

LP5866 SNVSC36 - DECEMBER 2021

LP5866 6 × 18 LED Matrix Driver With 8-Bit Analog and 8-/16-Bit PWM Dimming

1 Features

- · LED matrix topology:
 - 18 constant current sinks with 6 scan switches for 108 LED dots
 - Configurable for 1 to 6 scan switches
- Operating voltage range:
 - V_{CC}/V_{LED} range: 2.7 V to 5.5 V
 - Logic pins compatible with 1.8 V, 3.3 V, and 5 V
- 18 constant current sinks with high precision:
 - 0.1 mA-50 mA per current sink when $V_{CC} \ge 3.3$
 - Device-to-device error: ±3% when channel current = 50 mA
 - Channel-to-channel error: ±3% when channel current = 50 mA
 - Phase-shift for balanced transient power
- Ultra-low power consumption:
 - Shutdown mode: I_{CC} ≤ 1 uA when EN = Low
 - Standby mode: I_{CC} ≤ 10 uA when EN = High and CHIP_EN = 0 (data retained)
 - Active Mode: I_{CC} = 4.3 mA (typ.) when channel current = 5 mA
- Flexible dimming options:
 - Individual ON and OFF control for each LED
 - Analog dimming (current gain control)
 - Global 3-bit Maximum Current (MC) setting for all LED dots
 - 3 groups of 7-bit Color Current (CC) setting for red, green, and blue
 - · Individual 8-bit Dot Current (DC) setting for each LED dot
 - PWM dimming with audible-noise-free frequency
 - · Global 8-bit PWM dimming for all LED dots
 - 3 programmable groups of 8-bit PWM dimming for LED dot arbitrary mapping
 - Individual 8-bit or 16-bit PWM dimming for each LED dot
- Full addressable SRAM to minimize data traffic
- Individual LED dot open and short detection
- Deghosting and low brightness compensation
- Interface options:
 - 1-MHz (max.) I²C interface when IFS = Low
 - 12-MHz (max.) SPI interface when IFS = High

2 Applications

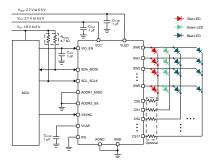
- LED animation and indication for:
 - Keyboard, mouse, and gaming accessories
 - Major and smart home appliances

- Smart speaker, wired and wireless speaker
- Audio mixer, DJ equipment, and broadcast
- Access equipment, switches, and servers
- Constant current sinks for optical module

3 Description

Electronic devices are becoming smarter, requiring to use larger quantity of LEDs for animation and indication purpose. A high performance LED matrix driver is required to improve user experience with small solution size.

The LP586x devices are a family of high performance LED matrix drivers. The device integrates 18 constant current sinks with N (N = 1/2/4/6/8/11) switching MOSFETs to support N × 18 LED dots or N × 6 RGB LEDs. The LP5866 integrates 6 MOSFETs for up to 108 LED dots or 36 RGB LEDs.


The LP5866 supports both analog dimming and PWM dimming methods. For analog dimming, each LED dot can be adjusted with 256 steps. For PWM dimming, the integrated 8-bit or 16-bit configurable PWM generators enable smooth and audible-noisefree dimming control. Each LED dot can also be arbitrarily mapped into 8-bit group PWM to achieve dimming control together.

The LP5866 device implements full addressable SRAM to minimize the data traffic. The ghostcancellation circuitry is integrated to eliminate both upside and downside ghosting. The LP5866 also supports LED open and short detection functions. Both 1-MHz (maximum) I²C and 12-MHz (maximum) SPI are available in LP5866.

Device Information

PART NUMBER	PACKAGE ⁽¹⁾	BODY SIZE (NOM)
LP5866	VQFN (40)	5 mm × 5 mm
LF3000	TSSOP (38)	9.7 mm × 4.4 mm

For all available packages, see the orderable addendum at the end of the data sheet.

Simplified Schematic

Table of Contents

1 Features1	8.4 Device Functional Modes	23
2 Applications 1	8.5 Programming	
3 Description1	8.6 Register Maps	
4 Revision History2	9 Application and Implementation	
5 Device Comparison3	9.1 Application Information	. 38
6 Pin Configuration and Functions4	9.2 Typical Application	
7 Specifications7	10 Power Supply Recommendations	
7.1 Absolute Maximum Ratings7	11 Layout	
7.2 ESD Ratings	11.1 Layout Guidelines	
7.3 Recommended Operating Conditions7	11.2 Layout Example	. 43
7.4 Thermal Information7	12 Device and Documentation Support	44
7.5 Electrical Characteristics8	12.1 Receiving Notification of Documentation Updates.	44
7.6 Timing Requirements9	12.2 Support Resources	. 44
7.7 Typical Characteristics11	12.3 Trademarks	44
8 Detailed Description13	12.4 Electrostatic Discharge Caution	44
8.1 Overview	12.5 Glossary	44
8.2 Functional Block Diagram13	13 Mechanical, Packaging, and Orderable	
8.3 Feature Description14	Information	. 45

4 Revision History

DATE	REVISION	NOTES
December 2021	*	Initial Release

5 Device Comparison

PART NUMBER	MATERIAL	LED DOT NUMBER	PACKAGE ⁽²⁾	SOFTWARE COMPATIBLE
LP5861	LP5861RSMR	18 × 1 = 18	VQFN-32	
I DE062	LP5862RSMR	18 × 2 = 36	VQFN-32	
LP5862 LP5864	LP5862DBTR	10 * 2 - 30	TSSOP-38	
	LP5864RSMR	18 × 4 = 72	VQFN-32	
	LP5864MRSMR ⁽¹⁾	10 ^ 4 - 72	VQI N-32	
	LP5866RKPR		VQFN-40	Yes
LP5866	LP5866DBTR	18 × 6 = 108	TSSOP-38	
	LP5866MDBTR ⁽¹⁾		1330F-30	
LP5868	LP5868RKPR	18 × 8 = 144	VQFN-40	
LP5860	LP5860RKPR	10 × 11 = 100	VOEN 40	
LP3800	LP5860MRKPR ⁽¹⁾	18 × 11 = 198 VQFN-40		

⁽¹⁾ Extended temperature devices, supporting –55°C to approximately 125°C operating ambient temperature.

⁽²⁾ The same packages are hardware compatible.

6 Pin Configuration and Functions

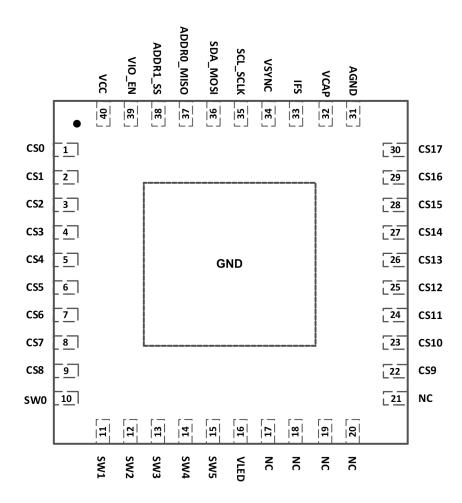


Figure 6-1. LP5866 RKP Package 40-Pin VQFN With Exposed Thermal Pad Top View

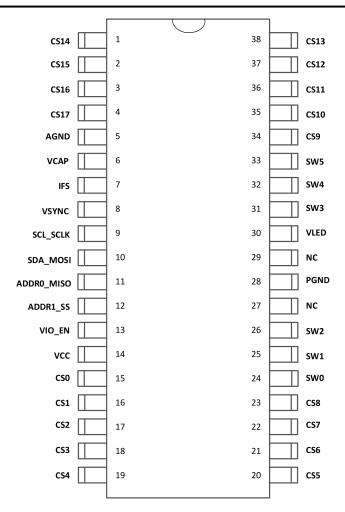


Figure 6-2. LP5866 VQFN Package 38-Pin VQFN Top View

Table 6-1. Pin Functions

	PIN				
NAME	VQFN NO.	TSSOP NO.	I/O	DESCRIPTION	
CS0	1	15	0	Current sink 0. If not used, this pin must be left floating.	
CS1	2	16	0	Current sink 1. If not used, this pin must be left floating.	
CS2	3	17	0	Current sink 2. If not used, this pin must be left floating.	
CS3	4	18	0	Current sink 3. If not used, this pin must be left floating.	
CS4	5	19	0	Current sink 4. If not used, this pin must be left floating.	
CS5	6	20	0	Current sink 5. If not used, this pin must be left floating.	
CS6	7	21	0	Current sink 6. If not used, this pin must be left floating.	
CS7	8	22	0	Current sink 7. If not used, this pin must be left floating.	
CS8	9	23	0	Current sink 8. If not used, this pin must be left floating.	
SW0	10	24	0	High-side PMOS switch output for scan line 0. If not used, this pin must be left floating.	
SW1	11	25	0	High-side PMOS switch output for scan line 1. If not used, this pin must be left floating.	
SW2	12	26	0	High-side PMOS switch output for scan line 2. If not used, this pin must be left floating.	
SW3	13	31	0	High-side PMOS switch output for scan line 3. If not used, this pin must be left floating.	
SW4	14	32	0	High-side PMOS switch output for scan line 4. If not used, this pin must be left floating.	
SW5	15	33	0	High-side PMOS switch output for scan line 5. If not used, this pin must be left floating.	

Table 6-1. Pin Functions (continued)

	PIN			
NAME	VQFN NO.	TSSOP NO.	I/O	DESCRIPTION
VLED	16	30	Power	Power input for high-side switches
NC	17, 18, 19, 20, 21	27, 29	_	No internal connection
CS9	22	34	0	Current sink 9. If not used, this pin must be left floating.
CS10	23	35	0	Current sink 10. If not used, this pin must be left floating.
CS11	24	36	0	Current sink 11. If not used, this pin must be left floating.
CS12	25	37	0	Current sink 12. If not used, this pin must be left floating.
CS13	26	38	0	Current sink 13. If not used, this pin must be left floating.
CS14	27	1	0	Current sink 14. If not used, this pin must be left floating.
CS15	28	2	0	Current sink 15. If not used, this pin must be left floating.
CS16 29 3		0	Current sink 16. If not used, this pin must be left floating.	
CS17	30	4	0	Current sink 17. If not used, this pin must be left floating.
AGND	31	5	Ground	Analog ground. Must be connected to exposed thermal pad and common ground plane.
VCAP	32	6	0	Internal LDO output. A 1-µF capacitor must be connected between this pin with GND. Place the capacitor as close to the device as possible.
IFS	33	7	I	Interface type select. I ² C is selected when IFS is low. SPI is selected when IFS is high. A resistor must be connected between VIO and this pin.
VSYNC	34	8	1	External synchronize signal for display mode 2 and mode 3
SCL_SCLK	35	9	1	I ² C clock input or SPI clock input. Pull up to VIO when configured as I ² C.
SDA_MOSI	36	10	I/O	I ² C data input or SPI leader output follower input. Pull up to VIO when configured as I ² C.
ADDR0_MISO	37	11	I/O	I ² C address select 0 or SPI leader input follower output
ADDR1_SS	38	12	I	I ² C address select 1 or SPI follower select
VIO_EN	39	13	Power,I	Power supply for digital circuits and chip enable. A 1-nF capacitor must be connected between this pin with GND and be placed as close to the device as possible.
VCC	40	14	Power	Power supply for device. A 1-µF capacitor must be connected between this pin with GND and be placed as close to the device as possible.
GND	Exposed Thermal Pad	1	Ground	Must be connected to AGND and common ground plane

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

		MIN	MAX	UNIT
Voltage on V _{CC} / V _{LED} / VIO / EN / CS / SW / SDA / SCL / SCLK / MOSI / MISO / SS / ADDR0 / ADDR1 / VSYNC / IFS		-0.3	6	V
Voltage on VCAP		-0.3	2	V
TJ	Junction temperature	-55	150	°C
T _{stg}	Storage temperature	-65	150	°C

⁽¹⁾ Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

7.2 ESD Ratings

			VALUE	UNIT
V	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/ JEDEC JS-001, all pins ⁽¹⁾	±3000	V
V _(ESD)	Electrostatic discharge	Charged device model (CDM), per ANSI/ESDA/ JEDEC JS-002, all pins ⁽²⁾	±1000	V

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM MAX	UNIT
Input voltage on V _{CC}	Supply voltage	2.7	5.5	V
Input voltage on V _{LED}	LED supply voltage	2.7	5.5	V
Input voltage on VIO_EN		1.65	5.5	V
Voltage on SDA / SCL / SCLK / MOSI / MISO / SS / ADDRx / VSYNC / IFS			VIO	V
T _A	Operating ambient temperature	-40	85	°C
T _A	Operating ambient temperature - LP5860MRKPR, LP5864MRSMR, and LP5866MDBTR only	-55	125	°C

7.4 Thermal Information

		LP5860, LP5868, LP5866	
	THERMAL METRIC	RKP (VQFN)	UNIT
		40 PINS	
R _{0JA}	Junction-to-ambient thermal resistance	31.4	°C/W
R ₀ JC(top)	Junction-to-case (top) thermal resistance	22.9	°C/W
R _{0JB}	Junction-to-board thermal resistance	12.0	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	0.3	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	12.0	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	3.5	°C/W

7.5 Electrical Characteristics

 V_{CC} = 3.3V, V_{LED} = 3.8V, VIO = 1.8V and T_A = -40°C to +85°C (T_A = -55°C to +125°C for LP5860MRKPR, LP5864MRKPR, and LP5866MDBTR); Typical values are at T_A = 25°C (unless otherwise specified)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Power su	ıpplies					
V _{CC}	Device supply voltage		2.7		5.5	V
V _{UVR}	Undervoltage restart	V _{CC} rising, Test mode			2.5	V
V _{UVF}	Undervoltage shutdown	V _{CC} falling, Test mode	1.9			V
V _{UV_HYS}	Undervoltage shutdown hysteresis			0.3		V
V _{CAP}	Internal LDO output	V _{CC} = 2.7V to 5.5V		1.78		V
	Shutdown supply current I _{SHUTDOWN}	V _{EN} = 0V, CHIP_EN = 0 (bit), measure the total current from V _{CC} and V _{LED}		0.1	1	μΑ
I _{CC}	Standby supply current I _{STANDBY}	V_{EN} = 3.3V, CHIP_EN = 0 (bit), measure the total current from V_{CC} and V_{LED}		5.5	10	μA
	Active mode supply current I _{NORMAL}	V_{EN} = 3.3V, CHIP_EN = 1 (bit), all channels I _{OUT} = 5 mA (MC = 1, CC = 127, DC = 256), measure the current from V _{CC}		4.3	6	mA
V _{LED}	LED supply voltage		2.7		5.5	V
V _{VIO}	VIO supply voltage		1.65		5.5	V
I _{VIO}	VIO supply current	Interface idle			5	μA
Output S	tages				,	
	Constant current sink output range (CS0	2.7 <= V _{CC} < 3.3V, PWM = 100%	0.1		40	mA
I _{CS}	- CS17)	V _{CC} >= 3.3V PWM = 100%	0.1		50	mA
I _{LKG}	Leakage current (CS0 – CS17)	channels off, up_deghost = 0, V _{CS} =5V		0.1	1	μA
	Device to device current error, I _{ERR_DD} = (I _{AVE} -I _{SET})/I _{SET} ×100%	All channels ON. Current set to 0.1 mA. MC = 0 CC = 42 DC = 25 PWM = 100%	-7		7	%
		All channels ON. Current set to 1 mA. MC = 2 CC = 127 DC = 25 PWM = 100%	-5		5	%
I _{ERR_DD}		All channels ON. Current set to 10 mA. MC = 2 CC = 127 DC = 255 PWM = 100%	-3.5		3.5	%
		All channels ON. Current set to 25 mA. MC=7 CC=64 DC=255 PWM=100%	-3.5		3.5	%
		All channels ON. Current set to 50 mA. MC = 7 CC = 127 DC = 255 PWM = 100%	-3		3	%
		All channels ON. Current set to 0.1 mA. MC = 0 CC = 42 DC = 25 PWM = 100%	-5.5		5.5	%
		All channels ON. Current set to 1 mA. MC = 2 CC = 127 DC = 25 PWM = 100%	– 5		5	%
I _{ERR_CC}	Channel to channel current error, $I_{ERR_CC} = (I_{OUTX} - I_{AVE})/I_{AVE} \times 100\%$	All channels ON. Current set to 10 mA. MC = 2 CC = 127 DC = 255 PWM = 100%	-4		4	%
		All channels ON. Current set to 25 mA. MC = 7 CC = 64 DC = 255 PWM = 100%	-3.5		3.5	%
		All channels ON. Current set to 50 mA. MC = 7 CC = 127 DC = 255 PWM = 100%	-3		3	%
£	LED DIAM fraguence	PWM_Fre = 1, PWM = 100%		62.5		KHz
f _{PWM}	LED PWM frequency	PWM Fre = 0, PWM = 100%		125		KHz

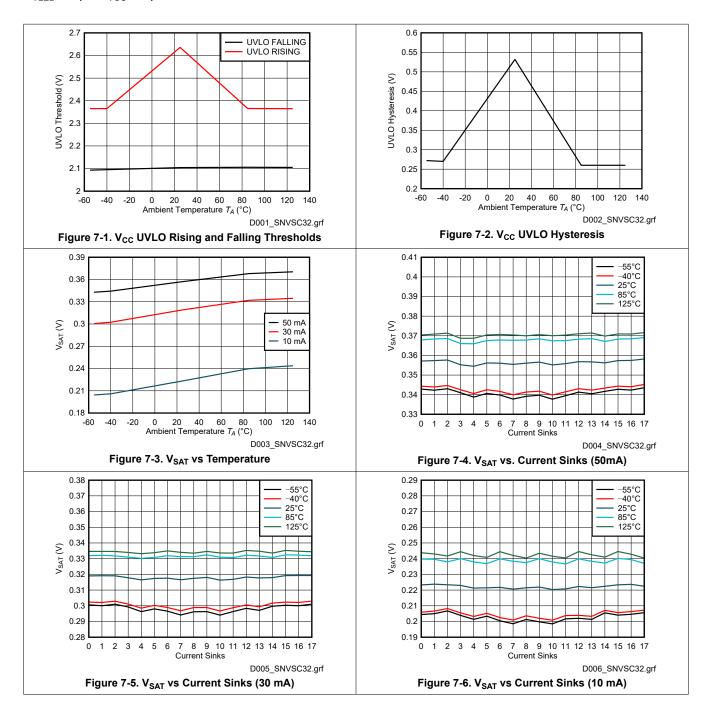
7.5 Electrical Characteristics (continued)

 V_{CC} = 3.3V, V_{LED} = 3.8V, VIO = 1.8V and T_A = -40°C to +85°C (T_A = -55°C to +125°C for LP5860MRKPR, LP5864MRKPR, and LP5866MDBTR); Typical values are at T_A = 25°C (unless otherwise specified)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		I _{OUT} = 50mA, decreasing output voltage, when the LED current has dropped 5%			0.45	V
V_{SAT}	Output saturation voltage	I _{OUT} = 30mA, decreasing output voltage, when the LED current has dropped 5%			0.4	V
		I _{OUT} = 10mA, decreasing output voltage, when the LED current has dropped 5%			0.35	V
		V _{LED} = 2.7 V, I _{SW} = 200 mA		450	550	mΩ
		V _{LED} = 2.7 V, I _{SW} = 200 mA, LP5860MRKPR and LP5864MRSMR		450	570	mΩ
		V _{LED} = 3.8 V, I _{SW} = 200mA		380	500	mΩ
R _{SW}	High-side PMOS ON resistance	V _{LED} = 3.8 V, I _{SW} = 200 mA, LP5860MRKPR and LP5864MRSMR		380	520	mΩ
		V _{LED} = 5 V, I _{SW} = 200 mA		310	450	mΩ
		V _{LED} = 5V, I _{SW} = 200 mA, LP5860MRKPR and LP5864MRSMR		310	490	mΩ
Logic Inte	erfaces					
V _{LOGIC_IL}	Low-level input voltage, SDA, SCL, SCLK, MOSI, SS, ADDRx, VSYNC, IFS			0	.3 x VIO	V
V _{LOGIC_IH}	High-level input voltage, SDA, SCL, SCLK, MOSI, SS, ADDRx, VSYNC, IFS		0.7 x VIO			V
V _{EN_IL}	Low-level input voltage of EN				0.4	V
V _{EN_IH}	High-level input voltage of EN	When V _{CAP} powered up	1.4			V
I _{LOGIC_I}	Input current, SDA, SCL, SCLK, MOSI, SS, ADDRx		-1		1	μΑ
V _{LOGIC_O}	Low-level output voltage, SDA, MISO	I _{PULLUP} = 3 mA			0.4	V
V _{LOGIC_O}	High-level output voltage, MISO	I _{PULLUP} = –3 mA	0.7 x VIO			V
Protectio	n Circuits					
V _{LOD_TH}	Thershold for channel open detection			0.25		V
V _{LSD_TH}	Thershold for channel short detection		\	/ _{LED} – 1		V
T _{TSD}	Thermal-shutdown junction temperature			150		°C
T _{HYS}	Thermal shutdown temperature hysteresis			15		°C

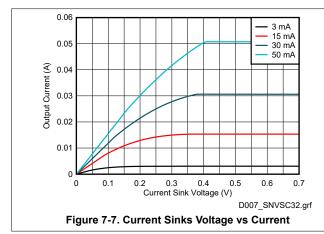
7.6 Timing Requirements

		MIN	NOM	MAX	UNIT
MISC. Tim	ming Requirements				
f _{OSC}	Internal oscillator frequency		31.2		MHz
f _{OSC_ERR}	Device to device oscillator frequency error	-3%		3%	
t _{POR_H}	Wait time from UVLO disactive to device NORMAL			500	μs
t _{CHIP_EN}	Wait time from setting Chip_EN (Register) =1 to device NORMAL			100	μs
t _{RISE}	LED output rise time		10		ns
t _{FALL}	LED output fall time		15		ns
t _{VSYNC_H}	The minimum high-level pulse width of VSYNC	200			μs
SPI timing	requirements				
f _{SCLK}	SPI Clock frequency			12	MHz


7.6 Timing Requirements (continued)

		MIN	NOM MAX	UNIT
1	Cycle time	83.3		ns
2	SS active lead-time	50		ns
3	SS active leg time	50		ns
4	SS inactive time	50		ns
5	SCLK low time	36		ns
6	SCLK high time	36		ns
7	MOSI set-up time	20		ns
8	MOSI hold time	20		ns
9	MISO disable time		30	ns
10	MISO data valid time		35	ns
C _b	Bus capacitance	5	40	pF
I ² C fast	t mode timing requirements	<u> </u>	'	
f _{SCL}	I ² C clock frequency	0	400	KHz
1	Hold time (repeated) START condition	600		ns
2	Clock low time	1300		ns
3	Clock high time	600		ns
4	Setup time for a repeated START condition	600		ns
5	Data hold time	0		ns
6	Data setup time	100		ns
7	Rise time of SDA and SCL		300	ns
8	Fall time of SDA and SCL		300	ns
9	Setup time for STOP condition	600		ns
10	Bus free time between a STOP and a START condition	1.3		μs
I ² C fast	t mode plus timing requirements	<u>'</u>		
f _{SCL}	I ² C clock frequency	0	400	KHz
1	Hold time (repeated) START condition	600		ns
2	Clock low time	1300		ns
3	Clock high time	600		ns
4	Setup time for a repeated START condition	600		ns
5	Data hold time	0		ns
6	Data setup time	100		ns
7	Rise time of SDA and SCL		300	ns
8	Fall time of SDA and SCL		300	ns
9	Setup time for STOP condition	600		ns
10	Bus free time between a STOP and a START condition	1.3		μs

7.7 Typical Characteristics


Unless specified otherwise, typical characteristics apply over the full ambient temperature range ($-55^{\circ}C < T_A < +125^{\circ}C$ for LP5866MDBTR while $-40^{\circ}C < T_A < +85^{\circ}C$ for the other devices), $V_{CC} = 3.3$ V, $V_{IO} = 3.3$ V, $V_{LED} = 5$ V, $I_{LED_Peak} = 50$ mA, $C_{VLED} = 1$ μ F, $C_{VCC} = 1$ μ F.

7.7 Typical Characteristics (continued)

Unless specified otherwise, typical characteristics apply over the full ambient temperature range ($-55^{\circ}C < T_A < +125^{\circ}C$ for LP5866MDBTR while $-40^{\circ}C < T_A < +85^{\circ}C$ for the other devices), $V_{CC} = 3.3$ V, $V_{IO} = 3.3$ V, $V_{LED} = 5$ V, $I_{LED_Peak} = 50$ mA, $C_{VLED} = 1$ μ F, $C_{VCC} = 1$ μ F.

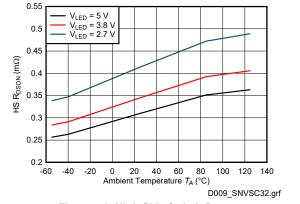
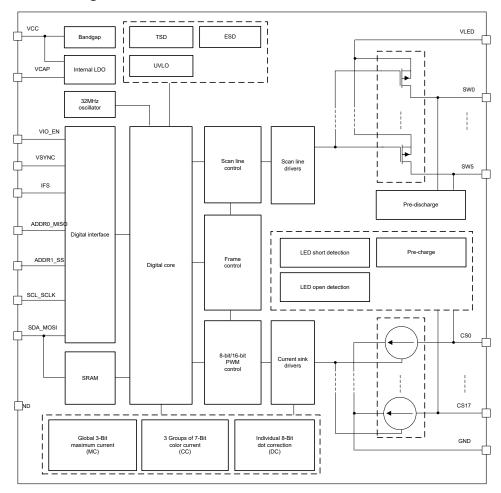


Figure 7-8. High Side Switch R_{DSON}

8 Detailed Description


8.1 Overview

The LP5866 is an 6 × 18 LED matrix driver. The device integrates 6 switching FETs with 18 constant current sinks. One LP5866 device can drive up to 108 LED dots or 36 RGB pixels by using time-multiplexing matrix scheme.

The LP5866 supports both analog dimming and PWM dimming methods. For analog dimming, the current gain of each individual LED dot can be adjusted with 256 steps through 8-bits dot correction. For PWM dimming, the integrated 8-bits or 16-bits configurable, > 20-KHz PWM generators for each LED dot enable smooth, vivid animation effects without audible noise. Each LED can also be mapped into a 8-bits group PWM to achieve the group control with minimum data traffic.

The LP5866 device implements full addressable SRAM. The device supports entire SRAM data refresh and partial SRAM data update on demand to minimize the data traffic. The LP5866 implements the ghost cancellation circuit to eliminate both upside and downside ghosting. The LP5866 also uses low brightness compensation technology to support high density LED pixels. Both 1-MHz (maximum) I²C and 12-MHz (maximum) SPI interfaces are available in the LP5866.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Time-Multiplexing Matrix

The LP5866 device uses time-multiplexing matrix scheme to support up to 108 LED dots with a single chip. The device integrates 18 current sinks with 6 scan lines to drive $18 \times 6 = 108$ LED dots or $6 \times 6 = 36$ RGB pixels. In matrix control scheme, the device scans from Line 0 to Line 5 sequentially as shown in Figure 8-1. Current gain and PWM duty registers are programmable for each LED dot to support individual analog and PWM dimming.

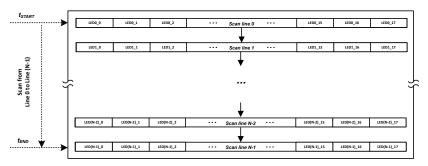


Figure 8-1. Scan Line Control Scheme

There are 6 high-side p-channel MOSFETs (PMOS) integrated in LP5866 device. Users can flexibly set the active scan numbers from 1 to 6 by configuring the 'Max_Line_Num' in Dev_initial register. The time-multiplexing matrix timing sequence follows the Figure 8-2.

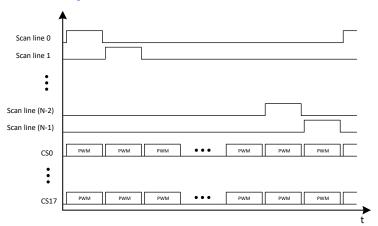


Figure 8-2. Time-Multiplexing Matrix Timing Sequence

One cycle time of the line switching can be calculated as below:

$$t_{\text{line switch}} = t_{\text{PWM}} + t_{\text{SW BLK}} + 2 \times t_{\text{phase shift}}$$
 (1)

- t_{PWM} is the current sink active time, which equals to 8 us (PWM frequency set at 125 kHz) or 16 us (PWM frequency set at 62.5 kHz) by configuring 'PWM_Fre' in Dev_initial register.
- t_{SW_BLK} is the switch blank time, which equals to 1 us or 0.5 us by configuring 'SW_BLK' in Dev_config1 register.
- t_{phase_shift} is the PWM phase shift time, which equal to 0 or 125 ns by configuring 'PWM_Phase_Shift' in Dev_config1 register.

Total display time for one complete sub-period is $t_{sub-period}$ and it can be calculated by the following equation:

$$t_{\text{sub_period}} = t_{\text{line_switch}} \times \text{Scan_line\#}$$
 (2)

Scan_line# is the scan line number determined by 'Max_Line_Num' in Dev_initial register.

The time-multiplexing matrix scheme time diagram is shown in Figure 8-3. The t_{CS_ON_Shift} is the current sink turning on shift by configuring 'CS_ON_Shift' bit in Dev_config1 register.

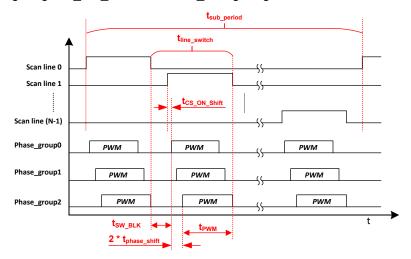


Figure 8-3. Time-Multiplexing Matrix Timing Diagram

The LP5866 device implements deghosting and low brightness compensation to remove the side effects of matrix topology:

- Deghosting: Both upside deghosting and downside deghosting are implemented to eliminate the LED's unexpected weak turn-on.
 - Upside_deghosting: discharge each scan line during its off state. By configuring the 'Up_Deghost' in
 Dev config3 register, the LP5866 discharges and clamps the scan line switch to a certain voltage.
 - Downside_deghosting: pre-charge each current sink voltage during its OFF state. The deghosting capability can be adjusted through the 'Down Deghost' in Dev config3 register.
- Low Brightness Compensation: three groups compensation are implemented to overcome the colorshift and non-uniformity in low brightness conditions. The compensation capability can be through 'Comp_Group1', 'Comp_Group2', and 'Comp_Group3' in Dev_config2 register.
 - Compensation group 1: CS0, CS3, CS6, CS9, CS12, CS15.
 - Compensation group 2: CS1, CS4, CS7, CS10, CS13, CS16.
 - Compensation group 3: CS2, CS5, CS8, CS11, CS14, CS17.

8.3.2 Analog Dimming (Current Gain Control)

Analog dimming of LP5866 is achieved by configuring the current gain control. There are several methods to control the current gain of each LED.

- Global 3-bits Maximum Current (MC) setting without external resistor
- 3 groups of 7-bits Color Current (CC) setting
- Individual 8-bit Dot Current (DC) setting

Global 3-Bits Maximum Current (MC) Setting

The MC is used to set the maximum current I_{OUT_MAX} for each current sink and this current is the maximum peak current for each LED dot. The MC can be set with 3 bits (8 steps) from 3 mA to 50 mA. When the device is powered on, the MC data is set to default value, which is 15 mA.

For data refresh Mode 1, MC data is effective immediately after new data is updated. For Mode 2 and Mode 3, to avoid unexpected MC data change during high speed data refreshing, MC data must be changed when all channels are off and new MC data is only be updated when the 'Chip_EN' bit in Chip_en register is set to 0, and after the 'Chip_EN' returns to 1, the new MC data is effective. 'Down_Deghost' and 'Up_Deghost' in Dev_config3 work in the similar way with MC.

Table 8-1. Maximum Current (MC) Register Setting

3-BITS MAXIMUM_C	URRENT REGISTER	I _{OUT_MAX}				
Binary	Decimal	mA				
000	0	3				
001	1	5				
010	2	10				
011 (Default)	3 (Default)	15 (Default)				
100	4	20				
101	5	30				
110	6	40				
111	7	50				

3 Groups of 7-Bits Color Current (CC) Setting

The LP5866 device is able to adjust the output current of three color groups separately. For each color, the device has 7-bits data in 'CC_Group1', 'CC_Group2', and 'CC_Group3'. Thus, all color group currents can be adjusted in 128 steps from 0% to 100% of the maximum output current, I_{OUT_MAX}.

The 18 current sinks have fixed mapping to the three color groups:

- CC-Group 1: CS0, CS3, CS6, CS9, CS12, CS15.
- CC-Group 2: CS1, CS4, CS7, CS10, CS13, CS16.
- CC-Group 3: CS2, CS5, CS8, CS11, CS14, CS17.

Table 8-2. 3 Groups of 7-bits Color Current (CC) Setting

7-BITS CC_GROUP1/CC_GRO	UP2/CC_GROUP3 REGISTER	RATIO OF OUTPUT CURRENT TO I _{OUT_MAX}
Binary	Decimal	%
000 0000	0	0
000 0001	1	0.79
000 0010	2	1.57
100 0000 (default)	64 (default)	50.4 (default)
111 1101	125	98.4
111 1110	126	99.2
111 1111	127	100

Individual 8-bit Dot Current (DC) Setting

The LP5866 can individually adjust the output current of each LED by using dot current function through DC setting. The device allows the brightness deviations of the LEDs to adjusted be individually. Each output DC is programmed with a 8-bit depth, so the value can be adjusted with 256 steps within the range from 0% to 100% of ($I_{OUT\ MAX} \times CC/127$).

Table 8-3. Individual 8-bit Dot Current (DC) Setting

8-BIT DC I	REGISTER	RATIO OF OUTPUT CURRENT TO I _{OUT_MAX} × CC/127			
Binary	Decimal	%			
0000 0000	0	0			
0000 0001	1	0.39			
0000 0010	2	0.78			
1000 0000 (Default)	128 (Default)	50.2 (Default)			

Table 8-3. Individual 8-bit Dot Current (DC) Setting (continued)

8-BIT DC	REGISTER	RATIO OF OUTPUT CURRENT TO I _{OUT_MAX} × CC/127
Binary	Decimal	%
1111 1101	253	99.2
1111 1110	254	99.6
1111 1111	255	100

In summary, the current gain of each current sink can be calculated as below:

$$I_{OUT}$$
 (mA) = $I_{OUT\ MAX} \times (CC/127) \times (DC/255)$ (3)

For time-multiplexing scan scheme, if the scan number is N, each LED dot's average current I_{AVG} is shown as below:

$$I_{AVG}$$
 (mA) = $I_{OUT}/N = I_{OUT} MAX \times (CC/127) \times (DC/255)/N$ (4)

8.3.3 PWM Dimming

There are several methods to control the PWM duty cycle of each LED dot.

Individual 8-bit / 16-bit PWM for Each LED Dot

Every LED has an individual 8-bit or 16-bit PWM register that is used to change the LED brightness by PWM duty. The LP5866 uses an enhanced spectrum PWM (ES-PWM) algoithm to achieve 16-bit depth with high refresh rate and this can avoid flicker under high speed camera. Comparing with conventional 8-bit PWM, 16-bit PWM can help to achieve ultimate high dimming resolution in LED animation applications.

3 Programmable Groups of 8-bit PWM Dimming

The group PWM Control is used to select LEDs into 1 to 3 groups where each group has a separate register for duty cycle control. Every LED has 2-bit selection in LED_DOT_GROUP Registers (x = 0, 1, ..., 54.) to select whether it belongs to one of the three groups or not:

- 00: not a member of any group
- 01: member of group 1
- 10: member of group 2
- 11: member of group 3

8-bit PWM for Global Dimming

The Global PWM Control function affects all LEDs simultaneously.

The final PWM duty cycle can be calculated as below:

$$PWM_{\text{Final}(8-\text{bit})} = PWM_{\text{Individual}(8-\text{bit})} \times PWM_{\text{Group}(8-\text{bit})} \times PWM_{\text{Global}(8-\text{bit})}$$
(5)

$$PWM_Final(16-bit) = PWM_Individual(16-bit) \times PWM_Group(8-bit) \times PWM_Global(8-bit)$$
 (6)

The LP5866 supports 125-kHz or 62.5-kHz PWM output frequency. The PWM frequency is selected by configuring the 'PWM_Fre' in Dev_initial register. An internal 31.2-MHz oscillator is used for generating PWM outputs. The oscillator's high accuracy design ($f_{OSC_ERR} \le \pm 2\%$) enables a better synchronization if multiple LP5866 devices are connected together.

A PWM phase-shifting scheme is implemented in each current sink to avoid the current overshot when turning on simultaneously. As the LED drivers are not activated simultaneously, the peak load current from the pre-stage power supply is significantly decreased. This scheme also reduces input-current ripple and ceramic-capacitor audible ringing. LED drivers are grouped into three different phases. By configuring the 'PWM_Phase_Shift' in Dev_config1 register, which is default off, the LP5866 supports t_{phase_shift} = 125-ns shifting time shown in Figure 8-4.

- Phase 1: CS0, CS3, CS6, CS9, CS12, CS15.
- Phase 2: CS1, CS4, CS7, CS10, CS13, CS16.
- Phase 3: CS2, CS5, CS8, CS11, CS14, CS17.

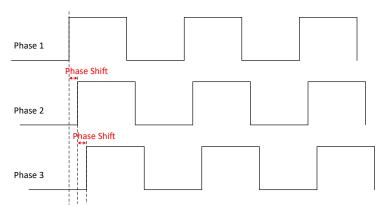


Figure 8-4. Phase Shift

To avoid high current sinks output ripple during line switching, current sinks can be configured to turn on with 1 clock delay (62.5 ns or 31.25 ns according to the PWM frequency) after lines turn on, as shown in Figure 8-3. This function can be configured by 'CS ON Shift' in Dev config1 register.

The LP5866 allows users to configure the dimming scale either exponentially (Gamma Correction) or linearly through the 'PWM_Scale_Mode' in Dev_config1 register. If a human-eye-friendly dimming curve is desired, using the internal fixed exponential scale is an easy approach. If a special dimming curve is desired, TI recommends using the linear scale with software correction. The LP5866 supports both linear and exponential dimming curves under 8-bit and 16-bit PWM depth. Figure 8-5 is an example of 8-bit PWM depth.

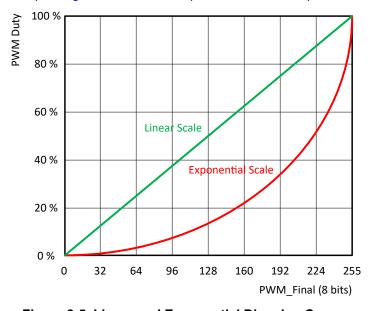


Figure 8-5. Linear and Exponential Dimming Curves

In summary, the PWM control method is illustrated as Figure 8-6:

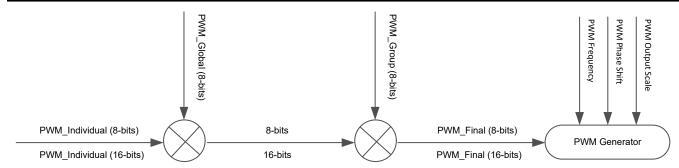


Figure 8-6. PWM Control Scheme

8.3.4 ON and OFF Control

The LP5866 device supports the individual ON and OFF control of each LED. For indication purpose, users can turn on and off the LED directly by writing 1-bit ON and OFF data to the corresponding Dot_onoffx (x = 0, 1, ..., 32) register.

8.3.5 Data Refresh Mode

The LP5866 supports three data refresh modes: Mode 1, Mode 2, and Mode 3, by configuring 'Data_Ref_Mode' in Dev initial register.

Mode 1: 8-bit PWM data without VSYNC command. Data is sent out for display instantly after received. With Mode 1, users can refresh the corresponding dots' data only instead of updating the whole SRAM. It is called 'on demand data refresh', which can save the total data volume effectively. As shown in Figure 8-7, the red LED dots can be refreshed after sending the corresponding data while the others kept the same with last frame.

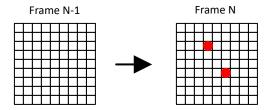


Figure 8-7. On Demand Data Refresh - Mode 1

Mode 2: 8-bit PWM data with VSYNC command. Data is held and sent out simultaneously by frame after receiving the VSYNC command.

Mode 3: 16-bit PWM data with VSYNC command. Data is held and sent out simultaneously by frame after receiving the VSYNC command.

Frame control is implemented in Mode 2 and Mode 3. Instead of refreshing the output instantly after data is received (Mode 1), the device holds the data and refreshes the whole frame data by a fixed frame rate, f_{VSYNC} . Usually, 24 Hz, 50 Hz, 60 Hz, 120Hz or even higher frame rate is selected to achieve vivid animation effects. Whole SRAM Data Refresh is shown in Figure 8-8, a new frame is updated after receiving the VSYNC command.

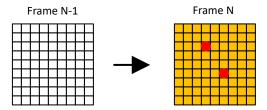


Figure 8-8. Whole SRAM Data Refresh

Comparing with Mode 1, Mode 2 and Mode 3 provide a better synchronization when multiple LP5866 devices used together. A high-level pulse width longer than t_{SYNC_H} is required at the beginning of each VSYNC frame. Figure 8-9 shows the VSYNC connections and Figure 8-10 shows the timing requirements.

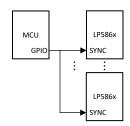


Figure 8-9. Multiple Devices Sync

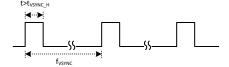


Figure 8-10. VSYNC Timing

Table 8-4 is the summary of the three data refresh modes.

Table 8-4. Data Refresh Mode

MODE TYPE	PWM RESOLUTION	PWM OUTPUT	EXTERNAL VSYNC
Mode 1	8 Bits	Data update instantly	No
Mode 2	8 Bits	Data undata hy frama	Yes
Mode 3	16 Bits	Data update by frame	res

8.3.6 Full Addressable SRAM

SRAM is implemented inside the LP5866 device to support data writing and reading at the same time.

Although data refresh mechanisms are not the same for Mode 1 and Mode 2, and Mode 3, the data writing and reading follow the same method. Uses can update partial of the SRAM data only or the whole SRAM page simultaneously. The LP5866 supports auto-increment function to minimize data traffic and increase data transfer efficiency.

Please note that 16-bit PWM (Mode 3) and 8-bit PWM (Mode 1 and Mode 2) are assigned with different SRAM addresses.

8.3.7 Protections and Diagnostics

LED Open Detection

The LP5866 includes LED open detection (LOD) for the fault caused by any opened LED dot. The threshold for LED open is 0.25-V typical. LED open detection is only performed when PWM \geq 25 (Mode 1 and Mode 2) or PWM \geq 6400 (Mode 3) and voltage on CSn is detected lower than open threshold for continuously 4 sub-periods.

Figure 8-11 shows the detection circuit of LOD function. When open fault is detected, 'Global_LOD' bit in Fault_state register is set to 1 and detailed fault state for each LED is also monitored in register Dot_lodx (x = 0, 1, ..., 32). All open fault indicator bits can be cleared by setting LOD_clear = 0Fh after the open condition is removed.

LOD removal function can be enabled by setting 'LOD_removal' bit in Dev_config2 register to 1. This function turns off the current sink of the open channel when scanning to the line where the opened LED is included.

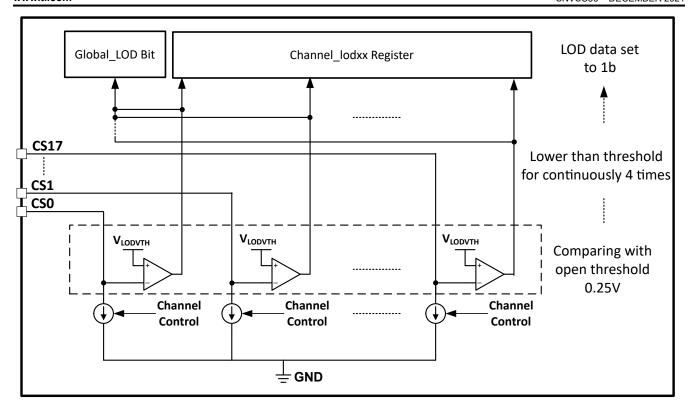


Figure 8-11. LOD Circuits

LED Short Detection

The LP5866 includes LED short detection (LSD) for the fault caused by any shorted LED. Threshold for channel short is (VLED - 1) V typical. LED short detection only performed when PWM \geq 25 (Mode 1 and Mode 2) or PWM \geq 6400 (Mode 3) and voltage on CSn is detected higher than short threshold for continuously 4 sub-periods. As there is parasitic capacitance for the current sink, to make sure the LSD result is correct, TI recommends to set the LED current higher than 0.5 mA.

Figure 8-12 shows the detection circuit of LSD function. When short fault is detected, 'Global_LSD bit' in Fault_state register is set to 1 and detailed fault state for every channel can also be monitored in register Dot_lsdx (x = 0, 1, ..., 32). All short fault indicator bits can be cleared by setting LSD_clear = 0Fh after the short condition is removed.

LSD removal function can be enabled by setting 'LSD_removal' bit in Dev_config2 register to 1. This function turns off the upside deghosting function of the scan line where short LED is included.

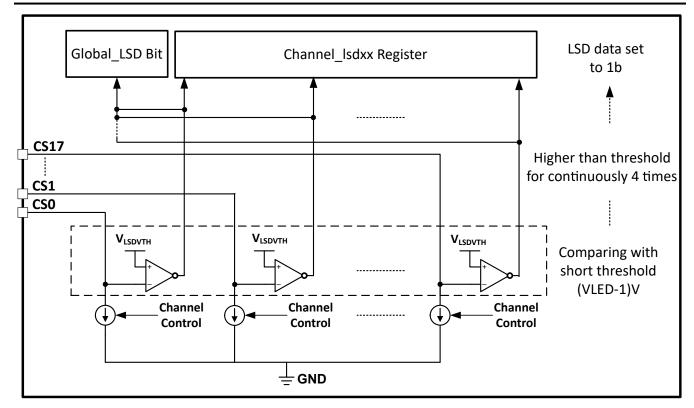


Figure 8-12. LSD Circuit

Thermal Shutdown

The LP5866 device implements thermal shutdown mechanism to protect the device from damage due to overheating. When the junction temperature rises to 160°C (typical) and above, the device switches into shutdown mode. The LP5866 exits thermal shutdown when the junction temperature of the device drops to 145°C (typical) and below.

UVLO (Undervoltage Lockout)

The LP5866 has an internal comparator that monitors the voltage at VCC. When VCC is below V_{UVF} , reset is active and the LP5866 enters INITIALIZATION state.

8.4 Device Functional Modes

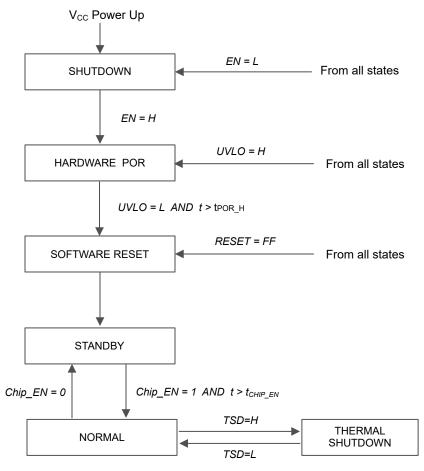


Figure 8-13. Device Functional Modes

- Shutdown: The device enters into shutdown mode from all states on VCC power up or EN pin is low.
- Hardware POR: The device enters into hardware POR when Enable pin is high or VCC fall under V_{UVF} causing UVLO = H from all states.
- Software reset: The device enters into software reset mode when VCC rise higher than V_{UVR} with the time t > t_{POR_H}. In this mode, all the registers are reset. Entry can also be from any state when the RESET (register) = FFh or UVLO is low.
- Standby: The device enters the standby mode when Chip_EN (register) = 0. In this mode, the device enters into low power mode, but the I²C/SPI are still available for Chip_EN only and the registers' data are retained.
- Normal: The device enters the normal mode when 'Chip_EN' = 1 with the time $t > t_{CHIP_EN}$.
- Thermal shutdown: The device automatically enters the thermal shutdown mode when the junction temperature exceeds 160°C (typical). If the junction temperature decreases below 145°C (typical), the device returns to the normal mode.

8.5 Programming

Interface Selection

The LP5866 supports two communication interfaces: I^2C and SPI. If IFS is high, it enters into SPI mode. If IFS is low, it enters into I^2C mode.

Table 8-5. Interface Selection

INTERFACE TYPE	ENTRY CONDITION
I ² C	IFS = Low
SPI	IFS = High

I²C Interface

The LP5866 is compatible with I²C standard specification. the device supports both fast mode (400-KHz maximum) and fast plus mode (1-MHz maximum).

I²C Data Transactions

The data on SDA line must be stable during the HIGH period of the clock signal (SCL). In other words, state of the data line can only be changed when clock signal is LOW. START and STOP conditions classify the beginning and the end of the data transfer session. A START condition is defined as the SDA signal transitioning from HIGH to LOW while SCL line is HIGH. A STOP condition is defined as the SDA transitioning from LOW to HIGH while SCL is HIGH. The bus leader always generates START and STOP conditions. The bus is considered to be busy after a START condition and free after a STOP condition. During data transmission, the bus leader can generate repeated START conditions. First START and repeated START conditions are functionally equivalent.

Each byte of data has to be followed by an acknowledge bit. The acknowledge related clock pulse is generated by the leader. The leader releases the SDA line (HIGH) during the acknowledge clock pulse. The device pulls down the SDA line during the 9th clock pulse, signifying an acknowledge. The device generates an acknowledge after each byte has been received.

There is one exception to the acknowledge after every byte rule. When the leader is the receiver, it must indicate to the transmitter an end of data by not acknowledging (negative acknowledge) the last byte clocked out of the follower. This negative acknowledge still includes the acknowledge clock pulse (generated by the leader), but the SDA line is not pulled down.

I²C Data Format

The address and data bits are transmitted MSB first with 8-bits length format in each cycle. Each transmission is started with Address Byte 1, which are divided into 5-bits of the chip address, 2 higher bits of the register address, and 1 read and write bit. The other 8 lower bits of register address are put in Address Byte 2. The device supports both independent mode and broadcast mode. The auto-increment feature allows writing and reading several consecutive registers within one transmission. If not consecutive, a new transmission must be started.

Table 8-6. I²C Data Format

Address Byte 1			Chip Address	Register	R/W				
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Independent	1	0	0	ADDR1	ADDR0	9 th bit	8 th bit	R: 1 W: 0	
Broadcast	1	0	1	0	1	9 DIL		K. I W. U	
	Register Address								
Address Byte 2	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
	7 th bit	6 th bit	5 th bit	4 th bit	3 th bit	2 th bit	1 th bit	0 th bit	

Product Folder Links: LP5866

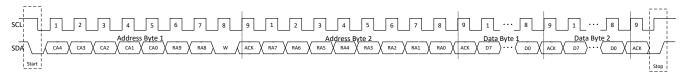


Figure 8-14. I²C Write Timming

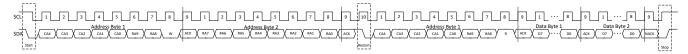


Figure 8-15. I²C Read Timing

Multiple Devices Connection

The LP5866 enters into I 2 C mode if IFS is connected to GND. The ADDR0/1 pin is used to select the unique I 2 C follower address for each device. The SCL and SDA lines must each have a pullup resistor (4.7 K Ω for 400 KHz, 2 K Ω for 1 MHz) placed somewhere on the line and remain HIGH even when the bus is idle. VIO_EN can either be connected with VIO power supply or GPIO. TI suggests to put one 1-nF cap as closer to VIO_EN pin as possible. Up to four LP5866 follower devices can share the same I 2 C bus by the different ADDR configurations.

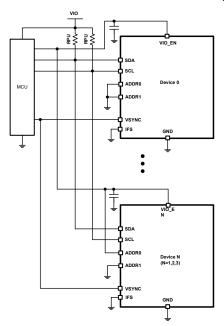


Figure 8-16. I²C Multiple Devices Connection

SPI Interface

The LP5866 is compatible with SPI serial-bus specification, and it operates as a follower. The maximum frequency supported by LP5866 is 12 MHz.

SPI Data Transactions

MISO output is normally in a high impedance state. When the follower-select pin SS for the device is active (low) the MISO output is pulled low for read only. During write cycle MISO stays in high-impedance state. The follower-select signal SS must be low during the cycle transmission. SS resets the interface when high. Data is clocked in on the rising edge of the SCLK clock signal, while data is clocked out on the falling edge of SCLK.

SPI Data Format

The address and data bits are transmitted MSB first with 8-bits length format in each cycle. Each transmission is started with Address Byte 1, which contains 8 higher bits of the register address. The Address Byte 2 is started

with 2 lower bits of the register address and 1 read and write bit. The auto-increment feature allows writing and reading several consecutive registers within one transmission. If not consecutive, a new transmission must be started.

Table 8-7. SPI Data Format

Address Byte 1				Register	Address			
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	9 th bit	8 th bit	7 th bit	6 th bit	5 th bit	4 th bit	3 th bit	2 th bit
Address Byte 2	Register Address							,
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	1 th bit	0 th bit	R: 0 W: 1	Don't Care				

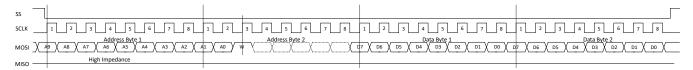


Figure 8-17. SPI Write Timing

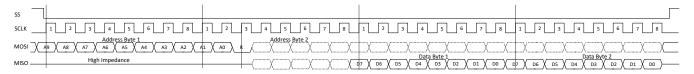


Figure 8-18. SPI Read Timing

Multiple Devices Connection

The device enters into SPI mode if IFS is pulled high to VIO through a pullup resistor (4.7 K Ω recommended). VIO_EN can either be connected with VIO power supply or GPIO. TI suggests to put one 1-nF cap as closer to VIO_EN pin as possible. In SPI mode host can address as many devices as there are follower select pins on host.

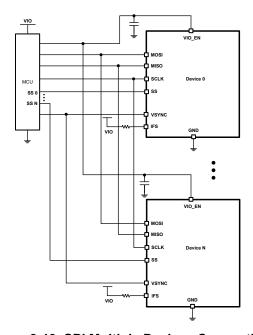


Figure 8-19. SPI Multiple Devices Connection

Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

8.6 Register Maps

This section provides a summary of the register maps. For detailed register functions and descriptions, please refer to *LP5866 11x18 LED Matrix Driver Register Maps*.

Table 8-8. Register Section/Block Access Type Codes

Table 0-0. Neglister Section/Block Access Type Codes							
Code	Description						
R	Read						
R	Read						
С	to Clear						
R	Read						
-0	Returns 0s						
W	Write						
W	W						
0C	0 to clear						
P	Requires privileged access						
	Value after reset or the default value						
	R R C R -0						

Register Acronym	Address	Туре	D7	D6	D5	D4	D3	D2	D1	D0	Default	
Chip_en	000h	R/W	Reserved				1			Chip_EN	00h	
Dev_initial	001h	R/W	Reserved	eserved Max_Line_Num Data_Ref_Mode PWM_Fre						PWM_Fre	5Eh	
Dev_config1	002h	R/W	Reserved	Reserved	Reserved	Reserved	SW_BLK	PWM_Sc ale_Mode	PWM_Ph ase_Shift	CS_ON_ Shift	00h	
Dev_config2	003h	R/W	Comp_Gro	oup3	Comp_Gro	oup2	Comp_Gro	pup1	LOD_rem oval	LSD_rem oval	00h	
Dev_config3	004h	R/W	Down_Deg	own_Deghost				Maximum_Current Up_Degh ost_enab e				
Global_bri	005h	R/W	PWM_Glob	oal							FFh	
Group0_bri	006h	R/W	PWM_Gro	up1							FFh	
Group1_bri	007h	R/W	PWM_Gro	up2							FFh	
Group2_bri	008h	R/W	PWM_Gro	WM_Group3								
R_current_set	009h	R/W	Reserved	CC_Group	1						40h	
G_current_set	00Ah	R/W	Reserved	CC_Group	2						40h	
B_current_set	00Bh	R/W	Reserved	CC_Group	3						40h	
Dot_grp_sel0	00Ch	R/W	Dot L0-CS	3 group	Dot L0-CS	2 group	Dot L0-CS	1 group	Dot L0-CS	0 group	00h	
Dot_grp_sel1	00Dh	R/W	Dot L0-CS	7 group	Dot L0-CS	6 group	Dot L0-CS	5 group	Dot L0-CS	00h		
Dot_grp_sel2	00Eh	R/W	Dot L0-CS	11 group	Dot L0-CS	10 group	Dot L0-CS	9 group	Dot L0-CS	8 group	00h	
Dot_grp_sel3	00Fh	R/W	Dot L0-CS	15 group	Dot L0-CS	14 group	Dot L0-CS	13 group	Dot L0-CS	12 group	00h	
Dot_grp_sel4	010h	R/W	Reserved				Dot L0-CS	17 group	Dot L0-CS	16 group	00h	
Dot_grp_sel5	011h	R/W	Dot L1-CS	3 group	Dot L1-CS	2 group	Dot L1-CS	1 group	Dot L1-CS	0 group	00h	
Dot_grp_sel6	012h	R/W	Dot L1-CS	7 group	Dot L1-CS	6 group	Dot L1-CS	5 group	Dot L1-CS	4 group	00h	
Dot_grp_sel7	013h	R/W	Dot L1-CS	11 group	Dot L1-CS	10 group	Dot L1-CS	9 group	Dot L1-CS	8 group	00h	
Dot_grp_sel8	014h	R/W	Dot L1-CS	15 group	Dot L1-CS	14 group	Dot L1-CS13 group Dot L1-CS12 group			12 group	00h	
Dot_grp_sel9	015h	R/W	Reserved	Reserved			Dot L1-CS17 group Dot L1-CS16 group			16 group	00h	
Dot_grp_sel10	016h	R/W	Dot L2-CS	3 group	Dot L2-CS	2 group	Dot L2-CS	1 group	Dot L2-CS	0 group	00h	
Dot_grp_sel11	017h	R/W	Dot L2-CS	7 group	Dot L2-CS	6 group	Dot L2-CS	5 group	Dot L2-CS	4 group	00h	

Dot_grp_sel12	018h	R/W	Dot L2-CS	11 group	Dot L2-CS	10 group	Dot L2-CS	9 group	Dot L2-CS	8 group	00h
Dot_grp_sel13	019h	R/W	Dot L2-CS	15 group	Dot L2-CS	14 group	Dot L2-CS13 group		Dot L2-CS12 group		00h
Dot_grp_sel14	01Ah	R/W	Reserved	Reserved Dot				17 group	Dot L2-CS	16 group	00h
Dot_grp_sel15	01Bh	R/W	Dot L3-CS	3 group	Dot L3-CS	2 group	Dot L3-CS1 group		Dot L3-CS	0 group	00h
Dot_grp_sel16	01Ch	R/W	Dot L3-CS	7 group	Dot L3-CS6 group Dot L3-CS5		L3-CS5 group Dot L3-CS4		4 group	00h	
Dot_grp_sel17	01Dh	R/W	Dot L3-CS	11 group	Dot L3-CS	10 group	Dot L3-CS	Oot L3-CS9 group		Dot L3-CS8 group	
Dot_grp_sel18	01Eh	R/W	Dot L3-CS	15 group	Dot L3-CS	14 group	Dot L3-CS	13 group	Dot L3-CS12 group		00h
Dot_grp_sel19	01Fh	R/W	Reserved				Dot L3-CS	17 group	Dot L3-CS16 group		00h
Dot_grp_sel20	020h	R/W	Dot L4-CS	3 group	Dot L4-CS	2 group	Dot L4-CS	1 group	Dot L4-CS	0 group	00h
Dot_grp_sel21	021h	R/W	Dot L4-CS	7 group	Dot L4-CS	6 group	Dot L4-CS	5 group	Dot L4-CS	4 group	00h
Dot_grp_sel22	022h	R/W	Dot L4-CS	11 group	Dot L4-CS	10 group	Dot L4-CS	9 group	Dot L4-CS	8 group	00h
Dot_grp_sel23	023h	R/W	Dot L4-CS	15 group	Dot L4-CS	14 group	Dot L4-CS	13 group	Dot L4-CS	12 group	00h
Dot_grp_sel24	024h	R/W	Reserved				Dot L4-CS	17 group	Dot L4-CS	16 group	00h
Dot_grp_sel25	025h	R/W	Dot L5-CS	3 group	Dot L5-CS	2 group	Dot L5-CS	1 group	Dot L5-CS	0 group	00h
Dot_grp_sel26	026h	R/W	Dot L5-CS	7 group	Dot L5-CS	6 group	Dot L5-CS	5 group	Dot L5-CS	4 group	00h
Dot_grp_sel27	027h	R/W	Dot L5-CS	11 group	Dot L5-CS	10 group	Dot L5-CS	9 group	Dot L5-CS	8 group	00h
Dot_grp_sel28	028h	R/W	Dot L5-CS	15 group	Dot L5-CS	14 group	Dot L5-CS	13 group	Dot L5-CS	12 group	00h
Dot_grp_sel29	029h	R/W	Reserved				Dot L5-CS	17 group	Dot L5-CS	16 group	00h
Dot_onoff0	043h	R/W	Dot L0- CS7 onoff	Dot L0- CS6 onoff	Dot L0- CS5 onoff	Dot L0- CS4 onoff	Dot L0- CS3 onoff	Dot L0- CS2 onoff	Dot L0- CS1 onoff	Dot L0- CS0 onoff	FFh
Dot_onoff1	044h	R/W	Dot L0- CS15 onoff	Dot L0- CS14 onoff	Dot L0- CS13 onoff	Dot L0- CS12 onoff	Dot L0- CS11 onoff	Dot L0- CS10 onoff	Dot L0- CS9 onoff	Dot L0- CS8 onoff	FFh
Dot_onoff2	045h	R/W	Reserved			,			Dot L0- CS17 onoff	Dot L0- CS16 onoff	03h
Dot_onoff3	046h	R/W	Dot L1- CS7 onoff	Dot L1- CS6 onoff	Dot L1- CS5 onoff	Dot L1- CS4 onoff	Dot L1- CS3 onoff	Dot L1- CS2 onoff	Dot L1- CS1 onoff	Dot L1- CS0 onoff	FFh
Dot_onoff4	047h	R/W	Dot L1- CS15 onoff	Dot L1- CS14 onoff	Dot L1- CS13 onoff	Dot L1- CS12 onoff	Dot L1- CS11 onoff	Dot L1- CS10 onoff	Dot L1- CS9 onoff	Dot L1- CS8 onoff	FFh
Dot_onoff5	048h	R/W	Reserved						Dot L1- CS17 onoff	Dot L1- CS16 onoff	03h
Dot_onoff6	049h	R/W	Dot L2- CS7 onoff	Dot L2- CS6 onoff	Dot L2- CS5 onoff	Dot L2- CS4 onoff	Dot L2- CS3 onoff	Dot L2- CS2 onoff	Dot L2- CS1 onoff	Dot L2- CS0 onoff	FFh
Dot_onoff7	04Ah	R/W	Dot L2- CS15 onoff	Dot L2- CS14 onoff	Dot L2- CS13 onoff	Dot L2- CS12 onoff	Dot L2- CS11 onoff	Dot L2- CS10 onoff	Dot L2- CS9 onoff	Dot L2- CS8 onoff	FFh
Dot_onoff8	04Bh	R/W	Reserved						Dot L2- CS17 onoff	Dot L2- CS16 onoff	03h
Dot_onoff9	04Ch	R/W	Dot L3- CS7 onoff	Dot L3- CS6 onoff	Dot L3- CS5 onoff	Dot L3- CS4 onoff	Dot L3- CS3 onoff	Dot L3- CS2 onoff	Dot L3- CS1 onoff	Dot L3- CS0 onoff	FFh
Dot_onoff10	04Dh	R/W	Dot L3- CS15 onoff	Dot L3- CS14 onoff	Dot L3- CS13 onoff	Dot L3- CS12 onoff	Dot L3- CS11 onoff	Dot L3- CS10 onoff	Dot L3- CS9 onoff	Dot L3- CS8 onoff	FFh
Dot_onoff11	04Eh	R/W	Reserved	•					Dot L3- CS17 onoff	Dot L3- CS16 onoff	03h
Dot_onoff12	04Fh	R/W	Dot L4- CS7 onoff	Dot L4- CS6 onoff	Dot L4- CS5 onoff	Dot L4- CS4 onoff	Dot L4- CS3 onoff	Dot L4- CS2 onoff	Dot L4- CS1 onoff	Dot L4- CS0 onoff	FFh

www.ti.com SNVSC36 - DECEMBER 2021

Dot_onoff13	050h	R/W	Dot L4- CS15	Dot L4- CS14	Dot L4- CS13	Dot L4- CS12	Dot L4-	Dot L4- CS10	Dot L4- CS9 onoff	Dot L4-	FFh
Dot_onoff14	051h	R/W	onoff Reserved	onoff	onoff	onoff	onoff	onoff	Dot L4-	Dot L4-	03h
DOL_OHOH 14	03111	10,00	Reserved						CS17 onoff	CS16 onoff	0311
Dot_onoff15	052h	R/W	Dot L5- CS7 onoff	Dot L5- CS6 onoff	Dot L5- CS5 onoff	Dot L5- CS4 onoff	Dot L5- CS3 onoff	Dot L5- CS2 onoff	Dot L5- CS1 onoff	Dot L5- CS0 onoff	FFh
Dot_onoff16	053h	R/W	Dot L5- CS15 onoff	Dot L5- CS14 onoff	Dot L5- CS13 onoff	Dot L5- CS12 onoff	Dot L5- CS11 onoff	Dot L5- CS10 onoff	Dot L5- CS9 onoff	Dot L5- CS8 onoff	FFh
Dot_onoff17	054h	R/W	Reserved						Dot L5- CS17 onoff	Dot L5- CS16 onoff	03h
Fault_state	064h	R	Reserved						Global_L OD	Global_L SD	00h
Dot_lod0	065h	R	Dot L0- CS7 LOD	Dot L0- CS6 LOD	Dot L0- CS5 LOD	Dot L0- CS4 LOD	Dot L0- CS3 LOD	Dot L0- CS2 LOD	Dot L0- CS1 LOD	Dot L0- CS0 LOD	00h
Dot_lod1	066h	R	Dot L0- CS15 LOD	Dot L0- CS14 LOD	Dot L0- CS13 LOD	Dot L0- CS12 LOD	Dot L0- CS11 LOD	Dot L0- CS10 LOD	Dot L0- CS9 LOD	Dot L0- CS8 LOD	00h
Dot_lod2	067h	R	Reserved						Dot L0- CS17 LOD	Dot L0- CS16 LOD	00h
Dot_lod3	068h	R	Dot L1- CS7 LOD	Dot L1- CS6 LOD	Dot L1- CS5 LOD	Dot L1- CS4 LOD	Dot L1- CS3 LOD	Dot L1- CS2 LOD	Dot L1- CS1 LOD	Dot L1- CS0 LOD	00h
Dot_lod4	069h	R	Dot L1- CS15 LOD	Dot L1- CS14 LOD	Dot L1- CS13 LOD	Dot L1- CS12 LOD	Dot L1- CS11 LOD	Dot L1- CS10 LOD	Dot L1- CS9 LOD	Dot L1- CS8 LOD	00h
Dot_lod5	06Ah	R	Reserved						Dot L1- CS17 LOD	Dot L1- CS16 LOD	00h
Dot_lod6	06Bh	R	Dot L2- CS7 LOD	Dot L2- CS6 LOD	Dot L2- CS5 LOD	Dot L2- CS4 LOD	Dot L2- CS3 LOD	Dot L2- CS2 LOD	Dot L2- CS1 LOD	Dot L2- CS0 LOD	00h
Dot_lod7	06Ch	R	Dot L2- CS15 LOD	Dot L2- CS14 LOD	Dot L2- CS13 LOD	Dot L2- CS12 LOD	Dot L2- CS11 LOD	Dot L2- CS10 LOD	Dot L2- CS9 LOD	Dot L2- CS8 LOD	00h
Dot_lod8	06Dh	R	Reserved						Dot L2- CS17 LOD	Dot L2- CS16 LOD	00h
Dot_lod9	06Eh	R	Dot L3- CS7 LOD	Dot L3- CS6 LOD	Dot L3- CS5 LOD	Dot L3- CS4 LOD	Dot L3- CS3 LOD	Dot L3- CS2 LOD	Dot L3- CS1 LOD	Dot L3- CS0 LOD	00h
Dot_lod10	06Fh	R	Dot L3- CS15 LOD	Dot L3- CS14 LOD	Dot L3- CS13 LOD	Dot L3- CS12 LOD	Dot L3- CS11 LOD	Dot L3- CS10 LOD	Dot L3- CS9 LOD	Dot L3- CS8 LOD	00h
Dot_lod11	070h	R	Reserved						Dot L3- CS17 LOD	Dot L3- CS16 LOD	00h
Dot_lod12	071h	R	Dot L4- CS7 LOD	Dot L4- CS6 LOD	Dot L4- CS5 LOD	Dot L4- CS4 LOD	Dot L4- CS3 LOD	Dot L4- CS2 LOD	Dot L4- CS1 LOD	Dot L4- CS0 LOD	00h
Dot_lod13	072h	R	Dot L4- CS15 LOD	Dot L4- CS14 LOD	Dot L4- CS13 LOD	Dot L4- CS12 LOD	Dot L4- CS11 LOD	Dot L4- CS10 LOD	Dot L4- CS9 LOD	Dot L4- CS8 LOD	00h
Dot_lod14	073h	R	Reserved						Dot L4- CS17 LOD	Dot L4- CS16 LOD	00h
Dot_lod15	074h	R	Dot L5- CS7 LOD	Dot L5- CS6 LOD	Dot L5- CS5 LOD	Dot L5- CS4 LOD	Dot L5- CS3 LOD	Dot L5- CS2 LOD	Dot L5- CS1 LOD	Dot L5- CS0 LOD	00h

Dot_lod16	075h	R	Dot L5- CS15 LOD	Dot L5- CS14 LOD	Dot L5- CS13 LOD	Dot L5- CS12 LOD	Dot L5- CS11 LOD	Dot L5- CS10 LOD	Dot L5- CS9 LOD	Dot L5- CS8 LOD	00h
Dot_lsd0	086h	R	Dot L0- CS7 LSD	Dot L0- CS6 LSD	Dot L0- CS5 LSD	Dot L0- CS4 LSD	Dot L0- CS3 LSD	Dot L0- CS2 LSD	Dot L0- CS1 LSD	Dot L0- CS0 LSD	00h
Dot_lsd1	087h	R	Dot L0- CS15 LSD	Dot L0- CS14 LSD	Dot L0- CS13 LSD	Dot L0- CS12 LSD	Dot L0- CS11 LSD	Dot L0- CS10 LSD	Dot L0- CS9 LSD	Dot L0- CS8 LSD	00h
Dot_lsd2	088h	R	Reserved						Dot L0- CS17 LSD	Dot L0- CS16 LSD	00h
Dot_lsd3	089h	R	Dot L1- CS7 LSD	Dot L1- CS6 LSD	Dot L1- CS5 LSD	Dot L1- CS4 LSD	Dot L1- CS3 LSD	Dot L1- CS2 LSD	Dot L1- CS1 LSD	Dot L1- CS0 LSD	00h
Dot_lsd4	08Ah	R	Dot L1- CS15 LSD	Dot L1- CS14 LSD	Dot L1- CS13 LSD	Dot L1- CS12 LSD	Dot L1- CS11 LSD	Dot L1- CS10 LSD	Dot L1- CS9 LSD	Dot L1- CS8 LSD	00h
Dot_lsd5	08Bh	R	Reserved						Dot L1- CS17 LSD	Dot L1- CS16 LSD	00h
Dot_lsd6	08Ch	R	Dot L2- CS7 LSD	Dot L2- CS6 LSD	Dot L2- CS5 LSD	Dot L2- CS4 LSD	Dot L2- CS3 LSD	Dot L2- CS2 LSD	Dot L2- CS1 LSD	Dot L2- CS0 LSD	00h
Dot_lsd7	08Dh	R	Dot L2- CS15 LSD	Dot L2- CS14 LSD	Dot L2- CS13 LSD	Dot L2- CS12 LSD	Dot L2- CS11 LSD	Dot L2- CS10 LSD	Dot L2- CS9 LSD	Dot L2- CS8 LSD	00h
Dot_lsd8	08Eh	R	Reserved						Dot L2- CS17 LSD	Dot L2- CS16 LSD	00h
Dot_lsd9	08Fh	R	Dot L3- CS7 LSD	Dot L3- CS6 LSD	Dot L3- CS5 LSD	Dot L3- CS4 LSD	Dot L3- CS3 LSD	Dot L3- CS2 LSD	Dot L3- CS1 LSD	Dot L3- CS0 LSD	00h
Dot_lsd10	090h	R	Dot L3- CS15 LSD	Dot L3- CS14 LSD	Dot L3- CS13 LSD	Dot L3- CS12 LSD	Dot L3- CS11 LSD	Dot L3- CS10 LSD	Dot L3- CS9 LSD	Dot L3- CS8 LSD	00h
Dot_Isd11	091h	R	Reserved						Dot L3- CS17 LSD	Dot L3- CS16 LSD	00h
Dot_lsd12	092h	R	Dot L4- CS7 LSD	Dot L4- CS6 LSD	Dot L4- CS5 LSD	Dot L4- CS4 LSD	Dot L4- CS3 LSD	Dot L4- CS2 LSD	Dot L4- CS1 LSD	Dot L4- CS0 LSD	00h
Dot_lsd13	093h	R	Dot L4- CS15 LSD	Dot L4- CS14 LSD	Dot L4- CS13 LSD	Dot L4- CS12 LSD	Dot L4- CS11 LSD	Dot L4- CS10 LSD	Dot L4- CS9 LSD	Dot L4- CS8 LSD	00h
Dot_lsd14	094h	R	Reserved						Dot L4- CS17 LSD	Dot L4- CS16 LSD	00h
Dot_lsd15	095h	R	Dot L5- CS7 LSD	Dot L5- CS6 LSD	Dot L5- CS5 LSD	Dot L5- CS4 LSD	Dot L5- CS3 LSD	Dot L5- CS2 LSD	Dot L5- CS1 LSD	Dot L5- CS0 LSD	00h
Dot_lsd16	096h	R	Dot L5- CS15 LSD	Dot L5- CS14 LSD	Dot L5- CS13 LSD	Dot L5- CS12 LSD	Dot L5- CS11 LSD	Dot L5- CS10 LSD	Dot L5- CS9 LSD	Dot L5- CS8 LSD	00h
Dot_lsd17	097h	R	Reserved						Dot L5- CS17 LSD	Dot L5- CS16 LSD	00h
LOD_clear	0A7h	W	Reserved				LOD_Clea	r			00h
LSD_clear	0A8h	W	Reserved				LSD_Clea	r			00h
Reset	0A9h	W	Reset								00h
DC0	100h	R/W	LED dot cu	ırrent settin	g for Dot L0	-CS0					80h
DC1	101h	R/W	LED dot cu	ırrent settin	g for Dot L0	-CS1					80h
DC2	102h	R/W	LED dot cu	ırrent settin	g for Dot L0	-CS2					80h

DC3 103h R/W LED dot current setting for Dot L0-CS3 80h DC4 104h R/W LED dot current setting for Dot L0-CS4 80h DC5 105h R/W LED dot current setting for Dot L0-CS5 80h DC₆ 106h R/W 80h LED dot current setting for Dot L0-CS6 DC7 107h R/W LED dot current setting for Dot L0-CS7 80h DC8 108h R/W LED dot current setting for Dot L0-CS8 80h DC9 109h R/W LED dot current setting for Dot L0-CS9 80h **DC10** 10Ah R/W LED dot current setting for Dot L0-CS10 80h **DC11** 10Bh R/W LED dot current setting for Dot L0-CS11 80h DC12 10Ch R/W LED dot current setting for Dot L0-CS12 80h **DC13** 10Dh R/W LED dot current setting for Dot L0-CS13 80h **DC14** 10Eh R/W LED dot current setting for Dot L0-CS14 80h **DC15** 10Fh R/W LED dot current setting for Dot L0-CS15 80h **DC16** 110h R/W LED dot current setting for Dot L0-CS16 80h **DC17** 111h R/W LED dot current setting for Dot L0-CS17 80h **DC18** R/W 112h LED dot current setting for Dot L1-CS0 80h **DC19** 113h R/W LED dot current setting for Dot L1-CS1 80h 114h 80h DC20 R/W LED dot current setting for Dot L1-CS2 DC21 115h R/W LED dot current setting for Dot L1-CS3 80h **DC22** 116h R/W LED dot current setting for Dot L1-CS4 80h **DC23** 117h R/W LED dot current setting for Dot L1-CS5 80h DC24 118h R/W 80h LED dot current setting for Dot L1-CS6 **DC25** 119h R/W LED dot current setting for Dot L1-CS7 80h **DC26** R/W 11Ah LED dot current setting for Dot L1-CS8 80h DC27 11Bh R/W LED dot current setting for Dot L1-CS9 80h **DC28** 11Ch R/W LED dot current setting for Dot L1-CS10 80h **DC29** 11Dh R/W LED dot current setting for Dot L1-CS11 80h **DC30** 11Eh R/W LED dot current setting for Dot L1-CS12 80h **DC31** 11Fh R/W LED dot current setting for Dot L1-CS13 80h **DC32** 120h R/W LED dot current setting for Dot L1-CS14 80h **DC33** 121h R/W LED dot current setting for Dot L1-CS15 80h DC34 122h R/W 80h LED dot current setting for Dot L1-CS16 **DC35** R/W 123h LED dot current setting for Dot L1-CS17 80h **DC36** 124h R/W LED dot current setting for Dot L2-CS0 80h **DC37** 125h R/W 80h LED dot current setting for Dot L2-CS1 **DC38** 126h R/W 80h LED dot current setting for Dot L2-CS2 **DC39** 127h R/W LED dot current setting for Dot L2-CS3 80h **DC40** 128h R/W LED dot current setting for Dot L2-CS4 80h DC41 129h R/W LED dot current setting for Dot L2-CS5 80h DC42 12Ah R/W 80h LED dot current setting for Dot L2-CS6 **DC43** 12Bh R/W LED dot current setting for Dot L2-CS7 80h **DC44** R/W 12Ch LED dot current setting for Dot L2-CS8 80h R/W **DC45** 12Dh 80h LED dot current setting for Dot L2-CS9 **DC46** 12Eh R/W LED dot current setting for Dot L2-CS10 80h DC47 12Fh R/W LED dot current setting for Dot L2-CS11 80h **DC48** 130h R/W 80h LED dot current setting for Dot L2-CS12 **DC49** 131h R/W LED dot current setting for Dot L2-CS13 80h

DC50	132h	R/W	LED dot current setting for Dot L2-CS14	80h
DC51	133h	R/W	LED dot current setting for Dot L2-CS15	80h
DC52	134h	R/W	LED dot current setting for Dot L2-CS16	80h
DC53	135h	R/W	LED dot current setting for Dot L2-CS17	80h
DC54	136h	R/W	LED dot current setting for Dot L3-CS0	80h
DC55	137h	R/W	LED dot current setting for Dot L3-CS1	80h
DC56	138h	R/W	LED dot current setting for Dot L3-CS2	80h
DC57	139h	R/W	LED dot current setting for Dot L3-CS3	80h
DC58	13Ah	R/W	LED dot current setting for Dot L3-CS4	80h
DC59	13Bh	R/W	LED dot current setting for Dot L3-CS5	80h
DC60	13Ch	R/W	LED dot current setting for Dot L3-CS6	80h
DC61	13Dh	R/W	LED dot current setting for Dot L3-CS7	80h
DC62	13Eh	R/W	LED dot current setting for Dot L3-CS8	80h
DC63	13Fh	R/W	LED dot current setting for Dot L3-CS9	80h
DC64	140h	R/W	LED dot current setting for Dot L3-CS10	80h
DC65	141h	R/W	LED dot current setting for Dot L3-CS11	80h
DC66	142h	R/W	LED dot current setting for Dot L3-CS12	80h
DC67	143h	R/W	LED dot current setting for Dot L3-CS13	80h
DC68	144h	R/W	LED dot current setting for Dot L3-CS14	80h
DC69 DC70	145h 146h	R/W R/W	LED dot current setting for Dot L3-CS15	80h 80h
DC70	140H	R/W	LED dot current setting for Dot L3-CS16 LED dot current setting for Dot L3-CS17	80h
DC71	14711 148h	R/W	LED dot current setting for Dot L4-CS0	80h
DC73	149h	R/W	LED dot current setting for Dot L4-CS1	80h
DC74	14Ah	R/W	LED dot current setting for Dot L4-CS2	80h
DC75	14Bh	R/W	LED dot current setting for Dot L4-CS3	80h
DC76	14Ch	R/W	LED dot current setting for Dot L4-CS4	80h
DC77	14Dh	R/W	LED dot current setting for Dot L4-CS5	80h
DC78	14Eh	R/W	LED dot current setting for Dot L4-CS6	80h
DC79	14Fh	R/W	LED dot current setting for Dot L4-CS7	80h
DC80	150h	R/W	LED dot current setting for Dot L4-CS8	80h
DC81	151h	R/W	LED dot current setting for Dot L4-CS9	80h
DC82	152h	R/W	LED dot current setting for Dot L4-CS10	80h
DC83	153h	R/W	LED dot current setting for Dot L4-CS11	80h
DC84	154h	R/W	LED dot current setting for Dot L4-CS12	80h
DC85	155h	R/W	LED dot current setting for Dot L4-CS13	80h
DC86	156h	R/W	LED dot current setting for Dot L4-CS14	80h
DC87	157h	R/W	LED dot current setting for Dot L4-CS15	80h
DC88	158h	R/W	LED dot current setting for Dot L4-CS16	80h
DC89	159h	R/W	LED dot current setting for Dot L4-CS17	80h
DC90	15Ah	R/W	LED dot current setting for Dot L5-CS0	80h
DC91	15Bh	R/W	LED dot current setting for Dot L5-CS1	80h
DC92	15Ch	R/W	LED dot current setting for Dot L5-CS2	80h
DC93 DC94	15Dh	R/W	LED dot current setting for Dot L5-CS3	80h
DC94 DC95	15Eh 15Fh	R/W R/W	LED dot current setting for Dot L5-CS4 LED dot current setting for Dot L5-CS5	80h 80h
DC95	160h	R/W	LED dot current setting for Dot L5-CS6	80h
DC90	10011	I V V V	LED dot carrett setting for Dot E3-0-30	0011

DC97 161h R/W LED dot current setting for Dot L5-CS7 80h **DC98** 162h R/W LED dot current setting for Dot L5-CS8 80h **DC99** 163h R/W LED dot current setting for Dot L5-CS9 80h DC100 164h R/W 80h LED dot current setting for Dot L5-CS10 **DC101** 165h R/W LED dot current setting for Dot L5-CS11 80h DC102 166h R/W LED dot current setting for Dot L5-CS12 80h DC103 167h R/W 80h LED dot current setting for Dot L5-CS13 DC104 168h R/W LED dot current setting for Dot L5-CS14 80h DC105 169h R/W LED dot current setting for Dot L5-CS15 80h DC106 16Ah R/W LED dot current setting for Dot L5-CS16 80h DC107 R/W 16Bh LED dot current setting for Dot L5-CS17 80h pwm_bri0 200h R/W 8-bits PWM for Dot L0-CS0 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS0 00h pwm_bri1 201h R/W 8-bits PWM for Dot L0-CS1 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS0 00h 202h R/W 8-bits PWM for Dot L0-CS2 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS1 00h pwm_bri2 203h R/W 8-bits PWM for Dot L0-CS3 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS1 00h pwm_bri3 pwm bri4 204h R/W 8-bits PWM for Dot L0-CS4 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS2 00h pwm bri5 205h R/W 8-bits PWM for Dot L0-CS5 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS2 00h R/W 00h 206h 8-bits PWM for Dot L0-CS6 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS3 pwm_bri6 pwm_bri7 207h R/W 8-bits PWM for Dot L0-CS7 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS3 00h 208h R/W 8-bits PWM for Dot L0-CS8 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS4 00h pwm bri8 209h R/W 8-bits PWM for Dot L0-CS9 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS4 00h pwm_bri9 20Ah R/W 00h pwm_bri10 8-bits PWM for Dot L0-CS10 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS5 pwm_bri11 20Bh R/W 8-bits PWM for Dot L0-CS11 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS5 00h pwm bri12 20Ch R/W 8-bits PWM for Dot L0-CS12 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS6 00h 20Dh R/W 8-bits PWM for Dot L0-CS13 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS6 00h pwm_bri13 pwm bri14 20Eh R/W 8-bits PWM for Dot L0-CS14 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS7 00h pwm_bri15 20Fh R/W 8-bits PWM for Dot L0-CS15 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS7 00h pwm_bri16 210h R/W 8-bits PWM for Dot L0-CS16 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS8 00h R/W 00h pwm_bri17 211h 8-bits PWM for Dot L0-CS17 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS8 pwm_bri18 212h R/W 8-bits PWM for Dot L1-CS0 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS9 00h R/W 8-bits PWM for Dot L1-CS1 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS9 pwm bri19 213h 00h R/W 214h 8-bits PWM for Dot L1-CS2 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS10 00h pwm_bri20 pwm_bri21 215h R/W 8-bits PWM for Dot L1-CS3 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS10 00h pwm bri22 216h R/W 8-bits PWM for Dot L1-CS4 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS11 00h 217h R/W 8-bits PWM for Dot L1-CS5 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS11 00h pwm_bri23 R/W 8-bits PWM for Dot L1-CS6 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS12 00h pwm_bri24 218h pwm bri25 219h R/W 8-bits PWM for Dot L1-CS7 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS12 00h pwm_bri26 21Ah R/W 8-bits PWM for Dot L1-CS8 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS13 00h R/W 8-bits PWM for Dot L1-CS9 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS13 pwm bri27 21Bh 00h 21Ch R/W 00h pwm_bri28 8-bits PWM for Dot L1-CS10 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS14 pwm bri29 21Dh R/W 8-bits PWM for Dot L1-CS11 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS14 00h pwm_bri30 21Eh R/W 8-bits PWM for Dot L1-CS12 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS15 00h 21Fh R/W 8-bits PWM for Dot L1-CS13 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS15 00h pwm_bri31 pwm bri32 220h R/W 8-bits PWM for Dot L1-CS14 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS16 00h R/W 8-bits PWM for Dot L1-CS15 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS16 00h pwm bri33 221h 00h pwm_bri34 222h R/W 8-bits PWM for Dot L1-CS16 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS17 pwm_bri35 223h R/W 8-bits PWM for Dot L1-CS17 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS17 00h

pwm_bri36	224h	R/W	8-bits PWM for Dot L2-CS0 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS0	00h
pwm_bri37	225h	R/W	8-bits PWM for Dot L2-CS1 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS0	00h
pwm_bri38	226h	R/W	8-bits PWM for Dot L2-CS2 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS1	00h
pwm_bri39	227h	R/W	8-bits PWM for Dot L2-CS3 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS1	00h
pwm_bri40	228h	R/W	8-bits PWM for Dot L2-CS4 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS2	00h
pwm_bri41	229h	R/W	8-bits PWM for Dot L2-CS5 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS2	00h
pwm_bri42	22Ah	R/W	8-bits PWM for Dot L2-CS6 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS3	00h
pwm_bri43	22Bh	R/W	8-bits PWM for Dot L2-CS7 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS3	00h
pwm_bri44	22Ch	R/W	8-bits PWM for Dot L2-CS8 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS4	00h
pwm_bri45	22Dh	R/W	8-bits PWM for Dot L2-CS9 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS4	00h
pwm_bri46	22Eh	R/W	8-bits PWM for Dot L2-CS10 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS5	00h
pwm_bri47	22Fh	R/W	8-bits PWM for Dot L2-CS11 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS5	00h
pwm_bri48	230h	R/W	8-bits PWM for Dot L2-CS12 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS6	00h
pwm_bri49	231h	R/W	8-bits PWM for Dot L2-CS13 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS6	00h
pwm_bri50	232h	R/W	8-bits PWM for Dot L2-CS14 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS7	00h
pwm_bri51	233h	R/W	8-bits PWM for Dot L2-CS15 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS7	00h
pwm_bri52	234h	R/W	8-bits PWM for Dot L2-CS16 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS8	00h
pwm_bri53	235h	R/W	8-bits PWM for Dot L2-CS17 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS8	00h
pwm_bri54	236h	R/W	8-bits PWM for Dot L3-CS0 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS9	00h
pwm_bri55	237h	R/W	8-bits PWM for Dot L3-CS1 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS9	00h
pwm_bri56	238h	R/W	8-bits PWM for Dot L3-CS2 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS10	00h
pwm_bri57	239h	R/W	8-bits PWM for Dot L3-CS3 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS10	00h
pwm_bri58	23Ah	R/W	8-bits PWM for Dot L3-CS4 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS11	00h
pwm_bri59	23Bh	R/W	8-bits PWM for Dot L3-CS5 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS11	00h
pwm_bri60	23Ch	R/W	8-bits PWM for Dot L3-CS6 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS12	00h
pwm_bri61	23Dh	R/W	8-bits PWM for Dot L3-CS7 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS12	00h
pwm_bri62	23Eh	R/W	8-bits PWM for Dot L3-CS8 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS13	00h
pwm_bri63	23Fh	R/W	8-bits PWM for Dot L3-CS9 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS13	00h
pwm_bri64	240h	R/W	8-bits PWM for Dot L3-CS10 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS14	00h
pwm_bri65	241h	R/W	8-bits PWM for Dot L3-CS11 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS14	00h
pwm_bri66	242h	R/W	8-bits PWM for Dot L3-CS12 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS15	00h
pwm_bri67	243h	R/W	8-bits PWM for Dot L3-CS13 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS15	00h
pwm_bri68	244h	R/W	8-bits PWM for Dot L3-CS14 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS16	00h
pwm_bri69	245h	R/W	8-bits PWM for Dot L3-CS15 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS16	00h
pwm_bri70	246h	R/W	8-bits PWM for Dot L3-CS16 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS17	00h
pwm_bri71	247h	R/W	8-bits PWM for Dot L3-CS17 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS17	00h
pwm_bri72	248h	R/W	8-bits PWM for Dot L4-CS0 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS0	00h
pwm_bri73	249h	R/W	8-bits PWM for Dot L4-CS1 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS0	00h
pwm_bri74	24Ah	R/W	8-bits PWM for Dot L4-CS2 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS1	00h
pwm_bri75	24Bh	R/W	8-bits PWM for Dot L4-CS3 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS1	00h
pwm_bri76	24Ch	R/W	8-bits PWM for Dot L4-CS4 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS2	00h
pwm_bri77	24Dh	R/W	8-bits PWM for Dot L4-CS5 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS2	00h
pwm_bri78	24Eh	R/W	8-bits PWM for Dot L4-CS6 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS3	00h
pwm_bri79	24Fh	R/W	8-bits PWM for Dot L4-CS7 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS3	00h
pwm_bri80	250h	R/W	8-bits PWM for Dot L4-CS8 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS4	00h
pwm_bri81	251h	R/W	8-bits PWM for Dot L4-CS9 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS4	00h
pwm_bri82	252h	R/W	8-bits PWM for Dot L4-CS10 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS5	00h

R/W pwm_bri83 253h 8-bits PWM for Dot L4-CS11 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS5 00h pwm_bri84 254h R/W 8-bits PWM for Dot L4-CS12 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS6 00h pwm bri85 255h R/W 8-bits PWM for Dot L4-CS13 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS6 00h 256h R/W 8-bits PWM for Dot L4-CS14 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS7 00h pwm_bri86 pwm_bri87 257h R/W 8-bits PWM for Dot L4-CS15 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS7 00h pwm bri88 258h R/W 8-bits PWM for Dot L4-CS16 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS8 00h 259h R/W 00h pwm_bri89 8-bits PWM for Dot L4-CS17 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS8 R/W 8-bits PWM for Dot L5-CS0 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS9 pwm_bri90 25Ah 00h pwm bri91 25Bh R/W 8-bits PWM for Dot L5-CS1 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS9 00h pwm_bri92 25Ch R/W 8-bits PWM for Dot L5-CS2 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS10 00h R/W 8-bits PWM for Dot L5-CS3 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS10 pwm bri93 25Dh 00h pwm_bri94 25Eh R/W 8-bits PWM for Dot L5-CS4 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS11 00h pwm bri95 25Fh R/W 8-bits PWM for Dot L5-CS5 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS11 00h 260h R/W 8-bits PWM for Dot L5-CS6 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS12 00h pwm_bri96 261h R/W 8-bits PWM for Dot L5-CS7 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS12 00h pwm_bri97 pwm bri98 262h R/W 8-bits PWM for Dot L5-CS8 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS13 00h pwm bri99 263h R/W 8-bits PWM for Dot L5-CS9 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS13 00h R/W 00h pwm_bri100 264h 8-bits PWM for Dot L5-CS10 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS14 pwm_bri101 265h R/W 8-bits PWM for Dot L5-CS11 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS14 00h pwm bri102 266h R/W 8-bits PWM for Dot L5-CS12 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS15 00h 267h R/W 8-bits PWM for Dot L5-CS13 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS15 00h pwm_bri103 268h R/W 00h pwm_bri104 8-bits PWM for Dot L5-CS14 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS16 pwm_bri105 269h R/W 8-bits PWM for Dot L5-CS15 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS16 00h pwm bri106 26Ah R/W 8-bits PWM for Dot L5-CS16 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS17 00h pwm_bri107 26Bh R/W 8-bits PWM for Dot L5-CS17 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS17 00h pwm bri108 26Ch R/W 16-bits PWM lower 8 bits [7:0] for Dot L3-CS0 00h pwm_bri109 26Dh R/W 16-bits PWM higher 8 bits [15:8] for Dot L3-CS0 00h pwm_bri110 26Eh R/W 16-bits PWM lower 8 bits [7:0] for Dot L3-CS1 00h R/W 00h pwm bri111 26Fh 16-bits PWM higher 8 bits [15:8] for Dot L3-CS1 pwm_bri112 270h R/W 16-bits PWM lower 8 bits [7:0] for Dot L3-CS2 00h R/W 16-bits PWM higher 8 bits [15:8] for Dot L3-CS2 pwm bri113 271h 00hR/W pwm_bri114 272h 16-bits PWM lower 8 bits [7:0] for Dot L3-CS3 00h R/W pwm_bri115 273h 16-bits PWM higher 8 bits [15:8] for Dot L3-CS3 00h pwm bri116 274h R/W 16-bits PWM lower 8 bits [7:0] for Dot L3-CS4 00h pwm_bri117 275h R/W 00h 16-bits PWM higher 8 bits [15:8] for Dot L3-CS4 276h R/W pwm_bri118 16-bits PWM lower 8 bits [7:0] for Dot L3-CS5 00hpwm bri119 277h R/W 16-bits PWM higher 8 bits [15:8] for Dot L3-CS5 00h pwm_bri120 278h R/W 16-bits PWM lower 8 bits [7:0] for Dot L3-CS6 00h R/W pwm bri121 279h 16-bits PWM higher 8 bits [15:8] for Dot L3-CS6 00h R/W 00h pwm_bri122 27Ah 16-bits PWM lower 8 bits [7:0] for Dot L3-CS7 pwm bri123 27Bh R/W 16-bits PWM higher 8 bits [15:8] for Dot L3-CS7 00h pwm_bri124 27Ch R/W 16-bits PWM lower 8 bits [7:0] for Dot L3-CS8 00h 27Dh R/W 00h pwm_bri125 16-bits PWM higher 8 bits [15:8] for Dot L3-CS8 pwm bri126 27Eh R/W 16-bits PWM lower 8 bits [7:0] for Dot L3-CS9 00h R/W 16-bits PWM higher 8 bits [15:8] for Dot L3-CS9 pwm bri127 27Fh 00h 00h pwm_bri128 280h R/W 16-bits PWM lower 8 bits [7:0] for Dot L3-CS10 pwm_bri129 281h R/W 16-bits PWM higher 8 bits [15:8] for Dot L3-CS10 00h

pwm_bri130	282h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L3-CS11	00h
pwm_bri131	283h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L3-CS11	00h
pwm_bri132	284h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L3-CS12	00h
pwm_bri133	285h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L3-CS12	00h
pwm_bri134	286h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L3-CS13	00h
pwm_bri135	287h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L3-CS13	00h
pwm_bri136	288h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L3-CS14	00h
pwm_bri137	289h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L3-CS14	00h
pwm_bri138	28Ah	R/W	16-bits PWM lower 8 bits [7:0] for Dot L3-CS15	00h
pwm_bri139	28Bh	R/W	16-bits PWM higher 8 bits [15:8] for Dot L3-CS15	00h
pwm_bri140	28Ch	R/W	16-bits PWM lower 8 bits [7:0] for Dot L3-CS16	00h
pwm_bri141	28Dh	R/W	16-bits PWM higher 8 bits [15:8] for Dot L3-CS16	00h
pwm_bri142	28Eh	R/W	16-bits PWM lower 8 bits [7:0] for Dot L3-CS17	00h
pwm_bri143	28Fh	R/W	16-bits PWM higher 8 bits [15:8] for Dot L3-CS17	00h
pwm_bri144	290h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS0	00h
pwm_bri145	291h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS0	00h
pwm_bri146	292h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS1	00h
pwm_bri147	293h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS1	00h
pwm_bri148	294h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS2	00h
pwm_bri149	295h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS2	00h
pwm_bri150	296h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS3	00h
pwm_bri151	297h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS3	00h
pwm_bri152	298h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS4	00h
pwm_bri153	299h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS4	00h
pwm_bri154	29Ah	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS5	00h
pwm_bri155	29Bh	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS5	00h
pwm_bri156	29Ch	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS6	00h
pwm_bri157	29Dh	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS6	00h
pwm_bri158	29Eh	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS7	00h
pwm_bri159	29Fh	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS7	00h
pwm_bri160	2A0h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS8	00h
pwm_bri161	2A1h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS8	00h
pwm_bri162	2A2h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS9	00h
pwm_bri163	2A3h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS9	00h
pwm_bri164	2A4h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS10	00h
pwm_bri165	2A5h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS10	00h
pwm_bri166	2A6h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS11	00h
pwm_bri167	2A7h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS11	00h
pwm_bri168	2A8h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS12	00h
pwm_bri169	2A9h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS12	00h
pwm_bri170	2AAh	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS13	00h
pwm_bri171	2ABh	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS13	00h
pwm_bri172	2ACh	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS14	00h
pwm_bri173	2ADh	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS14	00h
pwm_bri174	2AEh	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS15	00h
pwm_bri175	2AFh	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS15	00h
pwm_bri176	2B0h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS16	00h

pwm_bri177 2B1h R/W 16-bits PWM higher 8 bits [15:8] for Dot L4-CS16 00h pwm_bri178 2B2h R/W 16-bits PWM lower 8 bits [7:0] for Dot L4-CS17 00h pwm bri179 2B3h R/W 16-bits PWM higher 8 bits [15:8] for Dot L4-CS17 00h pwm_bri180 2B4h R/W 16-bits PWM lower 8 bits [7:0] for Dot L5-CS0 00h pwm_bri181 2B5h R/W 16-bits PWM higher 8 bits [15:8] for Dot L5-CS0 00h pwm bri182 2B6h R/W 16-bits PWM lower 8 bits [7:0] for Dot L5-CS1 00h pwm_bri183 2B7h R/W 16-bits PWM higher 8 bits [15:8] for Dot L5-CS1 00h pwm_bri184 2B8h R/W 16-bits PWM lower 8 bits [7:0] for Dot L5-CS2 00h pwm bri185 2B9h R/W 16-bits PWM higher 8 bits [15:8] for Dot L5-CS2 00h pwm_bri186 2BAh R/W 16-bits PWM lower 8 bits [7:0] for Dot L5-CS3 00h 2BBh R/W pwm_bri187 16-bits PWM higher 8 bits [15:8] for Dot L5-CS3 00h pwm_bri188 2BCh R/W 16-bits PWM lower 8 bits [7:0] for Dot L5-CS4 00h pwm_bri189 2BDh R/W 16-bits PWM higher 8 bits [15:8] for Dot L5-CS4 00h pwm_bri190 2BEh R/W 16-bits PWM lower 8 bits [7:0] for Dot L5-CS5 00h pwm_bri191 2BFh R/W 16-bits PWM higher 8 bits [15:8] for Dot L5-CS5 00h pwm bri192 2C0h R/W 16-bits PWM lower 8 bits [7:0] for Dot L5-CS6 00h pwm bri193 2C1h R/W 16-bits PWM higher 8 bits [15:8] for Dot L5-CS6 00h 2C2h R/W 00h pwm_bri194 16-bits PWM lower 8 bits [7:0] for Dot L5-CS7 pwm_bri195 2C3h R/W 16-bits PWM higher 8 bits [15:8] for Dot L5-CS7 00h pwm bri196 2C4h R/W 16-bits PWM lower 8 bits [7:0] for Dot L5-CS8 00h pwm_bri197 2C5h R/W 16-bits PWM higher 8 bits [15:8] for Dot L5-CS8 00h 2C6h R/W 00h pwm_bri198 16-bits PWM lower 8 bits [7:0] for Dot L5-CS9 pwm_bri199 2C7h R/W 16-bits PWM higher 8 bits [15:8] for Dot L5-CS9 00h R/W pwm bri200 2C8h 16-bits PWM lower 8 bits [7:0] for Dot L5-CS10 00h R/W pwm_bri201 2C9h 16-bits PWM higher 8 bits [15:8] for Dot L5-CS10 00h pwm bri202 2CAh R/W 16-bits PWM lower 8 bits [7:0] for Dot L5-CS11 00h pwm_bri203 2CBh R/W 16-bits PWM higher 8 bits [15:8] for Dot L5-CS11 00h pwm_bri204 2CCh R/W 16-bits PWM lower 8 bits [7:0] for Dot L5-CS12 00h R/W 00h pwm bri205 2CDh 16-bits PWM higher 8 bits [15:8] for Dot L5-CS12 pwm_bri206 2CEh R/W 16-bits PWM lower 8 bits [7:0] for Dot L5-CS13 00h 16-bits PWM higher 8 bits [15:8] for Dot L5-CS13 2CFh R/W 00h pwm bri207 R/W 00h pwm_bri208 2D0h 16-bits PWM lower 8 bits [7:0] for Dot L5-CS14 R/W pwm_bri209 2D1h 16-bits PWM higher 8 bits [15:8] for Dot L5-CS14 00h pwm bri210 2D2h R/W 16-bits PWM lower 8 bits [7:0] for Dot L5-CS15 00h 2D3h R/W 16-bits PWM higher 8 bits [15:8] for Dot L5-CS15 00h pwm_bri211 2D4h R/W 00h pwm_bri212 16-bits PWM lower 8 bits [7:0] for Dot L5-CS16 pwm bri213 2D5h R/W 16-bits PWM higher 8 bits [15:8] for Dot L5-CS16 00h pwm_bri214 2D6h R/W 16-bits PWM lower 8 bits [7:0] for Dot L5-CS17 00h 2D7h R/W pwm bri215 16-bits PWM higher 8 bits [15:8] for Dot L5-CS17 00h

9 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

9.1 Application Information

The LP5866 integrates 18 constant current sinks with 6 switching FETs and one LP5866 can drive up to 108 LED dots or 36 RGB pixels and achieve great dimming effect. In smart home, gaming keyboards, and other human-machine interaction applications, the device can greatly improve user experience with a small amount of components.

9.2 Typical Application

9.2.1 Application

Figure 9-1 shows an example of typical application, which uses one LP5866 to drive 36 common-anode RGB LEDs through I²C communication.

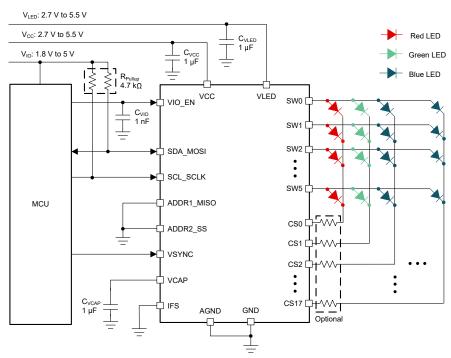


Figure 9-1. Typical Application – LP5866 Driving 36 RGB LEDs (108 LED Dots)

Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

9.2.2 Design Requirements

Table 9-1. Design Parameters

PARAMETER	VALUE				
VCC / VIO	3.3 V				
VLED	5 V				
RGB LED count	66				
Scan number	6				
Interface	I ² C				
LED maximum average current (red, green, blue)	4 mA, 3 mA, 2 mA				
LED maximum peak current (red, green, blue)	44 mA, 33 mA, 22 mA				

9.2.3 Detailed Design Procedure

LP5866 requires an external capacitor C_{VCAP} , whose value is 1 μ F connected from V_{CAP} to GND for proper operation of internal LDO. The capacitor must be placed as close to the device as possible.

TI recommends 1-µF capacitors be placed between VCC / VLED with GND, and a 1-nF capacitor placed between VIO with GND. Place the capacitors as close to the device as possible.

Pull-up resistors $R_{pull-up}$ are a requirement for SCL and SDA when using I²C as communication method. In typical applications, TI recommends 1.8-k Ω to 4.7-k Ω resistors.

To decrease thermal dissipation from device to ambient, resistors R_{CS} can optionally be placed in serial with the LED. Voltage drop on these resistors must left enough margins for VSAT to ensure the device works normally.

9.2.4 Program Procedure

When selecting data refresh Mode 1, outputs are refreshed instantly after data is received.

When selecting data refresh Mode 2/3, VSYNC signal is required for synchronized display. Programming flow is shown as Figure 9-2. To display full pixel of last frame, VSYNC pulse must be sent to the device after the end of last PWM. Time between two pulses t_{SYNC} must be larger than the whole PWM time of all Dots t_{frame} . Common selection like 60 Hz, 90 Hz, 120 Hz or even higher refresh frequency can be supported. High pulse width longer than t_{SYNC_H} is required at the beginning of each VSYNC frame, and data must not be write to PWM registers during high pulse width.

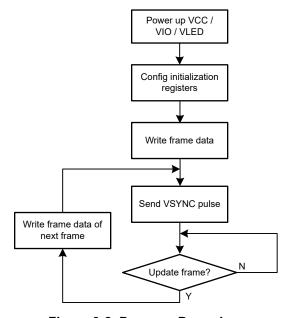
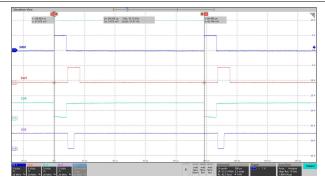
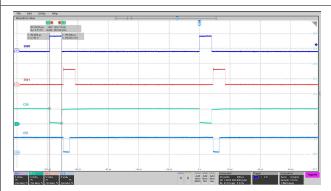


Figure 9-2. Program Procedure

9.2.5 Application Performance Plots

The following figures show the application performance plots.

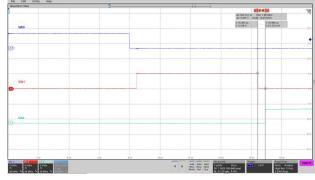

Figure 9-3. Scan Lines and Current Sinks Waveforms of SW0, SW1, CS0, CS1

Figure 9-4. Scan Lines and Current Sinks Waveforms of SW0, SW1, CS0, CS1

PWM frequency = 125 kHz

Switch blank time t_{SW_BLK} = 0.5 μs

Figure 9-5. Scan Lines and Current Sinks Waveforms of SW0, SW1, CS0, CS1

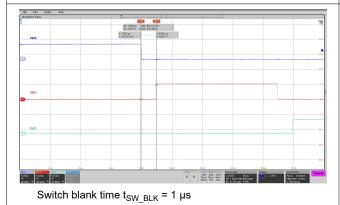
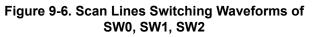
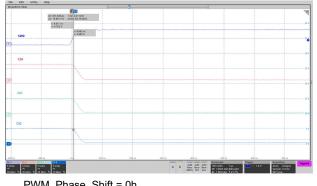
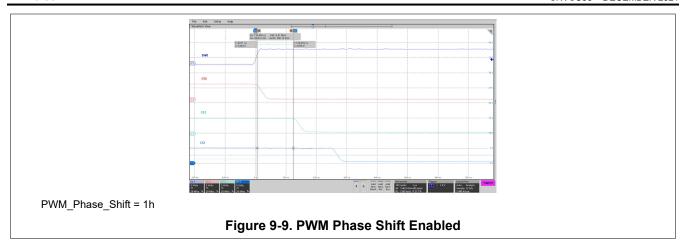




Figure 9-7. Scan Lines Switching Waveforms of SW0, SW1, SW2



PWM_Phase_Shift = 0h

Figure 9-8. PWM Phase Shift Disabled

10 Power Supply Recommendations

VDD Input Supply Recommendations

LP5866 is designed to operate from a 2.7-V to 5.5-V VDD voltage supply. This input supply must be well regulated and be able to provide the peak current required by the LED matrix. The resistance of the VDD supply rail must be low enough such that the input current transient does not cause the LP5866 VDD supply voltage to drop below the maximum POR voltage.

VLED Input Supply Recommendations

LP5866 is designed to operate with a 2.7-V to 5.5-V VLED voltage supply. The VLED supply must be well regulated and able to provide the peak current required by the LED configuration without voltage drop, under load transients like start-up or rapid brightness change. The resistance of the input supply rail must be low enough so that the input current transient does not cause the VLED supply voltage to drop below LED V_f + VSAT voltage.

VIO Input Supply Recommendations

LP5866 is designed to operate with a 1.65-V to 5.5-V VIO_EN voltage supply. The VIO_EN supply must be well regulated and able to provide the peak current required by the LED configuration without voltage drop under load transients like start-up or rapid brightness change.

Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

11 Layout

11.1 Layout Guidelines

the below guidelines for layout design can help to get a better on-board performance.

- The decoupling capacitors C_{VCC} and C_{VLED} for power supply must be close to the chip to have minimized
 the impact of high-frequency noise and ripple from power. C_{VCAP} for internal LDO must be put as close to
 chip as possible. GND plane connections to C_{VLED} and GND pins must be on TOP layer copper with multiple
 vias connecting to system ground plane. C_{VIO} for internal enable block also must be put as close to chip as
 possible.
- The exposed thermal pad must be well soldered to the board, which can have better mechanical reliability.
 The action can optimize heat transfer so that increasing thermal performance. AGND pin must be connected to thermal pad and system ground.
- The major heat flow path from the package to the ambient is through copper on the PCB. Several methods
 can help thermal performance. Below exposed thermal pad of IC, putting much vias through the PCB to other
 ground layer can dissipate more heat. Maximizing the copper coverage on the PCB can increase the thermal
 conductivity of the board.
- Low inductive and resistive path of switch load loop can help to provide a high slew rate. Therefore, path of VLED – SWx must be short and wide and avoid parallel wiring and narrow trace. Transient current in SWx pins is much larger than CSy pins, so that trace for SWx must be wider than CSy.

11.2 Layout Example

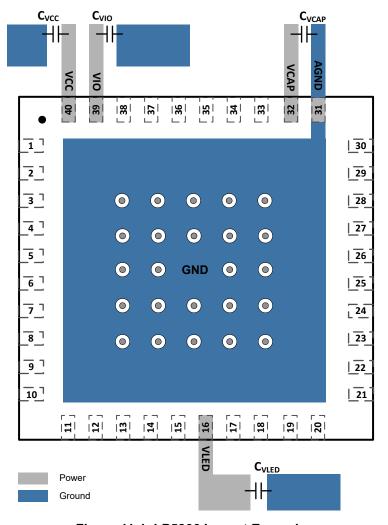


Figure 11-1. LP5866 Layout Example

12 Device and Documentation Support

TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below.

12.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.2 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

12.3 Trademarks

TI E2E™ is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

12.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.5 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com 11-Apr-2023

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
LP5866DBTR	ACTIVE	TSSOP	DBT	38	2000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	LP5866DBT	Samples
LP5866MDBTR	ACTIVE	TSSOP	DBT	38	2000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-55 to 125	5866MDBT	Samples
LP5866RKPR	ACTIVE	VQFN	RKP	40	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LP5866	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

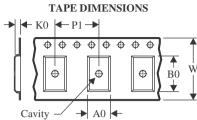
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

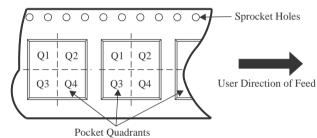
PACKAGE OPTION ADDENDUM

www.ti.com 11-Apr-2023

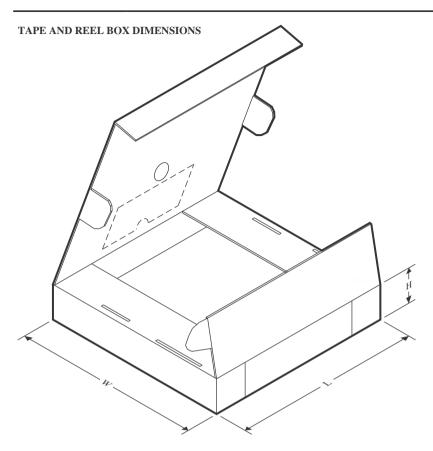

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 9-Aug-2022

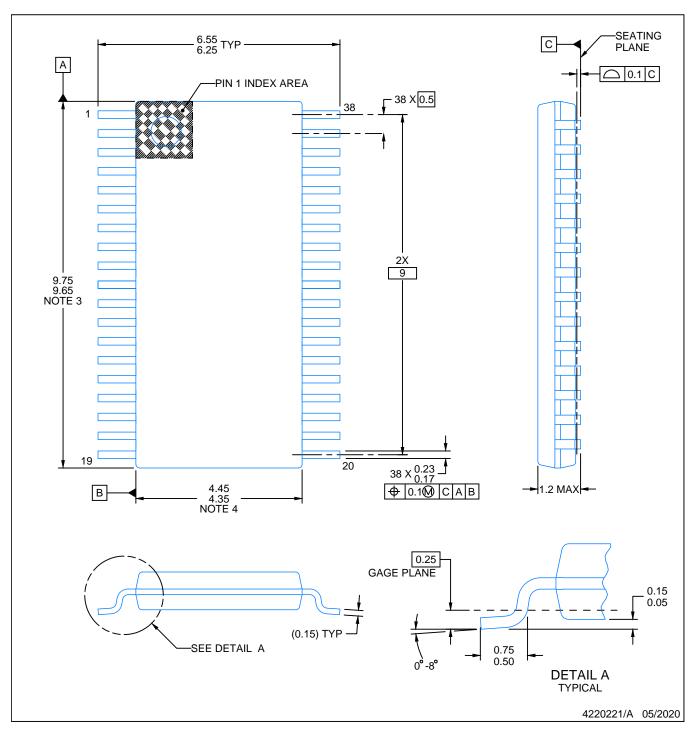

TAPE AND REEL INFORMATION

	· · · · · · · · · · · · · · · · · · ·
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

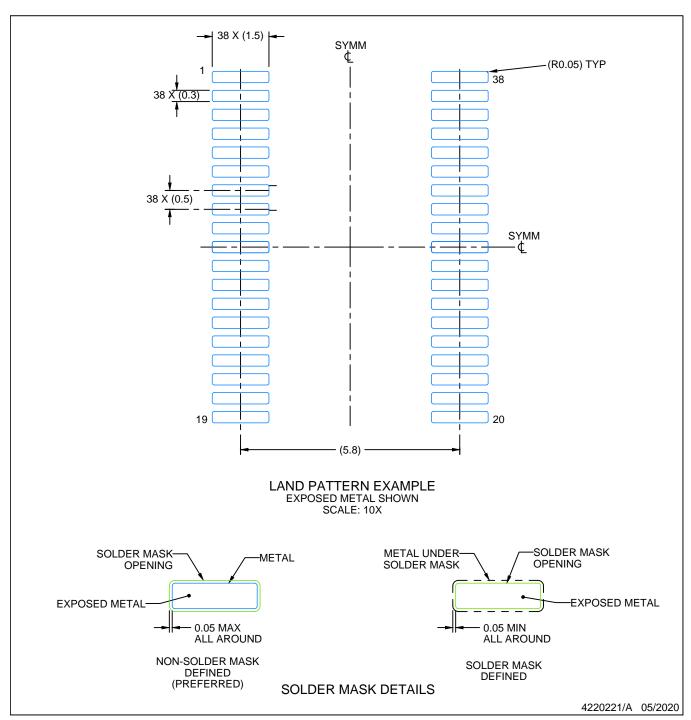
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LP5866DBTR	TSSOP	DBT	38	2000	330.0	16.4	6.9	10.2	1.8	12.0	16.0	Q1
LP5866MDBTR	TSSOP	DBT	38	2000	330.0	16.4	6.9	10.2	1.8	12.0	16.0	Q1
LP5866RKPR	VQFN	RKP	40	3000	330.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2


www.ti.com 9-Aug-2022

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LP5866DBTR	TSSOP	DBT	38	2000	367.0	367.0	38.0
LP5866MDBTR	TSSOP	DBT	38	2000	367.0	367.0	38.0
LP5866RKPR	VQFN	RKP	40	3000	367.0	367.0	35.0

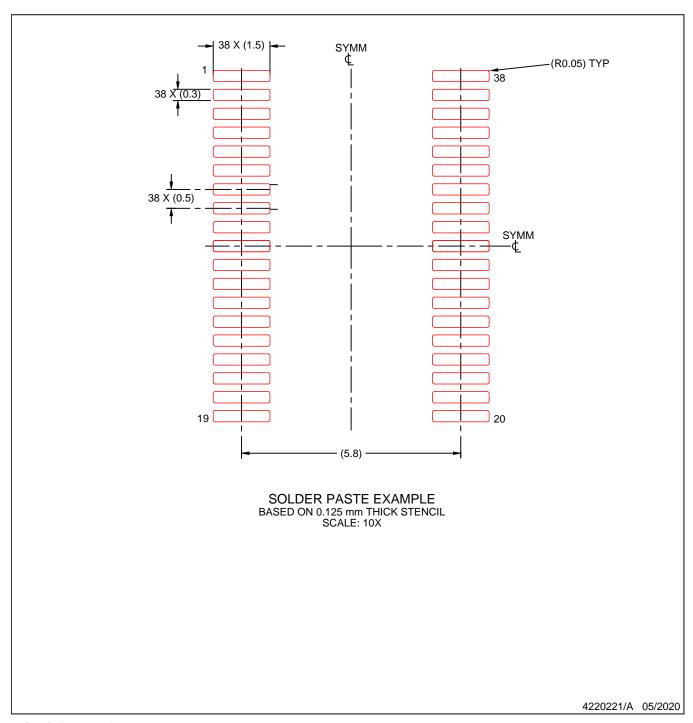
SMALL OUTLINE PACKAGE



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE

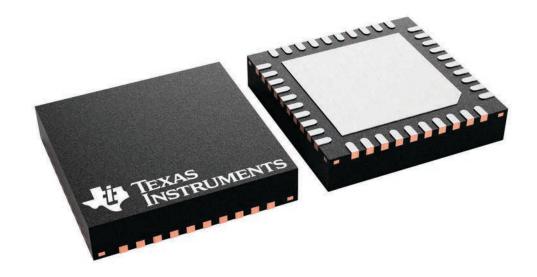

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)


- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

5 x 5, 0.4 mm pitch

PLASTIC QUAD FLATPACK - NO LEAD

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated