times CC/127$).

ing

8-BIT DC I	REGISTER	RATIO OF OUTPUT CURRENT TO I _{OUT_MAX} × CC/127
Binary	Decimal	%
0000 0000	0	0
0000 0001	1	0.39
0000 0010	2	0.78
1000 0000 (default)	128 (default)	50.2 (default)
1111 1101	253	99.2
1111 1110	254	99.6
1111 1111	255	100

In summary, the current gain of each current sink can be calculated as below:

$$I_{OUT} (mA) = I_{OUT MAX} \times (CC/127) \times (DC/255)$$

$$\tag{1}$$

8.3.2 PWM Dimming

There are several methods to control the PWM duty cycle of each LED dot.

Individual 8-bit / 16-bit PWM for Each LED Dot

Every LED has an individual 8-bit or 16-bit PWM register that is used to change the LED brightness by PWM duty. The LP5861 uses an enhanced spectrum PWM (ES-PWM) algorithm to achieve 16-bit depth with high refresh rate and this can avoid flicker under high speed camera. Comparing with conventional 8-bit PWM, 16-bit PWM can help to achieve ultimate high dimming resolution in LED animation applications.

3 Programmable Groups of 8-bit PWM Dimming

The group PWM Control is used to select LEDs into one to three groups where each group has a separate register for duty cycle control. Every LED has 2-bit selection in LED_DOT_GROUP Registers (x = 0, 1, ..., 4) to select whether it belongs to one of the three groups or not:

- 00: not a member of any group
- 01: member of group 1
- 10: member of group 2
- 11: member of group 3

8-bit PWM for Global Dimming

The Global PWM Control function affects all LEDs simultaneously.

The final PWM duty cycle can be calculated as below:

$$PWM_Final(16 bit) = PWM_Individual(16 bit) \times PWM_Group(8 bit) \times PWM_Global(8 bit)$$
 (3)

The LP5861 supports 125-kHz or 62.5-kHz PWM output frequency. The PWM frequency is selected by configuring the 'PWM_Fre' in Dev_initial register. An internal 32-MHz oscillator is used for generating PWM outputs. The oscillator's high accuracy design ($f_{OSC_ERR} \le \pm 2\%$) enables a better synchronization if multiple LP5861 devices are connected together.

A PWM phase-shifting scheme is implemented in each current sink to avoid the current overshot when turning on simultaneously. As the LED drivers are not activated simultaneously, the peak load current from the pre-stage power supply is significantly decreased. This scheme also reduces input-current ripple and ceramic-capacitor audible ringing. LED drivers are grouped into three different phases. By configuring the 'PWM_Phase_Shift' in

Dev_config1 register, which is default off, the LP5861 supports t_{phase_shift} = 125-ns shifting time shown in Figure 8-1.

- Phase 1: CS0, CS3, CS6, CS9, CS12, CS15
- Phase 2: CS1, CS4, CS7, CS10, CS13, CS16
- Phase 3: CS2, CS5, CS8, CS11, CS14, CS17

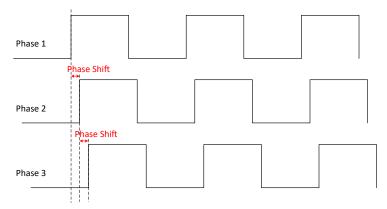


Figure 8-1. Phase Shift

- Low Brightness Compensation: three groups compensation are implemented to overcome the colorshift and non-uniformity in low brightness conditions. The compensation capability can be through 'Comp_Group1', 'Comp_Group2', and 'Comp_Group3' in Dev_config2 register.
 - Compensation_group 1: CS0, CS3, CS6, CS9, CS12, CS15
 - Compensation group 2: CS1, CS4, CS7, CS10, CS13, CS16
 - Compensation group 3: CS2, CS5, CS8, CS11, CS14, CS17

The LP5861 allows users to configure the dimming scale either exponentially (Gamma Correction) or linearly through the 'PWM_Scale_Mode' in Dev_config1 register. If a human-eye-friendly dimming curve is desired, using the internal fixed exponential scale is an easy approach. If a special dimming curve is desired, using the linear scale with software correction is recommended. The LP5861 supports both linear and exponential dimming curves under 8-bit and 16-bit PWM depth. Figure 8-2 is an example of 8-bit PWM depth.

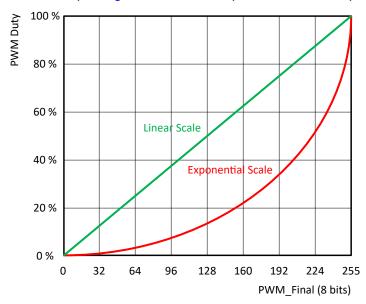


Figure 8-2. Linear and Exponential Dimming Curves

In summary, the PWM control method is illustrated as Figure 8-3:

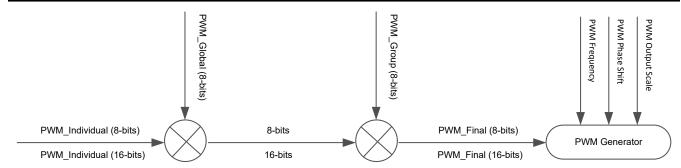


Figure 8-3. PWM Control Scheme

8.3.3 ON and OFF Control

The LP5861 device supports the individual ON and OFF control of each LED. For indication purpose, users can turn on and off the LED directly by writing 1-bit ON and OFF data to the corresponding Dot_onoffx (x = 0, 1, ..., 2) register.

8.3.4 Data Refresh Mode

The LP5861 supports three data refresh modes: Mode 1, Mode 2, and Mode 3, by configuring 'Data_Ref_Mode' in Dev initial register.

Mode 1: 8-bit PWM data without VSYNC command. Data is sent out for display instantly after received. With Mode 1, users can refresh the corresponding dots' data only instead of updating the whole SRAM. It is called 'on demand data refresh', which can save the total data volume effectively. As shown in Figure 8-4, the red LED dots can be refreshed after sending the corresponding data while the others kept the same with last frame.

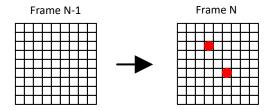


Figure 8-4. On Demand Data Refresh - Mode 1

Mode 2: 8-bit PWM data with VSYNC command. Data is held and sent out simultaneously by frame after receiving the VSYNC command.

Mode 3: 16-bit PWM data with VSYNC command. Data is held and sent out simultaneously by frame after receiving the VSYNC command.

Frame control is implemented in Mode 2 and Mode 3. Instead of refreshing the output instantly after data is received (Mode 1), the device holds the data and refreshes the whole frame data by a fixed frame rate, f_{VSYNC} . Usually, 24 Hz, 50 Hz, 60 Hz, 120 Hz or even higher frame rate is selected to achieve vivid animation effects. Whole SRAM Data Refresh is shown in Figure 8-5, a new frame is updated after receiving the VSYNC command.

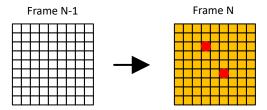


Figure 8-5. Whole SRAM Data Refresh

Comparing with Mode 1, Mode 2 and Mode 3 provide a better synchronization when multiple LP5861 devices used together. A high-level pulse width longer than t_{SYNC_H} is required at the beginning of each VSYNC frame. Figure 8-6 shows the VSYNC connections and Figure 8-7 shows the timing requirements.

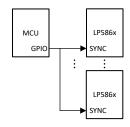


Figure 8-6. Multiple Devices Sync

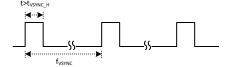


Figure 8-7. VSYNC Timing

Table 8-4 is the summary of the three data refresh modes.

Table 8-4. Data Refresh Mode

MODE TYPE	PWM RESOLUTION	PWM OUTPUT	EXTERNAL VSYNC
Mode 1	8 bits	Data update instantly	No
Mode 2	8 bits	Data update by frame	Yes
Mode 3	16 bits	Data update by frame	ies

8.3.5 Full Addressable SRAM

SRAM is implemented inside the LP5861 device to support data writing and reading at the same time.

Although data refresh mechanisms are not the same for Mode 1 and Mode 2 and 3, the data writing and reading follow the same method. Uses can update partial of the SRAM data only or the whole SRAM page simultaneously. The LP5861 supports auto-increment function to minimize data traffic and increase data transfer efficiency.

Please note that 16-bit PWM (Mode 3) and 8-bit PWM (Mode 1 and Mode 2) are assigned with different SRAM addresses.

8.3.6 Protections and Diagnostics

LED Open Detection

The LP5861 includes LED open detection (LOD) for the fault caused by any opened LED dot. The threshold for LED open is 0.25-V typical. LED open detection is only performed when PWM \geq 25 (Mode 1 and Mode 2) or PWM \geq 6400 (Mode 3) and voltage on CSn is detected lower than open threshold for continuously 4 sub-periods.

Figure 8-8 shows the detection circuit of LOD function. When open fault is detected, 'Global_LOD' bit in Fault_state register is set to 1 and detailed fault state for each LED is also monitored in register Dot_lodx (x = 0, 1, ..., 2). All open fault indicator bits can be cleared by setting LOD_clear = 0Fh after the open condition is removed.

LOD removal function can be enabled by setting 'LOD_removal' bit in Dev_config2 register to 1. This function turns off the current sink of the open channel when scanning to the line where the opened LED is included.

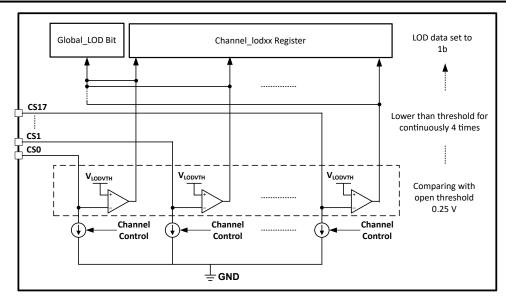


Figure 8-8. LOD Circuits

LED Short Detection

The LP5861 includes LED short detection (LSD) for the fault caused by any shorted LED. Threshold for channel short is (VLED - 1) V typical. LED short detection only performed when PWM \geq 25 (Mode 1 and Mode 2) or PWM \geq 6400 (Mode 3) and voltage on CSn is detected higher than short threshold for continuously 4 sub-periods. As there is parasitic capacitance for the current sink, to make sure the LSD result is correct, TI recommends to set the LED current higher than 0.5 mA.

Figure 8-9 shows the detection circuit of LSD function. When short fault is detected, 'Global_LSD bit' in Fault_state register is set to 1 and detailed fault state for every channel is also monitored in register Dot_lsdx (x = 0, 1, ..., 2). All short fault indicator bits can be cleared by setting LSD_clear = 0Fh after the short condition is removed.

LSD removal function can be enabled by setting 'LSD_removal' bit in Dev_config2 register to 1. This function turns off the upside deghosting function of the scan line where short LED is included.

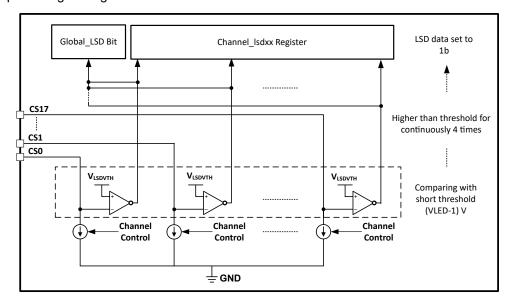


Figure 8-9. LSD Circuit

Thermal Shutdown

The LP5861 device implements thermal shutdown mechanism to protect the device from damage due to overheating. When the junction temperature rises to 160 °C (typical) and above, the device switches into shutdown mode. The LP5861 exits thermal shutdown when the junction temperature of the device drops to 145 °C (typical) and below.

UVLO (Undervoltage Lockout)

The LP5861 has an internal comparator that monitors the voltage at VCC. When VCC is below V_{UVF}, reset is active and the LP5861 enters INITIALIZATION state.

8.4 Device Functional Modes

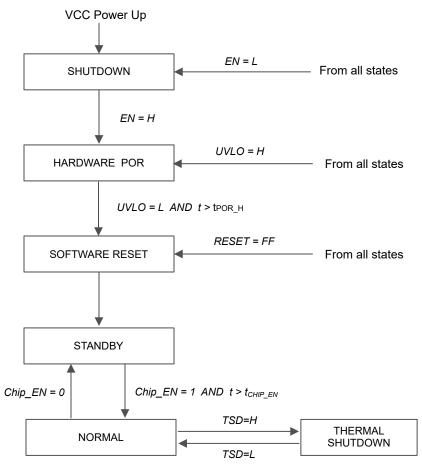


Figure 8-10. Device Functional Modes

- Shutdown: The device enters into shutdown mode from all states on VCC power up or EN pin is low.
- Hardware POR: The device enters into hardware POR when Enable pin is high or VCC fall under V_{UVF} causing UVLO = H from all states.
- Software reset: The device enters into software reset mode when VCC rise higher than V_{UVR} with the time t > t_{POR_H}. In this mode, all the registers are reset. Entry can also be from any state when the RESET (register) = FFh or UVLO is low.
- Standby: The device enters the standby mode when Chip_EN (register) = 0. In this mode, the device enters into low power mode, but the I²C/SPI are still available for Chip_EN only and the registers' data are retained.
- Normal: The device enters the normal mode when 'Chip_EN' = 1 with the time t > t_{CHIP_EN}.
- Thermal shutdown: The device automatically enters the thermal shutdown mode when the junction temperature exceeds 160°C (typical). If the junction temperature decreases below 145°C (typical), the device returns to the normal mode.

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

8.5 Programming

Interface Selection

The LP5861 supports two communication interfaces: I²C and SPI. If IFS is high, it enters into SPI mode. If IFS is low, it enters into I²C mode.

Table 8-5. Interface Selection

INTERFACE TYPE	ENTRY CONDITION
I ² C	IFS = Low
SPI	IFS = High

I²C Interface

The LP5861 is compatible with I²C standard specification. The device supports both fast mode (400-KHz maximum) and fast plus mode (1-MHz maximum).

I²C Data Transactions

The data on SDA line must be stable during the HIGH period of the clock signal (SCL). In other words, state of the data line can only be changed when clock signal is LOW. START and STOP conditions classify the beginning and the end of the data transfer session. A START condition is defined as the SDA signal transitioning from HIGH to LOW while SCL line is HIGH. A STOP condition is defined as the SDA transitioning from LOW to HIGH while SCL is HIGH. The bus leader always generates START and STOP conditions. The bus is considered to be busy after a START condition and free after a STOP condition. During data transmission, the bus leader can generate repeated START conditions. First START and repeated START conditions are functionally equivalent.

Each byte of data has to be followed by an acknowledge bit. The acknowledge related clock pulse is generated by the leader. The leader releases the SDA line (HIGH) during the acknowledge clock pulse. The device pulls down the SDA line during the 9th clock pulse, signifying an acknowledge. The device generates an acknowledge after each byte has been received.

There is one exception to the acknowledge after every byte rule. When the leader is the receiver, it must indicate to the transmitter an end of data by not acknowledging (negative acknowledge) the last byte clocked out of the follower. This negative acknowledge still includes the acknowledge clock pulse (generated by the leader), but the SDA line is not pulled down.

I²C Data Format

The address and data bits are transmitted MSB first with 8-bits length format in each cycle. Each transmission is started with Address Byte 1, which are divided into 5-bits of the chip address, 2 higher bits of the register address, and 1 read and write bit. The other 8 lower bits of register address are put in Address Byte 2. The device supports both independent mode and broadcast mode. The auto-increment feature allows writing and reading several consecutive registers within one transmission. If not consecutive, a new transmission must be started.

Table 8-6. I²C Data Format

Address Byte1			Chip Address		Register	R/W			
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Independent	1	0	0	ADDR1	ADDR0	9 th bit	8 th bit	R: 1 W: 0	
Broadcast	1	0	1	0	1	9 DIL	O DIL	K. 1 W. U	
	Register Address								
Address Byte 2	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
	7 th bit	6 th bit	5 th bit	4 th bit	3 th bit	2 th bit	1 th bit	0 th bit	

Figure 8-11. I²C Write Timing

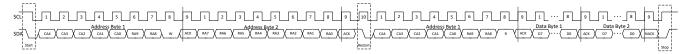


Figure 8-12. I²C Read Timing

Multiple Devices Connection

The LP5861 enters into I²C mode if IFS is connected to GND. The ADDR0/1 pin is used to select the unique I²C follower address for each device. The SCL and SDA lines must each have a pullup resistor (4.7 K Ω for 400 KHz, 2 K Ω for 1 MHz) placed somewhere on the line and remain HIGH even when the bus is idle. VIO_EN can either be connected with VIO power supply or GPIO. TI suggests to put one 1-nF cap as closer to VIO_EN pin as possible. Up to four LP5861 follower devices can share the same I²C bus by the different ADDR configurations.

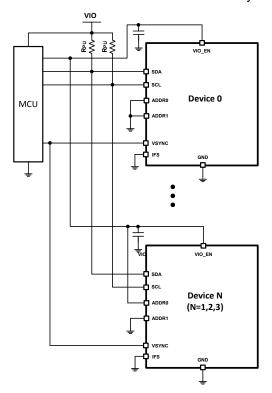


Figure 8-13. I²C Multiple Devices Connection

SPI Interface

The LP5861 is compatible with SPI serial-bus specification, and it operates as a follower. The maximum frequency supported by LP5861 is 12 MHz.

SPI Data Transactions

MISO output is normally in a high impedance state. When the follower-select pin SS for the device is active (low) the MISO output is pulled low for read only. During write cycle MISO stays in high-impedance state. The follower-select signal SS must be low during the cycle transmission. SS resets the interface when high. Data is clocked in on the rising edge of the SCLK clock signal, while data is clocked out on the falling edge of SCLK.

SPI Data Format

The address and data bits are transmitted MSB first with 8-bits length format in each cycle. Each transmission is started with Address Byte 1, which contains 8 higher bits of the register address. The Address Byte 2 is started with 2 lower bits of the register address and 1 read and write bit. The auto-increment feature allows writing and reading several consecutive registers within one transmission. If not consecutive, a new transmission must be started.

Table 8-7. SPI Data Format

Address Byte 1	Register Address											
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
	9 th bit	8 th bit	7 th bit	6 th bit	5 th bit	4 th bit	3 th bit	2 th bit				
Address Byte 2	Register Address											
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
	1 th bit	0 th bit	R: 0 W: 1	Don't Care								

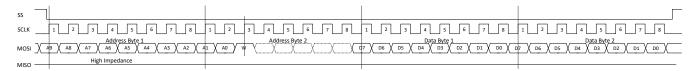


Figure 8-14. SPI Write Timing

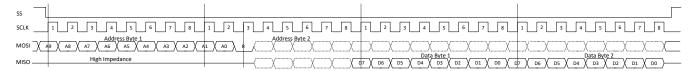


Figure 8-15. SPI Read Timing

Multiple Devices Connection

The device enters into SPI mode if IFS is pulled high to VIO through a pullup resistor (4.7K Ω recommended). VIO_EN can either be connected with VIO power supply or GPIO. TI suggests to put one 1-nF cap as closer to VIO_EN pin as possible. In SPI mode host can address as many devices as there are follower select pins on host.

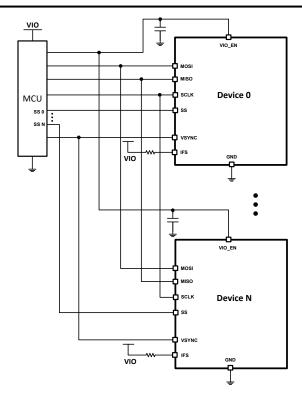


Figure 8-16. SPI Multiple Devices Connection

8.6 Register Maps

Table 8-8 lists the memory-mapped registers of the device.

Table 8-8. Register Section/Block Access Type Codes

Table 0-0. Register Section/Block Access Type Codes							
Access Type	Code	Description					
Read Type							
R	R	Read					
RC	R	Read					
	С	to Clear					
R-0	R	Read					
	-0	Returns 0s					
Write Type							
W	W	Write					
W0CP	W	W					
	0C	0 to clear					
	P	Requires privileged access					
Reset or Default Value	<u>-</u>	·					
-n		Value after reset or the default value					

Register Acronym	Address	Туре	D7	D6	D5	D4	D3	D2	D1	D0	Default
Chip_en	000h	R/W	Reserved	eserved C						Chip_EN	00h
Dev_initial	001h	R/W	Reserved	eserved Data_Ref_Mode							5Eh
Dev_config1	002h	R/W	Reserved	Reserved PV ale						Reserved	00h
Dev_config2	003h	R/W	Comp_Gro	Comp_Group3 Comp_Group2 Comp_Group1 Reserved							00h
Dev_config3	004h	R/W	Reserved	Reserved Maximum_Currer						Reserved	47h

										1 V O O O O T O T O T	
Global_bri	005h	R/W	PWM_Glob	PWM_Global						FFh	
Group0_bri	006h	R/W	PWM_Gro	M_Group1							FFh
Group1_bri	007h	R/W	PWM_Gro	M_Group2						FFh	
Group2_bri	008h	R/W	PWM_Gro	VM_Group3						FFh	
R_current_set	009h	R/W	Reserved	CC_Group	1						40h
G_current_set	00Ah	R/W	Reserved	CC_Group	2						40h
B_current_set	00Bh	R/W	Reserved	CC_Group	3						40h
Dot_grp_sel0	00Ch	R/W	Dot CS3 gi	roup	Dot CS2 g	roup	Dot CS1 g	roup	Dot CS0 g	roup	00h
Dot_grp_sel1	00Dh	R/W	Dot CS7 gi	ot CS7 group Dot CS6 group Dot CS4 group						00h	
Dot_grp_sel2	00Eh	R/W	Dot CS11 (Dot CS10	•	Dot CS9 g		Dot CS8 g		00h
Dot_grp_sel3	00Fh	R/W	Dot CS15	group	Dot CS14	group	Dot CS13	• •	Dot CS12	• .	00h
Dot_grp_sel4	010h	R/W	Reserved	ı			Dot CS17		Dot CS16	· ·	00h
Dot_onoff0	043h	R/W	Dot CS7 onoff	Dot CS6 onoff	Dot CS5 onoff	Dot CS4 onoff	Dot CS3 onoff	Dot CS2 onoff	Dot CS1 onoff	Dot CS0 onoff	FFh
Dot_onoff1	044h	R/W	Dot CS15 onoff	Dot CS14 onoff	Dot CS13 onoff	Dot CS12 onoff	Dot CS11 onoff	Dot CS10 onoff	Dot CS9 onoff	Dot CS8 onoff	FFh
Dot_onoff2	045h	R/W	Reserved	eserved Dot CS17 Dot CS16 onoff onoff						03h	
Fault_state	064h	R	Reserved	Global_L Global_L OD SD					00h		
Dot_lod0	065h	R	Dot CS7 LOD	Dot CS6 LOD	Dot CS5 LOD	Dot CS4 LOD	Dot CS3 LOD	Dot CS2 LOD	Dot CS1 LOD	Dot CS0 LOD	00h
Dot_lod1	066h	R	Dot CS15 LOD	Dot CS14 LOD	Dot CS13 LOD	Dot CS12 LOD	Dot CS11 LOD	Dot CS10 LOD	Dot CS9 LOD	Dot CS8 LOD	00h
Dot_lod2	067h	R	Reserved	Reserved Dot CS17 Dot CS16 LOD LOD						00h	
Dot_lsd0	086h	R	Dot CS7 LSD	Dot CS6 LSD	Dot CS5 LSD	Dot CS4 LSD	Dot CS3 LSD	Dot CS2 LSD	Dot CS1 LSD	Dot CS0 LSD	00h
Dot_lsd1	087h	R	Dot CS15 LSD	Dot CS14 LSD	Dot CS13 LSD	Dot CS12 LSD	Dot CS11 LSD	Dot CS10 LSD	Dot CS9 LSD	Dot CS8 LSD	00h
Dot_lsd2	088h	R	Reserved						Dot CS17 LSD	Dot CS16 LSD	00h
LOD_clear	0A7h	W	Reserved				LOD_Clea	r			00h
LSD_clear	0A8h	W	Reserved				LSD_Clear	-			00h
Reset	0A9h	W	Reset								00h
DC0	100h	R/W	LED dot cu	ırrent settinç	g for Dot CS	60					80h
DC1	101h	R/W			g for Dot CS						80h
DC2	102h	R/W			g for Dot CS						80h
DC3	103h	R/W			g for Dot CS						80h
DC4	104h	R/W			g for Dot CS						80h
DC5	105h	R/W			g for Dot CS						80h
DC6	106h	R/W			g for Dot CS						80h
DC7	107h	R/W			g for Dot CS						80h
DC8	108h	R/W		`	g for Dot CS						80h
DC9	109h	R/W		`	g for Dot CS						80h
DC10	10Ah	R/W			g for Dot CS						80h
DC11	10Bh	R/W			g for Dot CS						80h
DC12	10Ch	R/W			g for Dot CS						80h
DC13	10Dh	R/W			g for Dot CS						80h
DC14	10Eh	R/W	LED dot cu	ırrent settinç	g for Dot CS	514					80h

DC15	10Fh	R/W	LED dot current setting for Dot CS15	80h			
DC16	110h	R/W	LED dot current setting for Dot CS16				
DC17	111h	R/W	LED dot current setting for Dot CS17				
pwm_bri0	200h	R/W	8-bit PWM for Dot CS0 OR 16-bit PWM lower 8 bits [7:0] for Dot CS0	00h			
pwm_bri1	201h	R/W	8-bit PWM for Dot CS1 OR 16-bit PWM higher 8 bits [15:8] for Dot CS0	00h			
pwm_bri2	202h	R/W	8-bit PWM for Dot CS2 OR 16-bit PWM lower 8 bits [7:0] for Dot CS1	00h			
pwm_bri3	203h	R/W	8-bit PWM for Dot CS3 OR 16-bit PWM higher 8 bits [15:8] for Dot CS1	00h			
pwm_bri4	204h	R/W	8-bit PWM for Dot CS4 OR 16-bit PWM lower 8 bits [7:0] for Dot CS2	00h			
pwm_bri5	205h	R/W	8-bit PWM for Dot CS5 OR 16-bit PWM higher 8 bits [15:8] for Dot CS2	00h			
· -		R/W	8-bit PWM for Dot CS6 OR 16-bit PWM lower 8 bits [7:0] for Dot CS3	00h			
pwm_bri7			8-bit PWM for Dot CS7 OR 16-bit PWM higher 8 bits [15:8] for Dot CS3	00h			
		R/W	8-bit PWM for Dot CS8 OR 16-bit PWM lower 8 bits [7:0] for Dot CS4	00h			
pwm_bri9	209h	R/W	8-bit PWM for Dot CS9 OR 16-bit PWM higher 8 bits [15:8] for Dot CS4	00h			
pwm_bri10	20Ah	R/W	8-bit PWM for Dot CS10 OR 16-bit PWM lower 8 bits [7:0] for Dot CS5	00h			
pwm_bri11	20Bh	R/W	8-bit PWM for Dot CS11 OR 16-bit PWM higher 8 bits [15:8] for Dot CS5	00h			
pwm_bri12	20Ch	R/W	8-bit PWM for Dot CS12 OR 16-bit PWM lower 8 bits [7:0] for Dot CS6	00h			
pwm_bri13	20Dh	R/W	8-bit PWM for Dot CS13 OR 16-bit PWM higher 8 bits [15:8] for Dot CS6	00h			
pwm_bri14	20Eh	R/W	8-bit PWM for Dot CS14 OR 16-bit PWM lower 8 bits [7:0] for Dot CS7	00h			
pwm_bri15 20Fh R/W		R/W	8-bit PWM for Dot CS15 OR 16-bit PWM higher 8 bits [15:8] for Dot CS7	00h			
pwm_bri16 210h R/W		R/W	8-bit PWM for Dot CS16 OR 16-bit PWM lower 8 bits [7:0] for Dot CS8	00h			
pwm_bri17 211h R/W		R/W	8-bit PWM for Dot CS17 OR 16-bit PWM higher 8 bits [15:8] for Dot CS8	00h			
pwm_bri18	212h	R/W	16-bit PWM lower 8 bits [7:0] for Dot CS9	00h			
pwm_bri19	213h	R/W	16-bit PWM higher 8 bits [15:8] for Dot CS9	00h			
pwm_bri20	214h	R/W	16-bit PWM lower 8 bits [7:0] for Dot CS10	00h			
pwm_bri21	215h	R/W	16-bit PWM higher 8 bits [15:8] for Dot CS10	00h			
pwm_bri22	216h	R/W	16-bit PWM lower 8 bits [7:0] for Dot CS11	00h			
pwm_bri23	217h	R/W	16-bit PWM higher 8 bits [15:8] for Dot CS11	00h			
pwm_bri24	218h	R/W	16-bit PWM lower 8 bits [7:0] for Dot CS12	00h			
pwm_bri25	219h	R/W	16-bit PWM higher 8 bits [15:8] for Dot CS12	00h			
pwm_bri26	21Ah	R/W	16-bit PWM lower 8 bits [7:0] for Dot CS13	00h			
pwm_bri27	21Bh	R/W	16-bit PWM higher 8 bits [15:8] for Dot CS13	00h			
pwm_bri28	21Ch	R/W	16-bit PWM lower 8 bits [7:0] for Dot CS14	00h			
pwm_bri29	21Dh	R/W	16-bit PWM higher 8 bits [15:8] for Dot CS14	00h			
pwm_bri30	21Eh	R/W	16-bit PWM lower 8 bits [7:0] for Dot CS15	00h			
pwm_bri31	21Fh	R/W	16-bit PWM higher 8 bits [15:8] for Dot CS15	00h			
pwm_bri32	220h	R/W	16-bit PWM lower 8 bits [7:0] for Dot CS16	00h			
pwm_bri33	221h	R/W	16-bit PWM higher 8 bits [15:8] for Dot CS16	00h			
pwm_bri34	222h	R/W	16-bit PWM lower 8 bits [7:0] for Dot CS17	00h			
pwm_bri35	223h	R/W	16-bit PWM higher 8 bits [15:8] for Dot CS17	00h			

8.6.1 CONFIG Registers

Table 8-9 lists the CONFIG registers. All register offset addresses not listed in Table 8-9 must be considered as reserved locations and the register contents must not be modified.

Table 8-9. CONFIG Registers

Address	Acronym	Register Name	Section
0h	Chip_en	Chip enable	Go
1h	Dev_initial	Device initialization	Go

Address	Acronym	Register Name	Section
2h	Dev_config1	Device configuration register 1	Go
3h	Dev_config2	Device configuration register 2	Go
4h	Dev_config3	Device configuration register 3	Go

8.6.1.1 Chip_en Register (Address = 0h) [Default = 0h]

Chip en is shown in Figure 8-17 and described in Table 8-10.

Return to the Summary table.

Figure 8-17. Chip_en Register

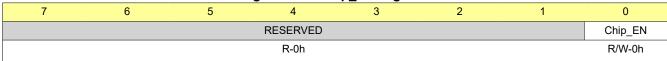


Table 8-10. Chip_en Register Field Descriptions

			·	
Bit	Field	Туре	Default	Description
7-1	RESERVED	R	0h	Reserved
0	Chip_EN	R/W		Chip enable 0h = Disabled 1h = Enabled

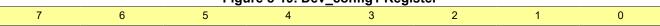
8.6.1.2 Dev_initial Register (Address = 1h) [Default = 5Eh]

Dev_initial is shown in Figure 8-18 and described in Table 8-11.

Return to the Summary table.

Figure 8-18. Dev_initial Register

Table 8-11. Dev_initial Register Field Descriptions


Bit	Field	Туре	Default	Description
7-3	RESERVED	R	Bh	Reserved
2-1	Data_Ref_Mode R/V		3h	Data refresh mode slection 0h = Mode 1 1h = Mode 2 2h = Mode 3 3h = Mode 3
0	PWM_Fre R/W		0h	Output PWM frequency setting 0h = 125kHz 1h = 62.5kHz

8.6.1.3 Dev_config1 Register (Address = 2h) [Default = 0h]

Dev_config1 is shown in Figure 8-19 and described in Table 8-12.

Return to the Summary table.

Figure 8-19. Dev_config1 Register

Figure 8-19. Dev_config1 Register (continued)

RESERVED	PWM_Scale_M ode	PWM_Phase_S hift	RESERVED
R-0h	R/W-0h	R/W-0h	R-0h

Table 8-12. Dev config1 Register Field Descriptions

Bit	Field	Туре	Default	Description
7-3	RESERVED	R	0h	Reserved
2	PWM_Scale_Mode	R/W	0h	Dimming scale setting of final PWM generator 0h = Linear scale dimming curve 1h = Exponential scale dimming curve
1	PWM_Phase_Shift	R/W	0h	PWM phase shift selection 0h = Phase shift off 1h = Phase shift on
0	RESERVED	R	0h	Reserved

8.6.1.4 Dev_config2 Register (Address = 3h) [Default = 0h]

Dev_config2 is shown in Figure 8-20 and described in Table 8-13.

Return to the Summary table.

Figure 8-20. Dev_config2 Register

7	6	5	4	3	2	1	0
Comp_	Comp_Group3 Comp_Group2		Comp_	Group1	RESERVED		
R/W-0h		R/W-0h		R/W-0h		R-0h	

Table 8-13. Dev config2 Register Field Descriptions

	Table 0-10. Dev_coming Register Field Descriptions								
Bit	Field	Туре	Default	Description					
7-6	Comp_Group3	R/W	Oh	Low brightness compensation clock shift number setting for group1 0h = off 1h = 1 clock 2h = 2 clock 3h = 3 clock					
5-4	Comp_Group2	R/W	Oh	Low brightness compensation clock shift number setting for group2 0h = off 1h = 1 clock 2h = 2 clock 3h = 3 clock					
3-2	Comp_Group1	R/W	0h	Low brightness compensation clock shift number setting for group3 0h = off 1h = 1 clock 2h = 2 clock 3h = 3 clock					
1-0	RESERVED	R	0h	Reserved					

8.6.1.5 Dev_config3 Register (Address = 4h) [Default = 57h]

Dev_config3 is shown in Figure 8-21 and described in Table 8-14.

Return to the Summary table.

Figure 8-21. Dev_config3 Register

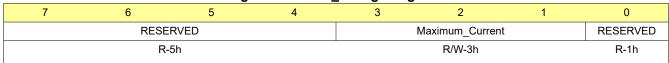


Table 8-14. Dev_config3 Register Field Descriptions

Bit	Field	Туре	Default	Description
7-4	RESERVED	VED R 5h		Reserved
3-1	Maximum_Current	R/W	3h	Maximum current cetting (MC) 0h = 3mA 1h = 5mA 2h = 10mA 3h = 15mA (Default) 4h = 20mA 5h = 30mA 6h = 40mA 7h = 50mA
0	ESERVED R 1h		1h	Reserved

8.6.2 GROUP Registers

Table 8-15 lists the GROUP registers. All register offset addresses not listed in Table 8-15 must be considered as reserved locations and the register contents must not be modified.

Table 8-15. GROUP Registers

Address	Acronym	Register Name	Section
5h	Master_bri	Global PWM configuration	Go
6h	Group0_bri	Group1 PWM configuration	Go
7h	Group1_bri	Group2 PWM configuration	Go
8h	Group2_bri	Group3 PWM configuration	Go
9h	R_current_set	Group1 current configuration	Go
Ah	G_current_set	Group2 current configuration	Go
Bh	B_current_set	Group3 current configuration	Go

8.6.2.1 Master_bri Register (Address = 5h) [Default = FFh]

Master_bri is shown in Figure 8-22 and described in Table 8-16.

Return to the Summary Table.

Figure 8-22. Master_bri Register

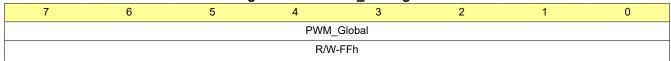


Table 8-16. Master_bri Register Field Descriptions

Bit	Field	Туре	Default	Description
7-0	PWM_Global	R/W	FFh	Global PWM setting

8.6.2.2 Group0_bri Register (Address = 6h) [Default = FFh]

Group0_bri is shown in Figure 8-23 and described in Table 8-17.

Return to the Summary Table.

Figure 8-23. Group0_bri Register

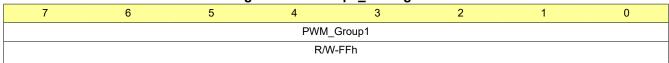


Table 8-17. Group0_bri Register Field Descriptions

Bit	Field	Туре	Default	Description
7-0	PWM_Group1	R/W	FFh	Group1 PWM setting

8.6.2.3 Group1_bri Register (Address = 7h) [Default = FFh]

Group1_bri is shown in Figure 8-24 and described in Table 8-18.

Return to the Summary Table.

Figure 8-24. Group1_bri Register

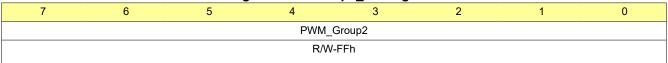


Table 8-18. Group1_bri Register Field Descriptions

Bit	Field	Туре	Default	Description
7-0	PWM_Group2	R/W	FFh	Group2 PWM setting

8.6.2.4 Group2_bri Register (Address = 8h) [Default = FFh]

Group2_bri is shown in Figure 8-25 and described in Table 8-19.

Return to the Summary Table.

Figure 8-25. Group2_bri Register

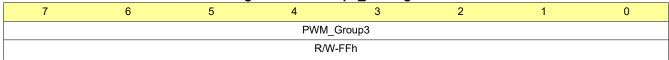


Table 8-19. Group2_bri Register Field Descriptions

Bit	Field	Туре	Default	Description
7-0	PWM_Group3	R/W	FFh	Group3 PWM setting

8.6.2.5 R_current_set Register (Address = 9h) [Default = 40h]

R_current_set is shown in Figure 8-26 and described in Table 8-20.

Return to the Summary Table.

Figure 8-26. R_current_set Register

7	6	5	4	3	2	1	0
RESERVED				CC_Group1			
R-0h				R/W-40h			

Table 8-20. R_current_set Register Field Descriptions

Bit	Field	Туре	Default	Description	
7	RESERVED	R	0h	Reserved	
6-0	CC_Group1	R/W	40h	Color-group current setting (CC) of group 1 (CS0, CS3, CS6, CS9, CS12, CS15)	

8.6.2.6 G_current_set Register (Address = Ah) [Default = 40h]

G_current_set is shown in Figure 8-27 and described in Table 8-21.

Return to the Summary Table.

Figure 8-27. G_current_set Register

7	6	5	4	3	2	1	0
RESERVED				CC_Group2			
R-0h				R/W-40h			

Table 8-21. G current set Register Field Descriptions

Bit	Field	Туре	Default Description			
7	RESERVED	R	0h	Reserved		
6-0	CC_Group2	R/W	40h	Color-group current setting (CC) of group 2 (CS1, CS4, CS7, CS10, CS13, CS16)		

8.6.2.7 B_current_set Register (Address = Bh) [Default = 40h]

B_current_set is shown in Figure 8-28 and described in Table 8-22.

Return to the Summary Table.

Figure 8-28. B_current_set Register

7	6	5	4	3	2	1	0
RESERVED				CC_Group3			
R-0h				R/W-40h			

Table 8-22. B_current_set Register Field Descriptions

Bit Field Type Defa		Default	Description	
7	7 RESERVED R 0h		0h	Reserved
6-0	CC_Group3	R/W		Color-group current setting (CC) of group 3 (CS2, CS5, CS8, CS11, CS14, CS17)

8.6.3 DOTGROUP Registers

Table 8-23 lists the DOTGROUP registers. All register offset addresses not listed in Table 8-23 must be considered as reserved locations and the register contents must not be modified.

Table 8-23. DOTGROUP Registers

Address	Acronym	Register Name	Section
Ch	Dot_grp_sel0	LED dot group selection register 0	Go
Dh	Dot_grp_sel1	LED dot group selection register 1	Go
Eh	Dot_grp_sel2	LED dot group selection register 2	Go
Fh	Dot_grp_sel3	LED dot group selection register 3	Go
10h	Dot_grp_sel4	LED dot group selection register 4	Go

8.6.3.1 Dot_grp_sel0 Register (Address = Ch) [Default = 0h]

Dot_grp_sel0 is shown in Figure 8-29 and described in Table 8-24.

Return to the Summary Table.

Figure 8-29. Dot grp sel0 Register

			•		0 0			
	7	6	5	4	3	2	1	0
	CS3_(group	CS2_	_group	CS1_g	group	CS0_c	group
R/W-0h R/W-0h		V-0h	R/W	-0h	R/W	/-0h		

Table 8-24. Dot_grp_sel0 Register Field Descriptions

Bit	Field	Туре	Default	Description
7-6	CS3_group	R/W	0h	CS3 group PWM control setting 0h = No group 1h = Group 1 2h = Group 2 3h = Group 3
5-4	CS2_group	R/W	0h	CS2 group PWM control setting 0h = No group 1h = Group 1 2h = Group 2 3h = Group 3

Table 8-24. Dot_grp_sel0 Register Field Descriptions (continued)

	i anio o 1 ii 201_9.p_ooio i logioto. I lota 2000.iptiono (contantata)							
Bit	Field	Туре	Default	Description				
3-2	CS1_group	R/W	0h	CS1 group PWM control setting 0h = No group 1h = Group 1 2h = Group 2 3h = Group 3				
1-0	CS0_group	R/W	0h	CS0 group PWM control setting 0h = No group 1h = Group 1 2h = Group 2 3h = Group 3				

8.6.3.2 Dot_grp_sel1 Register (Address = Dh) [Default = 0h]

Dot_grp_sel1 is shown in Figure 8-30 and described in Table 8-25.

Return to the Summary Table.

Figure 8-30. Dot_grp_sel1 Register

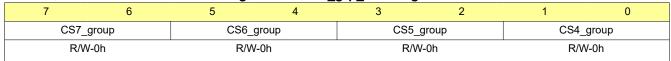


Table 8-25. Dot grp sel1 Register Field Descriptions

Di4				Register Field Descriptions
Bit	Field	Type	Default	Description
7-6	CS7_group	R/W	Oh	CS7 group PWM control setting 0h = No group 1h = Group 1 2h = Group 2 3h = Group 3
5-4	CS6_group	R/W	Oh	CS6 group PWM control setting 0h = No group 1h = Group 1 2h = Group 2 3h = Group 3
3-2	CS5_group	R/W	Oh	CS5 group PWM control setting 0h = No group 1h = Group 1 2h = Group 2 3h = Group 3
1-0	CS4_group	R/W	Oh	CS4 group PWM control setting 0h = No group 1h = Group 1 2h = Group 2 3h = Group 3

8.6.3.3 Dot_grp_sel2 Register (Address = Eh) [Default = 0h]

Dot_grp_sel2 is shown in Figure 8-31 and described in Table 8-26.

Return to the Summary Table.

Figure 8-31. Dot_grp_sel2 Register

			<u> </u>	<u> </u>			
7	6	5	4	3	2	1	0
CS11_	_group	CS10_group		CS9_group		CS8_group	
R/W	R/W-0h R/W-0h		R/W	/-0h	R/W-0h		

Table 8-26. Dot_grp_sel2 Register Field Descriptions

D:4	Field		Dofoult	
Bit	Field	Туре	Default	Description
7-6	CS11_group	R/W	0h	CS11 group PWM control setting 0h = No group 1h = Group 1 2h = Group 2 3h = Group 3
5-4	CS10_group	R/W	Oh	CS10 group PWM control setting 0h = No group 1h = Group 1 2h = Group 2 3h = Group 3
3-2	CS9_group	R/W	0h	CS9 group PWM control setting 0h = No group 1h = Group 1 2h = Group 2 3h = Group 3
1-0	CS8_group	R/W	0h	CS8 group PWM control setting 0h = No group 1h = Group 1 2h = Group 2 3h = Group 3

8.6.3.4 Dot_grp_sel3 Register (Address = Fh) [Default = 0h]

Dot_grp_sel3 is shown in Figure 8-32 and described in Table 8-27.

Return to the Summary Table.

Figure 8-32. Dot_grp_sel3 Register

Table 8-27. Dot grp sel3 Register Field Descriptions

Bit	Field	Туре	Default	Description
7-6	CS15_group	R/W	Oh	CS15 group PWM control setting 0h = No group 1h = Group 1 2h = Group 2 3h = Group 3
5-4	CS14_group	R/W	0h	CS14 group PWM control setting 0h = No group 1h = Group 1 2h = Group 2 3h = Group 3
3-2	CS13_group	R/W	0h	CS13 group PWM control setting 0h = No group 1h = Group 1 2h = Group 2 3h = Group 3
1-0	CS12_group	R/W	0h	CS12 group PWM control setting 0h = No group 1h = Group 1 2h = Group 2 3h = Group 3

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

8.6.3.5 Dot_grp_sel4 Register (Address = 10h) [Default = 0h]

Dot_grp_sel4 is shown in Figure 8-33 and described in Table 8-28.

Return to the Summary Table.

Figure 8-33. Dot_grp_sel4 Register

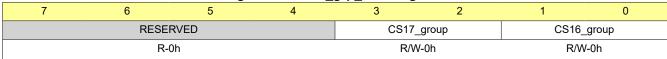


Table 8-28. Dot_grp_sel4 Register Field Descriptions

Bit	Field	Туре	Default	Description
7-4	RESERVED	R	0h	Reserved
3-2	CS17_group	R/W	0h	CS17 group PWM control setting 0h = No group 1h = Group 1 2h = Group 2 3h = Group 3
1-0	CS16_group	R/W	0h	CS16 group PWM control setting 0h = No group 1h = Group 1 2h = Group 2 3h = Group 3

8.6.4 DOTONOFF Registers

Table 8-29 lists the DOTONOFF registers. All register offset addresses not listed in Table 8-29 must be considered as reserved locations and the register contents must not be modified.

Table 8-29. DOTONOFF Registers

		_	
Address	Acronym	Register Name	Section
43h	Dot_onoff0	LED dot ON/OFF selection register 0	Go
44h	Dot_onoff1	LED dot ON/OFF selection register 1	Go
45h	Dot_onoff2	LED dot ON/OFF selection register 2	Go

8.6.4.1 Dot_onoff0 Register (Address = 43h) [Default = FFh]

Dot_onoff0 is shown in Figure 8-34 and described in Table 8-30.

Return to the Summary Table.

Figure 8-34. Dot_onoff0 Register

7	6	5	4	3	2	1	0
CS7_onoff	CS6_onoff	CS5_onoff	CS4_onoff	CS3_onoff	CS2_onoff	CS1_onoff	CS0_onoff
R/W-1h							

Table 8-30. Dot onoff0 Register Field Descriptions

Bit	Field	Туре	Default	Description						
7	CS7_onoff	R/W	1h	LED CS7 on/off setting 0h = Off 1h = On						
6	CS6_onoff	R/W	1h	LED CS6 on/off setting 0h = Off 1h = On						
5	CS5_onoff	R/W	1h	LED CS5 on/off setting 0h = Off 1h = On						

Copyright © 2022 Texas Instruments Incorporated

Submit Document Feedback

Table 8-30. Dot_onoff0 Register Field Descriptions (continued)

Bit	Field	Туре	Default	Description
4	CS4_onoff	R/W	1h	LED CS4 on/off setting 0h = Off 1h = On
3	CS3_onoff	R/W	1h	LED CS3 on/off setting 0h = Off 1h = On
2	CS2_onoff	R/W	1h	LED CS2 on/off setting 0h = Off 1h = On
1	CS1_onoff	R/W	1h	LED CS1 on/off setting 0h = Off 1h = On
0	CS0_onoff	R/W	1h	LED CS0 on/off setting 0h = Off 1h = On

8.6.4.2 Dot_onoff1 Register (Address = 44h) [Default = FFh]

Dot_onoff1 is shown in Figure 8-35 and described in Table 8-31.

Return to the Summary Table.

Figure 8-35. Dot_onoff1 Register

7	6	5	4	3	2	1	0
CS15_onoff	CS14_onoff	CS13_onoff	CS12_onoff	CS11_onoff	CS10_onoff	CS1_onoff	CS0_onoff
R/W-1h	R/W-1h	R/W-1h	R/W-1h	R/W-1h	R/W-1h	R/W-1h	R/W-1h

Table 8-31. Dot_onoff1 Register Field Descriptions

Bit	Field	Туре	Default	Description
7	CS15_onoff	R/W	1h	LED CS15 on/off setting
	_			Oh = Off 1h = On
6	CS14_onoff	R/W	1h	LED CS14 on/off setting Oh = Off
				1h = On
5	CS13_onoff	R/W	1h	LED CS13 on/off setting
				0h = Off
				1h = On
4	CS12_onoff	R/W	1h	LED CS12 on/off setting 0h = Off
				1h = On
3	CS11_onoff	R/W	1h	LED CS11 on/off setting
				0h = Off
				1h = On
2	CS10_onoff	R/W	1h	LED CS10 on/off setting
				0h = Off 1h = On
1	CS1_onoff	R/W	1h	LED CS9 on/off setting
	001_011011	17,77	'''	0h = Off
				1h = On
0	CS0_onoff	R/W	1h	LED CS8 on/off setting
				Oh = Off
				1h = On



8.6.4.3 Dot_onoff2 Register (Address = 45h) [Default = 3h]

Dot_onoff2 is shown in Figure 8-36 and described in Table 8-32.

Return to the Summary Table.

Figure 8-36. Dot_onoff2 Register

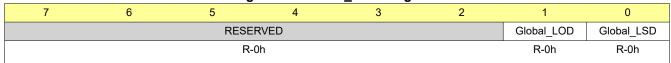
Table 8-32. Dot_onoff2 Register Field Descriptions

Bit	Field	Туре	Default	Description
7-2	RESERVED	R	0h	Reserved
1	CS17_onoff	R/W	1h	LED CS17 on/off setting 0h = Off 1h = On
0	CS16_onoff	R/W	1h	LED CS16 on/off setting 0h = Off 1h = On

8.6.5 FAULT Registers

Table 8-33 lists the FAULT registers, including Fault_state registers, LOD registers and LSD registers. All register offset addresses not listed in Table 8-33 must be considered as reserved locations and the register contents must not be modified.

Table 8-33. FAULT Registers


Address	Acronym	Register Name	Section
64h	Fault_state	Global LOD/LSD indication register	Go
65h	Dot_lod0	LED dot LOD indication register 0	Go
66h	Dot_lod1	LED dot LOD indication register 1	Go
67h	Dot_lod2	LED dot LOD indication register 2	Go
86h	Dot_lsd0	LED dot LSD indication register 0	Go
87h	Dot_lsd1	LED dot LSD indication register 1	Go
88h	Dot_lsd2	LED dot LSD indication register 2	Go

8.6.5.1 Fault_state Register (Address = 64h) [Default = 0h]

Fault_state is shown in Figure 8-37 and described in Table 8-34.

Return to the Summary Table.

Figure 8-37. Fault_state Register

Table 8-34. Fault_state Register Field Descriptions

Bit	Field	Туре	Default	Description
7-2	RESERVED	R	0h	Reserved
1	Global_LOD	R		LOD indication bit if there is open fault detected at any LED dot 0h = Not open 1h = Open

Copyright © 2022 Texas Instruments Incorporated

Table 8-34. Fault_state Register Field Descriptions (continued)

Bit	Field	Туре	Default	Description
0	Global_LSD	R	T -	LSD indication bit if there is short fault detected at any LED dot 0h = Not short 1h = Short

8.6.5.2 Dot_lod0 Register (Address = 65h) [Default = 0h]

Dot_lod0 is shown in Figure 8-38 and described in Table 8-35.

Return to the Summary Table.

Figure 8-38. Dot_lod0 Register

7	6	5	4	3	2	1	0
CS7_LOD_stat	CS6_LOD_stat	CS5_LOD_stat	CS4_LOD_stat	CS3_LOD_stat	CS2_LOD_stat	CS1_LOD_stat	CS0_LOD_stat
е	е	е	е	е	е	е	е
R-0h							

Table 8-35. Dot_lod0 Register Field Descriptions

Table 0-00. Dotout Tella Descriptions							
Bit	Field	Туре	Default	Description			
7	CS7_LOD_state	R	0h	CS7 LOD state 0h = Not open 1h = Open			
6	CS6_LOD_state	R	0h	CS6 LOD state 0h = Not open 1h = Open			
5	CS5_LOD_state	R	0h	CS5 LOD state 0h = Not open 1h = Open			
4	CS4_LOD_state	R	0h	CS4 LOD state 0h = Not open 1h = Open			
3	CS3_LOD_state	R	0h	CS3 LOD state 0h = Not open 1h = Open			
2	CS2_LOD_state	R	0h	CS2 LOD state 0h = Not open 1h = Open			
1	CS1_LOD_state	R	0h	CS1 LOD state 0h = Not open 1h = Open			
0	CS0_LOD_state	R	0h	CS0 LOD state 0h = Not open 1h = Open			

8.6.5.3 Dot_lod1 Register (Address = 66h) [Default = 0h]

Dot_lod1 is shown in Figure 8-39 and described in Table 8-36.

Return to the Summary Table.

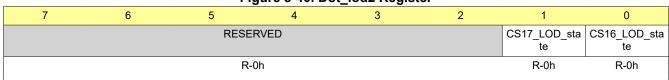
Figure 8-39. Dot_lod1 Register

7	6	5	4	3	2	1	0
CS15_LOD_sta te	CS14_LOD_sta te	CS13_LOD_sta te	CS12_LOD_sta te	CS11_LOD_stat e	CS10_LOD_sta te	CS9_LOD_stat e	CS8_LOD_stat e
R-0h	R-0h	R-0h	R-0h	R-0h	R-0h	R-0h	R-0h

Table 8-36. Dot_lod1 Register Field Descriptions

Bit	Field	Туре	Default	Description
7	CS15_LOD_state	R	0h	CS15 LOD state 0h = Not open
				1h = Open

Table 8-36. Dot_lod1 Register Field Descriptions (continued)


Bit	Field	Туре	Default	Description
6	CS14_LOD_state	R	0h	CS14 LOD state 0h = Not open 1h = Open
5	CS13_LOD_state	R	0h	CS13 LOD state 0h = Not open 1h = Open
4	CS12_LOD_state	R	0h	CS12 LOD state 0h = Not open 1h = Open
3	CS11_LOD_state	R	Oh	CS11 LOD state 0h = Not open 1h = Open
2	CS10_LOD_state	R	0h	CS10 LOD state 0h = Not open 1h = Open
1	CS9_LOD_state	R	0h	CS9 LOD state 0h = Not open 1h = Open
0	CS8_LOD_state	R	0h	CS8 LOD state 0h = Not open 1h = Open

8.6.5.4 Dot_lod2 Register (Address = 67h) [Default = 0h]

Dot_lod2 is shown in Figure 8-40 and described in Table 8-37.

Return to the Summary Table.

Figure 8-40. Dot_lod2 Register

Table 8-37. Dot_lod2 Register Field Descriptions

Bit	Field	Туре	Default	Description
7-2	RESERVED	R	0h	Reserved
1	CS17_LOD_state	R	0h	CS17 LOD state 0h = Not open 1h = Open
0	CS16_LOD_state	R	Oh	CS16 LOD state 0h = Not open 1h = Open

8.6.5.5 Dot_lsd0 Register (Address = 86h) [Default = 0h]

Dot_lsd0 is shown in Figure 8-41 and described in Table 8-38.

Return to the Summary Table.

Figure 8-41. Dot_Isd0 Register

7	6	5	4	3	2	1	0
CS7_LSD_state	CS6_LSD_state	CS5_LSD_state	CS4_LSD_state	CS3_LSD_state	CS2_LSD_state	CS1_LSD_state	CS0_LSD_state
R-0h							

Table 8-38. Dot_Isd0 Register Field Descriptions

Bit	Field	Туре	Default	Description
7	CS7_LSD_state	R	0h	CS7 LSD state 0h = Not short 1h = Short
6	CS6_LSD_state	R	0h	CS6 LSD state 0h = Not short 1h = Short
5	CS5_LSD_state	R	0h	CS5 LSD state 0h = Not short 1h = Short
4	CS4_LSD_state	R	0h	CS4 LSD state 0h = Not short 1h = Short
3	CS3_LSD_state	R	0h	CS3 LSD state 0h = Not short 1h = Short
2	CS2_LSD_state	R	0h	CS2 LSD state 0h = Not short 1h = Short
1	CS1_LSD_state	R	0h	CS1 LSD state 0h = Not short 1h = Short
0	CS0_LSD_state	R	0h	CS0 LSD state 0h = Not short 1h = Short

8.6.5.6 Dot_lsd1 Register (Address = 87h) [Default = 0h]

Dot_lsd1 is shown in Figure 8-42 and described in Table 8-39.

Return to the Summary Table.

Figure 8-42. Dot_lsd1 Register

7	6	5	4	3	2	1	0
CS15_LSD_stat	CS14_LSD_stat	CS13_LSD_stat	CS12_LSD_stat	CS11_LSD_stat	CS10_LSD_stat	CS9_LSD_state	CS8_LSD_state
е	е	е	е	е	е		
R-0h							

Table 8-39. Dot_lsd1 Register Field Descriptions

Bit	Field	Туре	Default	Description
7	CS15_LSD_state	R	Oh	CS15 LSD state 0h = Not short 1h = Short
6	CS14_LSD_state	R	0h	CS14 LSD state 0h = Not short 1h = Short

Table 8-39. Dot_Isd1 Register Field Descriptions (continued)

Bit	Field	Туре	Default	Description
5	CS13_LSD_state	R	Oh	CS13 LSD state 0h = Not short 1h = Short
4	CS12_LSD_state	R	Oh	CS12 LSD state 0h = Not short 1h = Short
3	CS11_LSD_state	R	Oh	CS11 LSD state 0h = Not short 1h = Short
2	CS10_LSD_state	R	Oh	CS10 LSD state 0h = Not short 1h = Short
1	CS9_LSD_state	R	Oh	CS9 LSD state 0h = Not short 1h = Short
0	CS8_LSD_state	R	Oh	CS8 LSD state 0h = Not short 1h = Short

8.6.5.7 Dot_lsd2 Register (Address = 88h) [Default = 0h]

Dot_lsd2 is shown in Figure 8-43 and described in Table 8-40.

Return to the Summary Table.

Figure 8-43. Dot_lsd2 Register

Table 8-40. Dot_lsd2 Register Field Descriptions

Bit	Field	Туре	Default	Description
7-2	RESERVED	R	0h	Reserved
1	CS17_LSD_state	R	0h	CS17 LSD state 0h = Not short 1h = Short
0	CS16_LSD_state	R	0h	CS16 LSD state 0h = Not short 1h = Short

8.6.6 RESET Registers

Table 8-41 lists the RESET registers, including LOD_CLR registers, LSD_CLR registers and Reset registers. All register offset addresses not listed in Table 8-41 must be considered as reserved locations and the register contents must not be modified.

Table 8-41. RESET Registers

		•	
Address	Acronym	Register Name	Section
A7h	LOD_clear	LOD flag clear register	Go
A8h	LSD_clear	LSD flag clear register	Go
A9h	Reset	Software reset register	Go

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

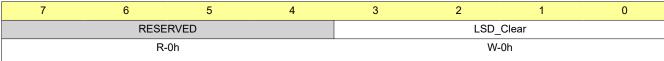
8.6.6.1 LOD_clear Register (Address = A7h) [Default = 0h]

LOD_clear is shown in Figure 8-44 and described in Table 8-42.

Return to the Summary Table.

Figure 8-44. LOD_clear Register

Table 8-42. LOD_clear Register Field Descriptions


Bit	Field	Туре	Default	Description
7-4	RESERVED	R	0h	Reserved
3-0	LOD_Clear	W	0h	Write Fh to clear all LOD indication bits

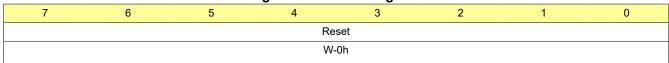
8.6.6.2 LSD_clear Register (Address = A8h) [Default = 0h]

LSD_clear is shown in Figure 8-45 and described in Table 8-43.

Return to the Summary Table.

Figure 8-45. LSD_clear Register

Table 8-43. LSD_clear Register Field Descriptions


Bit	Field	Туре	Default	Description	
7-4	RESERVED	R	0h	Reserved	
3-0	LSD_Clear	W	0h	Write Fh to clear all LSD indication bits	

8.6.6.3 Reset Register (Address = A9h) [Default = 0h]

Reset is shown in Figure 8-46 and described in Table 8-44.

Return to the Summary Table.

Figure 8-46. Reset Register

Table 8-44. Reset Register Field Descriptions

Bit	Field	Туре	Default	Description
7-0	Reset	W	0h	Write FFh to reset the device

8.6.7 DC Registers

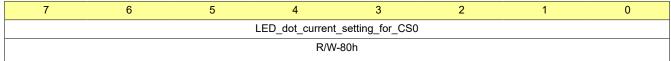
Table 8-45 lists the DC registers. All register offset addresses not listed in Table 8-45 must be considered as reserved locations and the register contents must not be modified.

Table 8-45. DC Registers

Address	Acronym	Register Name	Section
100h	DC0	LED dot current setting for Dot L0-CS0	Go

Table 8-45. DC Registers (continued)

Address	Acronym	Register Name	Section
101h DC1		LED dot current setting for Dot L0-CS1	Go
102h	DC2	LED dot current setting for Dot L0-CS2	Go
103h	DC3	LED dot current setting for Dot L0-CS3	Go
104h	DC4	LED dot current setting for Dot L0-CS4	Go
105h	DC5	LED dot current setting for Dot L0-CS5	Go
106h	DC6	LED dot current setting for Dot L0-CS6	Go
107h	DC7	LED dot current setting for Dot L0-CS7	Go
108h	DC8	LED dot current setting for Dot L0-CS8	Go
109h	DC9	LED dot current setting for Dot L0-CS9	Go
10Ah	DC10	LED dot current setting for Dot L0-CS10	Go
10Bh	DC11	LED dot current setting for Dot L0-CS11	Go
10Ch	DC12	LED dot current setting for Dot L0-CS12	Go
10Dh	DC13	LED dot current setting for Dot L0-CS13	Go
10Eh	DC14	LED dot current setting for Dot L0-CS14	Go
10Fh	DC15	LED dot current setting for Dot L0-CS15	Go
110h	DC16	LED dot current setting for Dot L0-CS16	Go
111h	DC17	LED dot current setting for Dot L0-CS17	Go



8.6.7.1 DC0 Register (Address = 100h) [Default = 80h]

DC0 is shown in Figure 8-47 and described in Table 8-46.

Return to the Summary Table.

Figure 8-47. DC0 Register

Table 8-46. DC0 Register Field Descriptions

Bit	Field	Туре	Default	Description
7-0	LED_dot_current_setting_f or_CS0	R/W	80h	8-bits constant current value for CS0

8.6.7.2 DC1 Register (Address = 101h) [Default = 80h]

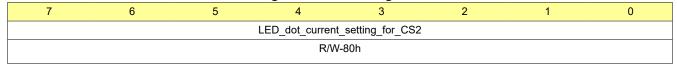
DC1 is shown in Figure 8-48 and described in Table 8-47.

Return to the Summary Table.

Figure 8-48. DC1 Register

7	6	5	4	3	2	1	0				
LED_dot_current_setting_for_CS1											
	R/W-80h										

Table 8-47. DC1 Register Field Descriptions


Bit	Field	Туре	Default	Description
7-0	LED_dot_current_setting_f or_CS1	R/W	80h	8-bits constant current value for CS1

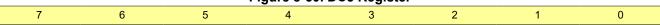
8.6.7.3 DC2 Register (Address = 102h) [Default = 80h]

DC2 is shown in Figure 8-49 and described in Table 8-48.

Return to the Summary Table.

Figure 8-49. DC2 Register

Table 8-48. DC2 Register Field Descriptions


Bit	Field	Туре	Default	Description
7-0	LED_dot_current_setting_f or_CS2	R/W	80h	8-bits constant current value for CS2

8.6.7.4 DC3 Register (Address = 103h) [Default = 80h]

DC3 is shown in Figure 8-50 and described in Table 8-49.

Return to the Summary Table.

Figure 8-50. DC3 Register

Product Folder Links: LP5861

Figure 8-50. DC3 Register (continued)

LED_dot_current_setting_for_CS3

R/W-80h

Table 8-49. DC3 Register Field Descriptions

Bit	Field	Туре	Default	Description
7-0	LED_dot_current_setting_f or_CS3	R/W	80h	8-bits constant current value for CS3

8.6.7.5 DC4 Register (Address = 104h) [Default = 80h]

DC4 is shown in Figure 8-51 and described in Table 8-50.

Return to the Summary Table.

Figure 8-51. DC4 Register

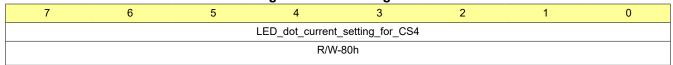
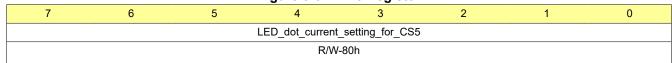


Table 8-50. DC4 Register Field Descriptions


Bit	Field	Туре	Default	Description
7-0	LED_dot_current_setting_f or_CS4	R/W	80h	8-bits constant current value for CS4

8.6.7.6 DC5 Register (Address = 105h) [Default = 80h]

DC5 is shown in Figure 8-52 and described in Table 8-51.

Return to the Summary Table.

Figure 8-52. DC5 Register

Table 8-51. DC5 Register Field Descriptions

Bit	Field	Туре	Default	Description
7-0	LED_dot_current_setting_f or_CS5	R/W	80h	8-bits constant current value for CS5

8.6.7.7 DC6 Register (Address = 106h) [Default = 80h]

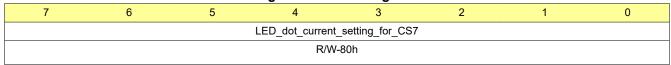
DC6 is shown in Figure 8-53 and described in Table 8-52.

Return to the Summary Table.

Figure 8-53. DC6 Register

7	6 5 4 3 2 1						
			LED_dot_current	_setting_for_CS6			
			R/W	/-80h			

Table 8-52. DC6 Register Field Descriptions


Bit	Field	Туре	Default	Description
7-0	LED_dot_current_setting_f or_CS6	R/W	80h	8-bits constant current value for CS6

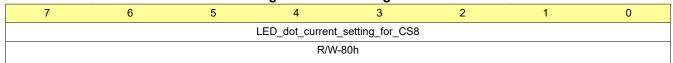
8.6.7.8 DC7 Register (Address = 107h) [Default = 80h]

DC7 is shown in Figure 8-54 and described in Table 8-53.

Return to the Summary Table.

Figure 8-54. DC7 Register

Table 8-53. DC7 Register Field Descriptions


Bit	Field	Туре	Default	Description
	LED_dot_current_setting_f or_CS7	R/W	80h	8-bits constant current value for CS7

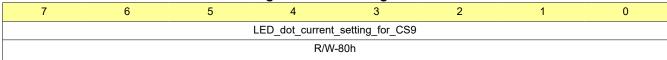
8.6.7.9 DC8 Register (Address = 108h) [Default = 80h]

DC8 is shown in Figure 8-55 and described in Table 8-54.

Return to the Summary Table.

Figure 8-55. DC8 Register

Table 8-54. DC8 Register Field Descriptions


Bit	Field	Туре	Default	Description
7-0	LED_dot_current_setting_f or_CS8	R/W	80h	8-bits constant current value for CS8

8.6.7.10 DC9 Register (Address = 109h) [Default = 80h]

DC9 is shown in Figure 8-56 and described in Table 8-55.

Return to the Summary Table.

Figure 8-56. DC9 Register

Table 8-55. DC9 Register Field Descriptions

Bit	Field	Туре	Default	Description
7-0	LED_dot_current_setting_f or_CS9	R/W	80h	8-bits constant current value for CS9

8.6.7.11 DC10 Register (Address = 10Ah) [Default = 80h]

DC10 is shown in Figure 8-57 and described in Table 8-56.

Return to the Summary Table.

Figure 8-57. DC10 Register

7	6	5	4	3	2	1	0	
	LED_dot_current_setting_for_CS10							
			R/W	-80h				

Table 8-56. DC10 Register Field Descriptions

Bit	Field	Туре	Default	Description
7-0	LED_dot_current_setting_f	R/W	80h	8-bits constant current value for CS10
	or_CS10			

8.6.7.12 DC11 Register (Address = 10Bh) [Default = 80h]

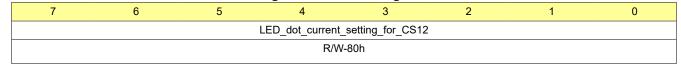
DC11 is shown in Figure 8-58 and described in Table 8-57.

Return to the Summary Table.

Figure 8-58. DC11 Register

7	6	5	4	3	2	1	0		
LED_dot_current_setting_for_CS11									
			R/W	-80h					

Table 8-57. DC11 Register Field Descriptions


Bit	Field	Туре	Default	Description
7-0	LED_dot_current_setting_f or_CS11	R/W	80h	8-bits constant current value for CS11

8.6.7.13 DC12 Register (Address = 10Ch) [Default = 80h]

DC12 is shown in Figure 8-59 and described in Table 8-58.

Return to the Summary Table.

Figure 8-59. DC12 Register

Table 8-58. DC12 Register Field Descriptions

Bit	Field	Туре	Default	Description
7-0	LED_dot_current_setting_f or_CS12	R/W	80h	8-bits constant current value for CS12

8.6.7.14 DC13 Register (Address = 10Dh) [Default = 80h]

DC13 is shown in Figure 8-60 and described in Table 8-59.

Return to the Summary Table.

Figure 8-60, DC13 Register

			i igaic o oo. E	o io ixegistei			
7	6	5	4	3	2	1	0

Figure 8-60. DC13 Register (continued)

LED_dot_current_setting_for_CS13

R/W-80h

Table 8-59. DC13 Register Field Descriptions

Bit	Field	Туре	Default	Description
	LED_dot_current_setting_f or_CS13	R/W	80h	8-bits constant current value for CS13

8.6.7.15 DC14 Register (Address = 10Eh) [Default = 80h]

DC14 is shown in Figure 8-61 and described in Table 8-60.

Return to the Summary Table.

Figure 8-61. DC14 Register

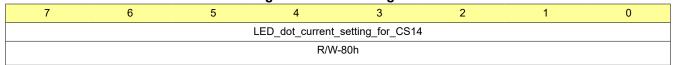


Table 8-60. DC14 Register Field Descriptions

Bit	Field	Туре	Default	Description
7-0	LED_dot_current_setting_f or_CS14	R/W	80h	8-bits constant current value for CS14

8.6.7.16 DC15 Register (Address = 10Fh) [Default = 80h]

DC15 is shown in Figure 8-62 and described in Table 8-61.

Return to the Summary Table.

Figure 8-62. DC15 Register

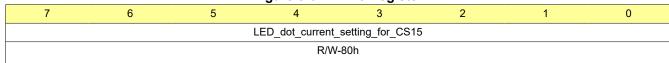


Table 8-61. DC15 Register Field Descriptions

В	3it	Field	Туре	Default	Description
7		LED_dot_current_setting_f or_CS15	R/W	80h	8-bits constant current value for CS15

8.6.7.17 DC16 Register (Address = 110h) [Default = 80h]

DC16 is shown in Figure 8-63 and described in Table 8-62.

Return to the Summary Table.

Figure 8-63. DC16 Register

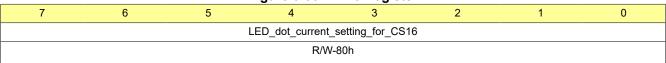
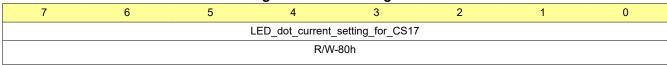


Table 8-62. DC16 Register Field Descriptions


Bit	Field	Туре	Default	Description
7-0	3-	R/W	80h	8-bits constant current value for CS16
	or_CS16			

8.6.7.18 DC17 Register (Address = 111h) [Default = 80h]

DC17 is shown in Figure 8-64 and described in Table 8-63.

Return to the Summary Table.

Figure 8-64. DC17 Register

Table 8-63. DC17 Register Field Descriptions

Bit	Field	Туре	Default	Description
	LED_dot_current_setting_f or_CS17	R/W	80h	8-bits constant current value for CS17

8.6.8 PWM Registers

Table 8-64 lists the PWM registers. All register offset addresses not listed in Table 8-64 must be considered as reserved locations and the register contents must not be modified.

Table 8-64. PWM Registers

Address	Acronym	Register Name	Section
200h	pwm_bri0	8-bits PWM for CS0 OR 16-bits PWM lower 8 bits [7:0] for CS0	Go
201h	pwm_bri1	8-bits PWM for CS1 OR 16-bits PWM higher 8 bits [15:8] for CS0	Go
202h	pwm_bri2	8-bits PWM for CS2 OR 16-bits PWM lower 8 bits [7:0] for CS1	Go
203h	pwm_bri3	8-bits PWM for CS3 OR 16-bits PWM higher 8 bits [15:8] for CS1	Go
204h	pwm_bri4	8-bits PWM for CS4 OR 16-bits PWM lower 8 bits [7:0] for CS2	Go
205h	pwm_bri5	8-bits PWM for CS5 OR 16-bits PWM higher 8 bits [15:8] for CS2	Go
206h	pwm_bri6	8-bits PWM for CS6 OR 16-bits PWM lower 8 bits [7:0] for CS3	Go
207h	pwm_bri7	8-bits PWM for CS7 OR 16-bits PWM higher 8 bits [15:8] for CS3	Go
208h	pwm_bri8	8-bits PWM for CS8 OR 16-bits PWM lower 8 bits [7:0] for CS4	Go
209h	pwm_bri9	8-bits PWM for CS9 OR 16-bits PWM higher 8 bits [15:8] for CS4	Go
20Ah	pwm_bri10	8-bits PWM for CS10 OR 16-bits PWM lower 8 bits [7:0] for CS5	Go
20Bh	pwm_bri11	8-bits PWM for CS11 OR 16-bits PWM higher 8 bits [15:8] for CS5	Go
20Ch	pwm_bri12	8-bits PWM for CS12 OR 16-bits PWM lower 8 bits [7:0] for CS6	Go
20Dh	pwm_bri13	8-bits PWM for CS13 OR 16-bits PWM higher 8 bits [15:8] for CS6	Go

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

Table 8-64. PWM Registers (continued)

Table 0-04. FWIN Registers (Continued)								
Address	Acronym	Register Name	Section					
20Eh	pwm_bri14	8-bits PWM for CS14 OR 16-bits PWM lower 8 bits [7:0] for CS7	Go					
20Fh	pwm_bri15	8-bits PWM for CS15 OR 16-bits PWM higher 8 bits [15:8] for CS7	Go					
210h	pwm_bri16	8-bits PWM for CS16 OR 16-bits PWM lower 8 bits [7:0] for CS8	Go					
211h	pwm_bri17	8-bits PWM for CS17 OR 16-bits PWM higher 8 bits [15:8] for CS8	Go					
212h	pwm_bri18	16-bits PWM lower 8 bits [7:0] for CS9	Go					
213h	pwm_bri19	16-bits PWM higher 8 bits [15:8] for CS9	Go					
214h	pwm_bri20	16-bits PWM lower 8 bits [7:0] for CS10	Go					
215h	pwm_bri21	16-bits PWM higher 8 bits [15:8] for CS10	Go					
216h	pwm_bri22	16-bits PWM lower 8 bits [7:0] for CS11	Go					
217h	pwm_bri23	16-bits PWM higher 8 bits [15:8] for CS11	Go					
218h	pwm_bri24	16-bits PWM lower 8 bits [7:0] for CS12	Go					
219h	pwm_bri25	16-bits PWM higher 8 bits [15:8] for CS12	Go					
21Ah	pwm_bri26	16-bits PWM lower 8 bits [7:0] for CS13	Go					
21Bh	pwm_bri27	16-bits PWM higher 8 bits [15:8] for CS13	Go					
21Ch	pwm_bri28	16-bits PWM lower 8 bits [7:0] for CS14	Go					
21Dh	pwm_bri29	16-bits PWM higher 8 bits [15:8] for CS14	Go					
21Eh	pwm_bri30	16-bits PWM lower 8 bits [7:0] for CS15	Go					
21Fh	pwm_bri31	16-bits PWM higher 8 bits [15:8] for CS15	Go					
220h	pwm_bri32	16-bits PWM lower 8 bits [7:0] for CS16	Go					
221h	pwm_bri33	16-bits PWM higher 8 bits [15:8] for CS16	Go					
222h	pwm_bri34	16-bits PWM lower 8 bits [7:0] for CS17	Go					
223h	pwm_bri35	16-bits PWM higher 8 bits [15:8] for CS17	Go					

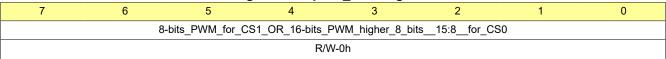
8.6.8.1 pwm_bri0 Register (Address = 200h) [Default = 0h]

pwm_bri0 is shown in Figure 8-65 and described in Table 8-65.

Return to the Summary Table.

Figure 8-65. pwm_bri0 Register

Table 8-65. pwm_bri0 Register Field Descriptions


Bit	Field	Туре	Default	Description
7-0	8- bits_PWM_for_CS0_OR_ 16- bits_PWM_lower_8_bits 7:0for_CS0	R/W	0h	8-bits PWM for CS0 OR 16-bits PWM lower 8 bits [7:0] for CS0

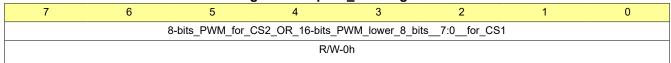
8.6.8.2 pwm_bri1 Register (Address = 201h) [Default = 0h]

pwm_bri1 is shown in Figure 8-66 and described in Table 8-66.

Return to the Summary Table.

Figure 8-66. pwm_bri1 Register

Table 8-66. pwm_bri1 Register Field Descriptions


Bit	Field	Туре	Default	Description
7-0	8- bits_PWM_for_CS1_OR_ 16- bits_PWM_higher_8_bits_ _15:8for_CS0	R/W	0h	8-bits PWM for CS1 OR 16-bits PWM higher 8 bits [15:8] for CS0

8.6.8.3 pwm_bri2 Register (Address = 202h) [Default = 0h]

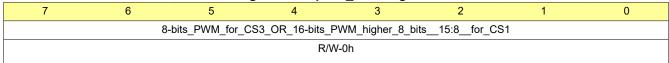
pwm_bri2 is shown in Figure 8-67 and described in Table 8-67.

Return to the Summary Table.

Figure 8-67. pwm_bri2 Register

Table 8-67. pwm_bri2 Register Field Descriptions

Bit	Field	Туре	Default	Description
7-0	8- bits_PWM_for_CS2_OR_ 16- bits_PWM_lower_8_bits 7:0for_CS1	R/W	0h	8-bits PWM for CS2 OR 16-bits PWM lower 8 bits [7:0] for CS1



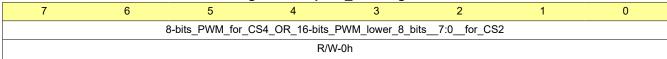
8.6.8.4 pwm_bri3 Register (Address = 203h) [Default = 0h]

pwm_bri3 is shown in Figure 8-68 and described in Table 8-68.

Return to the Summary Table.

Figure 8-68. pwm_bri3 Register

Table 8-68. pwm_bri3 Register Field Descriptions


В	Bit	Field	Туре	Default	Description
7-		8- bits_PWM_for_CS3_OR_ 16- bits_PWM_higher_8_bits_ _15:8for_CS1	R/W	0h	8-bits PWM for CS3 OR 16-bits PWM higher 8 bits [15:8] for CS1

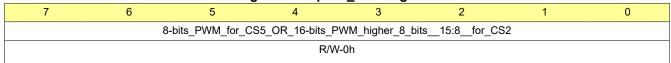
8.6.8.5 pwm_bri4 Register (Address = 204h) [Default = 0h]

pwm_bri4 is shown in Figure 8-69 and described in Table 8-69.

Return to the Summary Table.

Figure 8-69. pwm_bri4 Register

Table 8-69. pwm_bri4 Register Field Descriptions


Bit	Field	Туре	Default	Description
7-0	8- bits_PWM_for_CS4_OR_ 16- bits_PWM_lower_8_bits 7:0for_CS2	R/W	0h	8-bits PWM for CS4 OR 16-bits PWM lower 8 bits [7:0] for CS2

8.6.8.6 pwm_bri5 Register (Address = 205h) [Default = 0h]

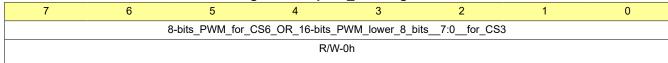
pwm_bri5 is shown in Figure 8-70 and described in Table 8-70.

Return to the Summary Table.

Figure 8-70. pwm_bri5 Register

Table 8-70. pwm_bri5 Register Field Descriptions

Bit	Field	Туре	Default	Description
7-0	8- bits_PWM_for_CS5_OR_ 16- bits_PWM_higher_8_bits_ _15:8for_CS2	R/W	0h	8-bits PWM for CS5 OR 16-bits PWM higher 8 bits [15:8] for CS2



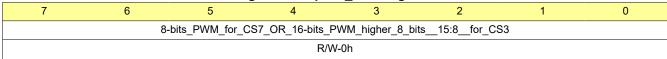
8.6.8.7 pwm_bri6 Register (Address = 206h) [Default = 0h]

pwm_bri6 is shown in Figure 8-71 and described in Table 8-71.

Return to the Summary Table.

Figure 8-71. pwm_bri6 Register

Table 8-71. pwm_bri6 Register Field Descriptions


Bit	Field	Туре	Default	Description
7-0	8- bits_PWM_for_CS6_OR_ 16- bits_PWM_lower_8_bits_ 7:0for_CS3	R/W	0h	8-bits PWM for CS6 OR 16-bits PWM lower 8 bits [7:0] for CS3

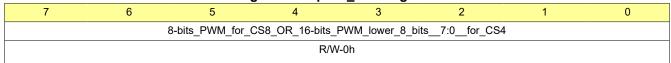
8.6.8.8 pwm_bri7 Register (Address = 207h) [Default = 0h]

pwm_bri7 is shown in Figure 8-72 and described in Table 8-72.

Return to the Summary Table.

Figure 8-72. pwm_bri7 Register

Table 8-72. pwm_bri7 Register Field Descriptions


Bit	Field	Туре	Default	Description
7-0	8- bits_PWM_for_CS7_OR_ 16- bits_PWM_higher_8_bits_ _15:8for_CS3	R/W	0h	8-bits PWM for CS7 OR 16-bits PWM higher 8 bits [15:8] for CS3

8.6.8.9 pwm_bri8 Register (Address = 208h) [Default = 0h]

pwm_bri8 is shown in Figure 8-73 and described in Table 8-73.

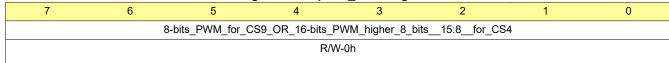
Return to the Summary Table.

Figure 8-73. pwm_bri8 Register

Table 8-73. pwm_bri8 Register Field Descriptions

Bit	Field	Туре	Default	Description
7-0	8- bits_PWM_for_CS8_OR_ 16- bits_PWM_lower_8_bits 7:0for_CS4	R/W	0h	8-bits PWM for CS8 OR 16-bits PWM lower 8 bits [7:0] for CS4

Submit Document Feedback



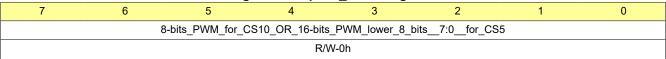
8.6.8.10 pwm_bri9 Register (Address = 209h) [Default = 0h]

pwm_bri9 is shown in Figure 8-74 and described in Table 8-74.

Return to the Summary Table.

Figure 8-74. pwm_bri9 Register

Table 8-74. pwm_bri9 Register Field Descriptions


В	Bit	Field	Туре	Default	Description
7-		8- bits_PWM_for_CS9_OR_ 16- bits_PWM_higher_8_bits_ _15:8for_CS4	R/W	0h	8-bits PWM for CS9 OR 16-bits PWM higher 8 bits [15:8] for CS4

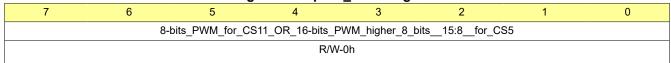
8.6.8.11 pwm_bri10 Register (Address = 20Ah) [Default = 0h]

pwm_bri10 is shown in Figure 8-75 and described in Table 8-75.

Return to the Summary Table.

Figure 8-75. pwm_bri10 Register

Table 8-75. pwm_bri10 Register Field Descriptions


Bit	Field	Туре	Default	Description
7-0	8- bits_PWM_for_CS10_OR _16- bits_PWM_lower_8_bits 7:0for_CS5	R/W	0h	8-bits PWM for CS10 OR 16-bits PWM lower 8 bits [7:0] for CS5

8.6.8.12 pwm_bri11 Register (Address = 20Bh) [Default = 0h]

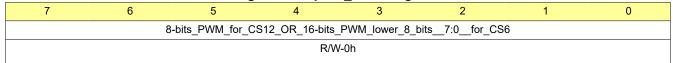
pwm_bri11 is shown in Figure 8-76 and described in Table 8-76.

Return to the Summary Table.

Figure 8-76. pwm_bri11 Register

Table 8-76. pwm_bri11 Register Field Descriptions

Bit Field	Туре	Default	Description
7-0 8- bits_PWM_for_ 16- bits_PWM_high _15:8for_CS	ner_8_bits_	0h	8-bits PWM for CS11 OR 16-bits PWM higher 8 bits [15:8] for CS5



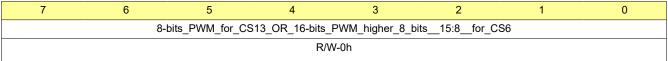
8.6.8.13 pwm_bri12 Register (Address = 20Ch) [Default = 0h]

pwm_bri12 is shown in Figure 8-77 and described in Table 8-77.

Return to the Summary Table.

Figure 8-77. pwm_bri12 Register

Table 8-77. pwm_bri12 Register Field Descriptions


Bit	Field	Туре	Default	Description
7-0	8- bits_PWM_for_CS12_OR _16- bits_PWM_lower_8_bits 7:0for_CS6	R/W	0h	8-bits PWM for CS12 OR 16-bits PWM lower 8 bits [7:0] for CS6

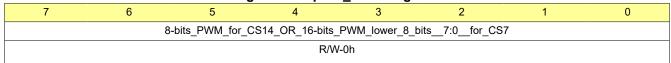
8.6.8.14 pwm_bri13 Register (Address = 20Dh) [Default = 0h]

pwm_bri13 is shown in Figure 8-78 and described in Table 8-78.

Return to the Summary Table.

Figure 8-78. pwm_bri13 Register

Table 8-78. pwm_bri13 Register Field Descriptions


Bit	Field	Туре	Default	Description
7-0	8- bits_PWM_for_CS13_OR _16- bits_PWM_higher_8_bits_ _15:8for_CS6	R/W	0h	8-bits PWM for CS13 OR 16-bits PWM higher 8 bits [15:8] for CS6

8.6.8.15 pwm_bri14 Register (Address = 20Eh) [Default = 0h]

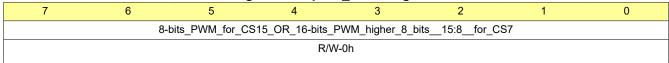
pwm_bri14 is shown in Figure 8-79 and described in Table 8-79.

Return to the Summary Table.

Figure 8-79. pwm_bri14 Register

Table 8-79. pwm_bri14 Register Field Descriptions

Bit	Field	Туре	Default	Description
	8- bits_PWM_for_CS14_OR _16- bits_PWM_lower_8_bits 7:0for_CS7	R/W	0h	8-bits PWM for CS14 OR 16-bits PWM lower 8 bits [7:0] for CS7



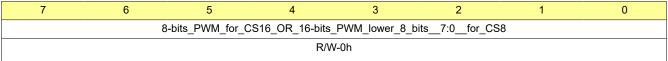
8.6.8.16 pwm_bri15 Register (Address = 20Fh) [Default = 0h]

pwm_bri15 is shown in Figure 8-80 and described in Table 8-80.

Return to the Summary Table.

Figure 8-80. pwm_bri15 Register

Table 8-80. pwm_bri15 Register Field Descriptions


Bit	Field	Туре	Default	Description
	8- bits_PWM_for_CS15_OR _16- bits_PWM_higher_8_bits_ _15:8for_CS7	R/W	0h	8-bits PWM for CS15 OR 16-bits PWM higher 8 bits [15:8] for CS7

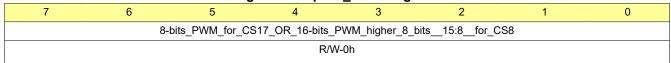
8.6.8.17 pwm_bri16 Register (Address = 210h) [Default = 0h]

pwm_bri16 is shown in Figure 8-81 and described in Table 8-81.

Return to the Summary Table.

Figure 8-81. pwm_bri16 Register

Table 8-81. pwm_bri16 Register Field Descriptions


Bit	Field	Туре	Default	Description
7-0	8- bits_PWM_for_CS16_OR _16- bits_PWM_lower_8_bits 7:0for_CS8	R/W	0h	8-bits PWM for CS16 OR 16-bits PWM lower 8 bits [7:0] for CS8

8.6.8.18 pwm_bri17 Register (Address = 211h) [Default = 0h]

pwm_bri17 is shown in Figure 8-82 and described in Table 8-82.

Return to the Summary Table.

Figure 8-82. pwm_bri17 Register

Table 8-82. pwm_bri17 Register Field Descriptions

Bit Field	Туре	Default	Description
16- bits_PV	/M_for_CS17_OR /M_higher_8_bits_ for_CS8	0h	8-bits PWM for CS17 OR 16-bits PWM higher 8 bits [15:8] for CS8

Copyright © 2022 Texas Instruments Incorporated

8.6.8.19 pwm_bri18 Register (Address = 212h) [Default = 0h]

pwm_bri18 is shown in Figure 8-83 and described in Table 8-83.

Return to the Summary Table.

Figure 8-83. pwm_bri18 Register

7	6	5	4	3	2	1	0
		16-b	its_PWM_lower_8	_bits7:0for_0	CS9		
			R/W-	-0h			

Table 8-83. pwm_bri18 Register Field Descriptions

Bit	Field	Туре	Default	Description
7-0	16- bits_PWM_lower_8_bits 7:0for_CS9	R/W	0h	16-bits PWM lower 8 bits [7:0] for CS9

8.6.8.20 pwm_bri19 Register (Address = 213h) [Default = 0h]

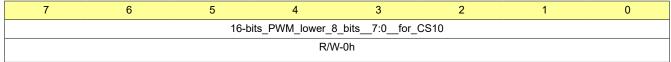
pwm_bri19 is shown in Figure 8-84 and described in Table 8-84.

Return to the Summary Table.

Figure 8-84. pwm_bri19 Register

7	6	5	4	3	2	1	0
		16-bi	ts_PWM_higher_8_	_bits15:8for_	_CS9		
			R/W-	-0h			

Table 8-84. pwm bri19 Register Field Descriptions


		•	_	•
Bit	Field	Туре	Default	Description
7-0	16- bits_PWM_higher_8_bits_ 15:8 for CS9	R/W	0h	16-bits PWM higher 8 bits [15:8] for CS9

8.6.8.21 pwm_bri20 Register (Address = 214h) [Default = 0h]

pwm bri20 is shown in Figure 8-85 and described in Table 8-85.

Return to the Summary Table.

Figure 8-85. pwm_bri20 Register

Table 8-85. pwm_bri20 Register Field Descriptions

Bit	Field	Туре	Default	Description
7-0	16- bits_PWM_lower_8_bits 7:0for_CS10	R/W	0h	16-bits PWM lower 8 bits [7:0] for CS10

8.6.8.22 pwm_bri21 Register (Address = 215h) [Default = 0h]

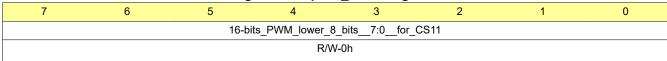
pwm_bri21 is shown in Figure 8-86 and described in Table 8-86.

Return to the Summary Table.

Figure 8-86. pwm bri21 Register

7	6	5	4	3	2	1	0
		16-bit	s_PWM_higher_8_l	bits15:8for_	CS10		
			R/W-	0h			

Table 8-86. pwm_bri21 Register Field Descriptions


Bit	Field	Туре	Default	Description
7-0	16- bits_PWM_higher_8_bits_ _15:8for_CS10	R/W	0h	16-bits PWM higher 8 bits [15:8] for CS10

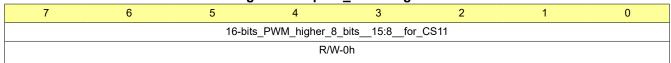
8.6.8.23 pwm_bri22 Register (Address = 216h) [Default = 0h]

pwm_bri22 is shown in Figure 8-87 and described in Table 8-87.

Return to the Summary Table.

Figure 8-87. pwm_bri22 Register

Table 8-87. pwm_bri22 Register Field Descriptions


Bit	Field	Туре	Default	Description
7-0	16- bits_PWM_lower_8_bits 7:0for_CS11	R/W	0h	16-bits PWM lower 8 bits [7:0] for CS11

8.6.8.24 pwm_bri23 Register (Address = 217h) [Default = 0h]

pwm_bri23 is shown in Figure 8-88 and described in Table 8-88.

Return to the Summary Table.

Figure 8-88. pwm_bri23 Register

Table 8-88. pwm_bri23 Register Field Descriptions

Bit	Field	Туре	Default	Description
7-0	16- bits_PWM_higher_8_bits_ _15:8for_CS11	R/W	0h	16-bits PWM higher 8 bits [15:8] for CS11

8.6.8.25 pwm_bri24 Register (Address = 218h) [Default = 0h]

pwm_bri24 is shown in Figure 8-89 and described in Table 8-89.

Return to the Summary Table.

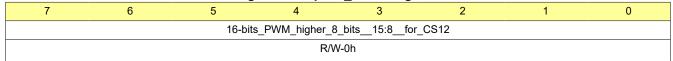
Figure 8-89. pwm bri24 Register

		,	9	<u></u>			
7	6	5	4	3	2	1	0
		16-b	oits_PWM_lower_8	_bits7:0for_0	CS12		

Figure 8-89. pwm_bri24 Register (continued)

R/W-0h

Table 8-89. pwm_bri24 Register Field Descriptions


Bit	Field	Туре	Default	Description
7-0	16- bits_PWM_lower_8_bits 7:0for_CS12	R/W	0h	16-bits PWM lower 8 bits [7:0] for CS12

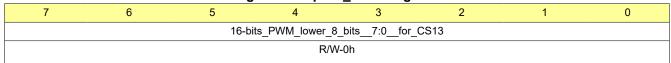
8.6.8.26 pwm_bri25 Register (Address = 219h) [Default = 0h]

pwm_bri25 is shown in Figure 8-90 and described in Table 8-90.

Return to the Summary Table.

Figure 8-90. pwm_bri25 Register

Table 8-90. pwm_bri25 Register Field Descriptions


Bit	Field	Туре	Default	Description
7-0	16- bits_PWM_higher_8_bits_ 15:8 for CS12	R/W	0h	16-bits PWM higher 8 bits [15:8] for CS12

8.6.8.27 pwm_bri26 Register (Address = 21Ah) [Default = 0h]

pwm_bri26 is shown in Figure 8-91 and described in Table 8-91.

Return to the Summary Table.

Figure 8-91. pwm_bri26 Register

Table 8-91. pwm_bri26 Register Field Descriptions

Bit	Field	Туре	Default	Description
7-0	16- bits_PWM_lower_8_bits 7:0 for CS13	R/W	Oh	16-bits PWM lower 8 bits [7:0] for CS13

8.6.8.28 pwm_bri27 Register (Address = 21Bh) [Default = 0h]

pwm_bri27 is shown in Figure 8-92 and described in Table 8-92.

Return to the Summary Table.

Figure 8-92. pwm_bri27 Register

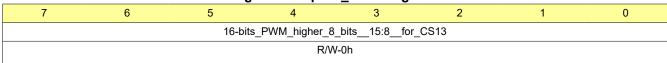
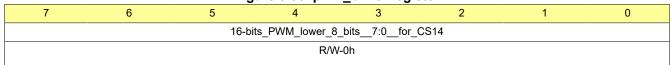


Table 8-92. pwm_bri27 Register Field Descriptions


Bit	Field	Туре	Default	Description
7-0	16- bits_PWM_higher_8_bits_ _15:8for_CS13	R/W	0h	16-bits PWM higher 8 bits [15:8] for CS13

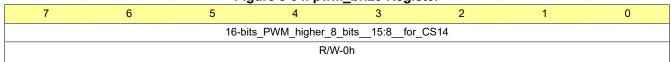
8.6.8.29 pwm_bri28 Register (Address = 21Ch) [Default = 0h]

pwm_bri28 is shown in Figure 8-93 and described in Table 8-93.

Return to the Summary Table.

Figure 8-93. pwm_bri28 Register

Table 8-93. pwm_bri28 Register Field Descriptions


Bit	Field	Туре	Default	Description
7-0	16- bits_PWM_lower_8_bits 7:0for_CS14	R/W	0h	16-bits PWM lower 8 bits [7:0] for CS14

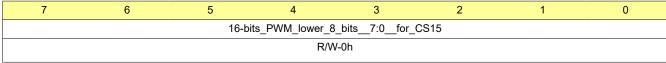
8.6.8.30 pwm_bri29 Register (Address = 21Dh) [Default = 0h]

pwm_bri29 is shown in Figure 8-94 and described in Table 8-94.

Return to the Summary Table.

Figure 8-94. pwm_bri29 Register

Table 8-94. pwm_bri29 Register Field Descriptions


Bit	Field	Туре	Default	Description
7-0	16- bits_PWM_higher_8_bits_ _15:8for_CS14	R/W	0h	16-bits PWM higher 8 bits [15:8] for CS14

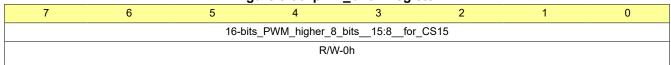
8.6.8.31 pwm_bri30 Register (Address = 21Eh) [Default = 0h]

pwm_bri30 is shown in Figure 8-95 and described in Table 8-95.

Return to the Summary Table.

Figure 8-95. pwm_bri30 Register

Table 8-95. pwm_bri30 Register Field Descriptions


Bit	Field	Туре	Default	Description
7-0	16- bits_PWM_lower_8_bits 7:0 for CS15	R/W	0h	16-bits PWM lower 8 bits [7:0] for CS15

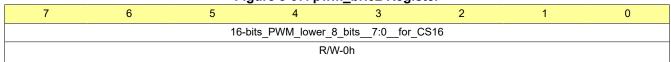
8.6.8.32 pwm_bri31 Register (Address = 21Fh) [Default = 0h]

pwm_bri31 is shown in Figure 8-96 and described in Table 8-96.

Return to the Summary Table.

Figure 8-96. pwm_bri31 Register

Table 8-96. pwm_bri31 Register Field Descriptions


Bit	Field	Туре	Default	Description
7-0	16- bits_PWM_higher_8_bits_ _15:8for_CS15	R/W	0h	16-bits PWM higher 8 bits [15:8] for CS15

8.6.8.33 pwm_bri32 Register (Address = 220h) [Default = 0h]

pwm_bri32 is shown in Figure 8-97 and described in Table 8-97.

Return to the Summary Table.

Figure 8-97. pwm_bri32 Register

Table 8-97. pwm_bri32 Register Field Descriptions

Bit	Field	Туре	Default	Description
7-0	16- bits_PWM_lower_8_bits 7:0for_CS16	R/W	0h	16-bits PWM lower 8 bits [7:0] for CS16

8.6.8.34 pwm_bri33 Register (Address = 221h) [Default = 0h]

pwm_bri33 is shown in Figure 8-98 and described in Table 8-98.

Return to the Summary Table.

Figure 8-98. pwm_bri33 Register

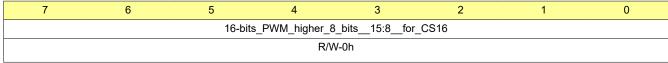
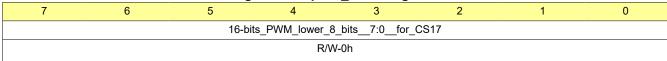


Table 8-98. pwm_bri33 Register Field Descriptions


Bit	Field	Туре	Default	Description
7-0	16- bits_PWM_higher_8_bits_ _15:8for_CS16	R/W	0h	16-bits PWM higher 8 bits [15:8] for CS16

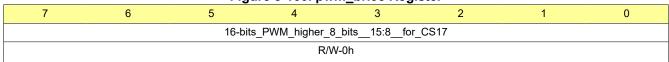
8.6.8.35 pwm_bri34 Register (Address = 222h) [Default = 0h]

pwm_bri34 is shown in Figure 8-99 and described in Table 8-99.

Return to the Summary Table.

Figure 8-99. pwm_bri34 Register

Table 8-99. pwm_bri34 Register Field Descriptions


Bit	Field	Туре	Default	Description
7-0	16- bits_PWM_lower_8_bits 7:0for_CS17	R/W	0h	16-bits PWM lower 8 bits [7:0] for CS17

8.6.8.36 pwm_bri35 Register (Address = 223h) [Default = 0h]

pwm_bri35 is shown in Figure 8-100 and described in Table 8-100.

Return to the Summary Table.

Figure 8-100. pwm_bri35 Register

Table 8-100. pwm_bri35 Register Field Descriptions

Bit	Field	Туре	Default	Description
7-0	16- bits_PWM_higher_8_bits_ _15:8for_CS17	R/W	0h	16-bits PWM higher 8 bits [15:8] for CS17

9 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

9.1 Application Information

The LP5861 integrates 18 constant current sinks, which can drive up to 18 LED dots or 6 RGB pixels and achieve great dimming effect. In smart home, gaming keyboards, and other human-machine interaction applications, the device can greatly improve user experience with a small amount of components.

9.2 Typical Application

9.2.1 Application

Figure 9-1 shows an example of typical application, which uses one LP5861 to drive 6 common-anode RGB LEDs through I²C communication.

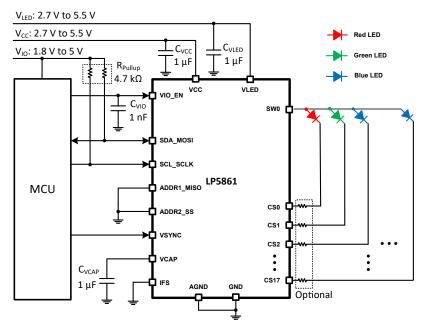


Figure 9-1. Typical Application - LP5861 Driving 6 RGB LEDs

Figure 9-2 shows an example of using LP5861 without internal power switch, to save power consumption on the internal PMOS, by connecting anode of LEDs to VLED directly. VLED still must be connected to 2.7 V–5.5-V power supply, while SW0 must be floating when not used.

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

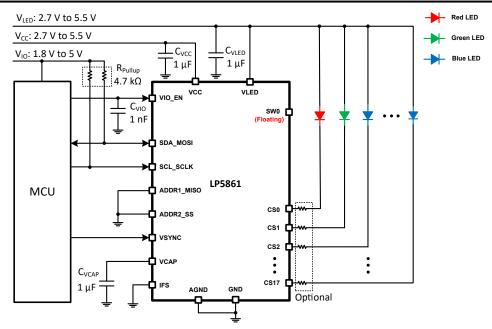


Figure 9-2. Typical Application 2 - LP5861 Drives Six RGB LEDs Without Internal Switch

9.2.2 Design Requirements

Table 9-1. Design Parameters

PARAMETER	VALUE
VCC / VIO	3.3 V
VLED	5 V
RGB LED count	6
Interface	I ² C
LED maximum peak current (red, green, blue)	44 mA, 33 mA, 22 mA

9.2.3 Detailed Design Procedure

LP5861 requires an external capacitor C_{VCAP} , whose value is 1 μF connected from V_{CAP} to GND for proper operation of internal LDO. The external capacitor must be placed as close to the device as possible.

TI recommends $1-\mu F$ capacitors to be placed between VCC / VLED with GND, and 1-nF capacitor placed between VIO with GND. Place the capacitors as close to the device as possible.

Pullup resistors $R_{pull-up}$ are requirement for SCL and SDA when using I²C as communication method. In typical applications, TI recommends 1.8-k Ω to 4.7-k Ω resistors.

To decrease thermal dissipation from device to ambient, resistors R_{CS} an optionally be placed in serial with the LED. Voltage drop on these resistors must leave enough margins for VSAT to ensure the device work normally.

9.2.4 Program Procedure

When selecting data refresh Mode 1, outputs are refreshed instantly after data is received.

When selecting data refresh Mode 2 and 3, VSYNC signal is required for synchronized display. Programming flow is showed as Figure 9-3. To display full pixel of last frame, VSYNC pulse must be sent to the device after the end of last PWM. Time between two pulses t_{SYNC} must be larger than the whole PWM time of all Dots t_{frame} . Common selection like 60 Hz, 90 Hz, 120 Hz or even higher refresh frequency can be supported. High pulse width longer than t_{SYNC_H} is required at the beginning of each VSYNC frame, and data must not be write to PWM registers during high pulse width.

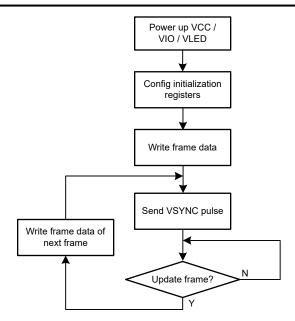
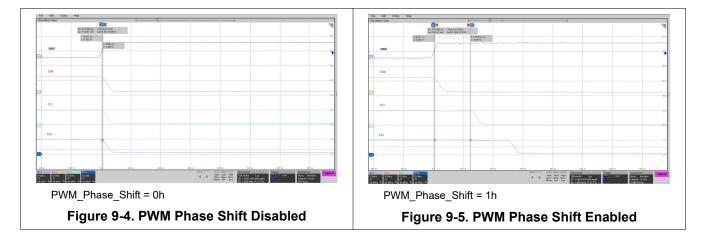



Figure 9-3. Program Procedure

9.2.5 Application Performance Plots

The following figures show the application performance plots.

10 Power Supply Recommendations

VDD Input Supply Recommendations

LP5861 is designed to operate from a 2.7-V to 5.5-V VDD voltage supply. This input supply must be well regulated and be able to provide the peak current required by the LED matrix. The resistance of the VDD supply rail must be low enough such that the input current transient does not cause the LP5861 VDD supply voltage to drop below the maximum POR voltage.

VLED Input Supply Recommendations

LP5861 is designed to operate with a 2.7-V to 5.5-V VLED voltage supply. The VLED supply must be well regulated and able to provide the peak current required by the LED configuration without voltage drop, under load transients like start-up or rapid brightness change. The resistance of the input supply rail must be low enough so that the input current transient does not cause the VLED supply voltage to drop below LED V_f + VSAT voltage.

VIO Input Supply Recommendations

LP5861 is designed to operate with a 1.65-V to 5.5-V VIO_EN voltage supply. The VIO_EN supply must be well regulated and able to provide the peak current required by the LED configuration without voltage drop under load transients like start-up or rapid brightness change.

11 Layout

11.1 Layout Guidelines

The below guidelines for layout design can help to get a better on-board performance.

- The decoupling capacitors C_{VCC} and C_{VLED} for power supply must be close to the chip to have minimized the impact of high-frequency noise and ripple from power. C_{VCAP} for internal LDO must be put as close to chip as possible. GND plane connections to C_{VLED} and GND pins must be on TOP layer copper with multiple vias connecting to system ground plane. C_{VIO} for internal enable block also must be put as close to chip as possible.
- The exposed thermal pad must be well soldered to the board, which can have better mechanical reliability.
 This action can optimize heat transfer so that increasing thermal performance. AGND pin must be connected to thermal pad and system ground.
- The major heat flow path from the package to the ambient is through copper on the PCB. Several methods
 can help thermal performance. Below exposed thermal pad of IC, putting much vias through the PCB to other
 ground layer can dissipate more heat. Maximizing the copper coverage on the PCB can increase the thermal
 conductivity of the board.
- Low inductive and resistive path of switch load loop can help to provide a high slew rate. Therefore, path of VLED – SWx must be short and wide and avoid parallel wiring and narrow trace. Transient current in SWx pins is much larger than CSy pins, so that trace for SWx must be wider than CSy.

11.2 Layout Example

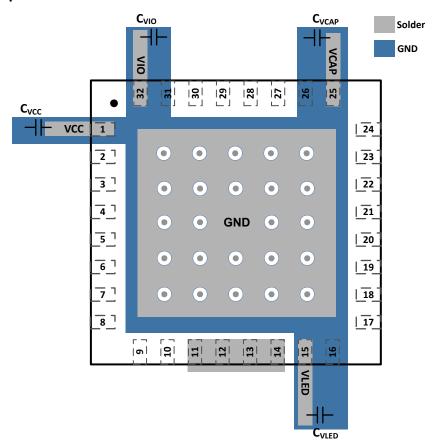


Figure 11-1. LP5861 Layout Example

12 Device and Documentation Support

TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below.

12.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.2 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

12.3 Trademarks

TI E2E™ is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

12.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.5 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com 7-Apr-2023

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
LP5861RSMR	ACTIVE	VQFN	RSM	32	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LP5861	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

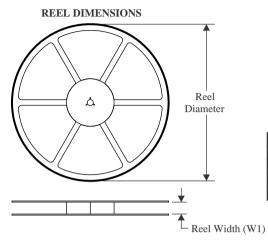
OBSOLETE: TI has discontinued the production of the device.

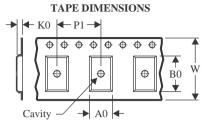
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

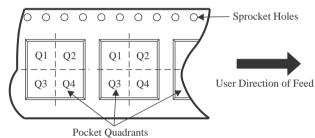
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

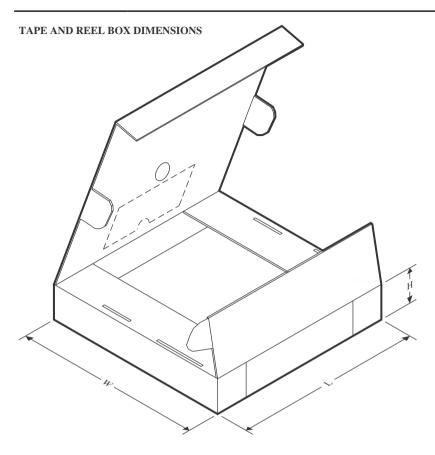
PACKAGE MATERIALS INFORMATION

www.ti.com 3-Jun-2022


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

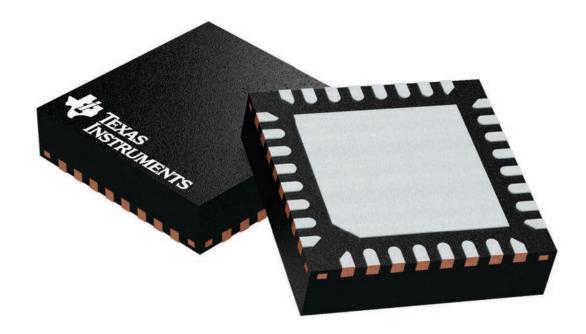


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LP5861RSMR	VQFN	RSM	32	3000	330.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2

PACKAGE MATERIALS INFORMATION

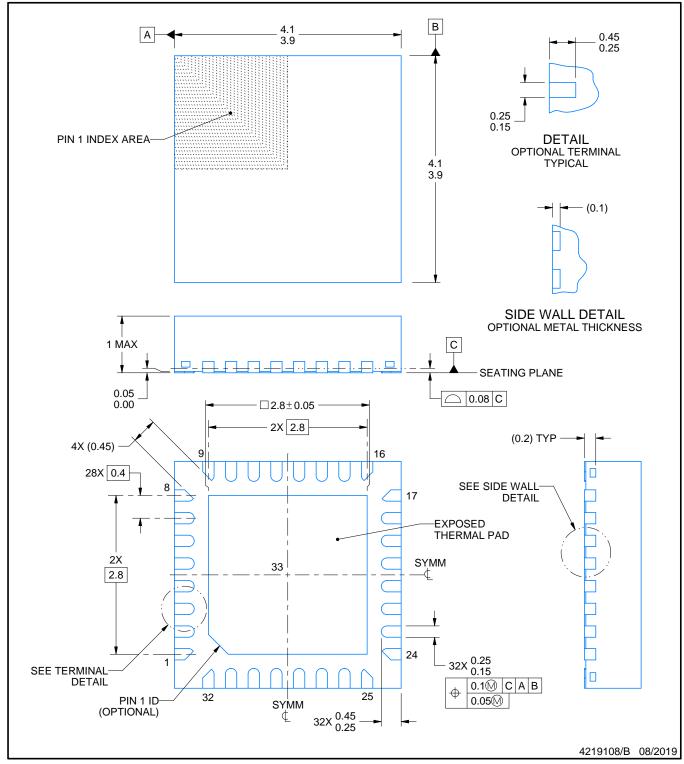
www.ti.com 3-Jun-2022


*All dimensions are nominal

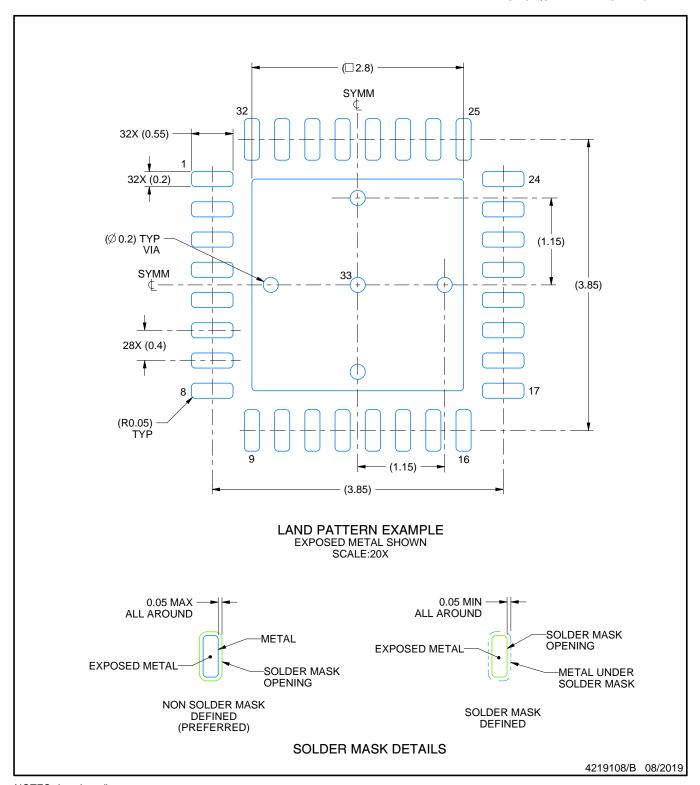
	Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
L	P5861RSMR	VQFN	RSM	32	3000	367.0	367.0	35.0

4 x 4, 0.4 mm pitch

PLASTIC QUAD FLATPACK - NO LEAD


This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

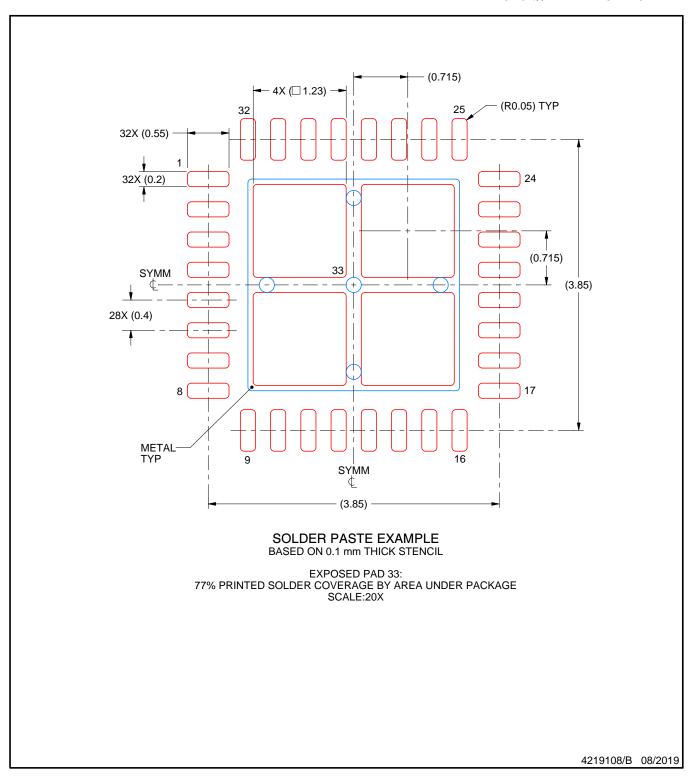
PLASTIC QUAD FLATPACK - NO LEAD


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated