10UT

1IN-[] 2

1IN+[] 3

V_{CC+}[] 4

2IN+[5

2IN-**[**6

20UT **[**7

SLOS101C - FEBRUARY 1979 - REVISED FEBRUARY 2002

14 🛛 40UT

13 🛛 4IN-

12 4IN+

11 🛛 V_{CC}_

10 3IN+

9 🛛 3IN-

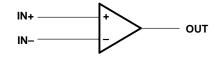
8 30UT

MC3303...D, N, OR PW PACKAGE MC3403...D, DB, N, NS, OR PW PACKAGE

(TOP VIEW)

- Wide Range of Supply Voltages, Single Supply ... 3 V to 36 V or Dual Supplies
- Class AB Output Stage
- True Differential Input Stage
- Low Input Bias Current
- Internal Frequency Compensation
- Short-Circuit Protection
- Designed to Be Interchangeable With Motorola MC3303, MC3403

description


The MC3303 and the MC3403 are quadruple operational amplifiers similar in performance to the μ A741, but with several distinct advantages. They are designed to operate from a single supply over a range of voltages from 3 V to 36 V. Operation from split supplies also is possible, provided the difference between the two supplies is 3 V to 36 V. The common-mode input range includes the negative supply. Output range is from the negative supply to V_{CC} – 1.5 V. Quiescent supply currents are less than one-half those of the μ A741.

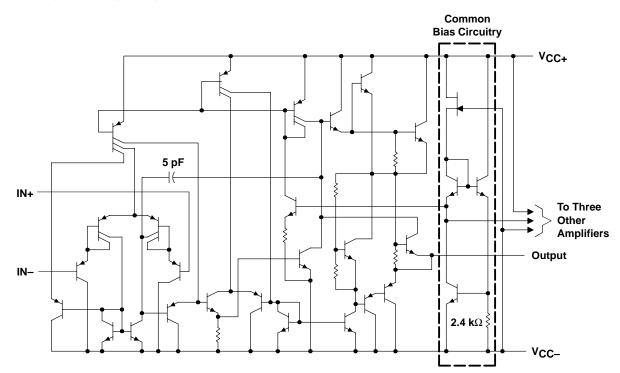
The MC3303 is characterized for operation from -40° C to 85° C, and the MC3403 is characterized for operation from 0° C to 70° C.

AVAILABLE OPTIONS												
		PACKAGE										
TA	V _{IO} MAX AT 25°C	PLASTIC SMALL OUTLINE (D, NS)	PLASTIC SHRINK SMALL OUTLINE (DB)	PLASTIC DIP (N)	PLASTIC THIN SHRINK SMALL OUTLINE (PW)							
0°C to 70°C	10 mV	MC3403D MC3403NS	MC3403DB	MC3403N	MC3403PW							
–40°C to 85°C	8 mV	MC3303D	_	MC3303N	MC3303PW							

The D package is available taped and reeled. Add R suffix to the device type (e.g., MC3403DR). The DB, NS, and PW packages are only available taped and reeled.

logic diagram (each amplifier)

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2002, Texas Instruments Incorporated

SLOS101C - FEBRUARY 1979 - REVISED FEBRUARY 2002

schematic (each amplifier)

Component values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage (see Note 1): V _{CC+}		18 V
V _{CC}		–18 V
Supply voltage, V _{CC+} with respect to V _{CC-}		
Differential input voltage (see Note 2)		±36 V
Input voltage (see Notes 1 and 3)		±18 V
Package thermal impedance, θ_{JA} (see Note 4): D package	
	DB package	
	N package	80°C/W
	NS package	
	PW package	113°C/W
Lead temperature 1,6 mm (1/16 inch) from ca	se for 10 seconds	260°C
Storage temperature range, T _{stg}		–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. These voltage values are with respect to the midpoint between V_{CC+} and V_{CC-}.
 - 2. Differential voltages are at IN+ with respect to IN-.
 - 3. Neither input must ever be more positive than V_{CC+} or more negative than V_{CC-}.
 - 4. The package thermal impedance is calculated in accordance with JESD 51-7.

SLOS101C - FEBRUARY 1979 - REVISED FEBRUARY 2002

recommended operating conditions

			MIN	MAX	UNIT
VCC	Supply voltage		5	30	V
		V _{CC+}	2.5	15	V
	Dual-supply voltage	V _{CC} -	-2.5	-15	V
т.	Operating free air temperature	MC3303	-40	85	°C
т _А	Operating free-air temperature	MC3403	0	70	

electrical characteristics at specified free-air temperature, V_{CC+} = 14 V, V_{CC-} = 0 V for MC3303, $V_{CC\pm}$ = ±15 V for MC3403 (unless otherwise noted)

				MC3303		I	MC3403			
	PARAMETER	TEST CONDITION	151	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Vie	Input offect voltage	See Note 5	25°C		2	8		2	10	mV
VIO	Input offset voltage	See Note 5	Full range			10			12	mv
$\alpha_{\rm V_{IO}}$	Temperature coefficient of input offset voltage	See Note 5	Full range		10			10		μV/°C
l.e.	Input offset current	See Note 5	25°C		30	75		30	50	nA
10	input onset current	See Note 5	Full range			250			200	ΠA
$\alpha_{I_{IO}}$	Temperature coefficient of input offset current	See Note 5	Full range		50			50		pA/C
1	Innut biog ourrent	See Note 5	25°C		-0.2	-0.5		-0.2	-0.5	۸
IВ	Input bias current	See Note 5	Full range			-1			-0.8	μA
VICR	Common-mode input voltage range‡		25°C	V _{CC} to 12	V _{CC} _ to 12.5		V _{CC} - to 13	V _{CC} _ to 13.5		V
		R _L = 10 kΩ	25°C	12	12.5		±12	±13.5		
VOM	Peak output voltage swing	$R_L = 2 k\Omega$	25°C	10	12		±10	±13		V
	Voltage Swing	$R_L = 2 k\Omega$	Full range	10			±10			
A. (5)	Large-signal differential	$V_{O} = \pm 10 \text{ V}, \text{ R}_{L} = 2 \text{ k}\Omega$	25°C	20	200		20	200		V/mV
AVD	voltage amplification	$V_{\rm O} = \pm 10$ V, $R_{\rm L} = 2$ KS2	Full range	15			15			v/IIIv
B _{OM}	Maximum-output-swing bandwidth	$\label{eq:VOPP} \begin{array}{l} V_{OPP} = 20 \ V, \ A_{VD} = 1, \\ THD \leq 5\%, \ R_L = 2 \ k\Omega \end{array}$	25°C		9			9		kHz
B ₁	Unity-gain bandwidth	V_{O} = 50 mV, R _L = 10 k Ω	25°C		1			1		MHz
фт	Phase margin	$C_L = 200 \text{ pF}, R_L = 2 \text{ k}\Omega$	25°C		60°			60°		
r _i	Input resistance	f = 20 Hz	25°C	0.3	1		0.3	1		MΩ
r _o	Output resistance	f = 20 Hz	25°C		75			75		Ω
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}min$	25°C	70	90		70	90		dB
k _{SVS}	Supply voltage sensitivity $(\Delta V_{IO}/\Delta V_{CC})$	$V_{CC\pm}$ = ±2.5 to ±15 V	25°C		30	150		30	150	μV/V
IOS	Short-circuit output current§		25°C	±10	±30	±45	±10	±30	±45	mA
ICC	Total supply current	No load, See Note 5	25°C		2.8	7		2.8	7	mA

[†] All characteristics are measured under open-loop conditions with zero common-mode voltage unless otherwise specified. Full range for T_A is -40°C to 85°C for MC3303, and 0°C to 70°C for MC3403.

[‡] The V_{ICR} limits are linked directly, volt-for-volt, to supply voltage; the positive limit is 2 V less than V_{CC+}.

§ Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.

NOTE 5: V_{IO} , I_{IO} , I_{IB} , and I_{CC} are defined at $V_{O} = 0$ for MC3403 and $V_{O} = 7$ V for MC3303.

SLOS101C - FEBRUARY 1979 - REVISED FEBRUARY 2002

electrical characteristics, V_{CC+} = 5 V, V_{CC-} = 0 V, T_A = 25°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	Γ	MC3303		Ν	/IC3403		
	PARAMETER	TEST CONDITIONS [†]	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
VIO	Input offset voltage	V _O = 2.5 V			10		2	10	mV
١ _Ю	Input offset current	V _O = 2.5 V			75		30	50	nA
I _{IB}	Input bias current	V _O = 2.5 V			-0.5		-0.2	-0.5	μA
		R _L = 10 kΩ	3.3	3.5		3.3	3.5		
VOM	Peak output voltage swing‡		V _{CC+} - 1.7			V _{CC+} - 1.7			V
A _{VD}	Large-signal differential voltage amplification	V_{O} = 1.7 V to 3.3 V, RL = 2 k Ω	20	200		20	200		V/mV
ks∨s	Supply-voltage sensitivity $(\Delta V_{IO} / \Delta V_{CC\pm})$	$V_{CC\pm}$ = ±2.5 V to ±15 V			150			150	μV/V
ICC	Supply current	V_{O} = 2.5 V, No load		2.5	7		2.5	7	mA
V01/V02	Crosstalk attenuation	f = 1 kHz to 20 kHz		120			120		dB

[†] All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified.

[‡]Output will swing essentially to ground.

operating characteristics, V_{CC+} = 14 V, V_{CC-} = 0 V for MC3303, V_{CC±} = ±15 V for MC3403, T_A = 25°C, A_{VD} = 1 (unless otherwise noted)

	PARAMETER		TEST CO	NDITIONS		TYP	UNIT
SR	Slew rate at unity gain	V _I = ±10 V,	C _L = 100 pF,	$R_L = 2 k\Omega$,	See Figure 1	0.6	V/µs
t _r	Rise time	$\Delta V_{O} = 50 \text{ mV},$	C _L = 100 pF,	$R_L = 10 \text{ k}\Omega$,	See Figure 1	0.35	μs
t _f	Fall time	$\Delta V_{O} = 50 \text{ mV},$	C _L = 100 pF,	$R_L = 10 \text{ k}\Omega$,	See Figure 1	0.35	μs
	Overshoot factor	ΔV_{O} = 50 mV,	C _L = 100 pF,	RL = 10 kΩ,	See Figure 1	20	%
	Crossover distortion	VI(PP) = 30 mV,	V _{OPP} = 2 V,	f = 10 kHz		1	%

PARAMETER MEASUREMENT INFORMATION

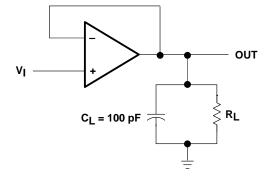
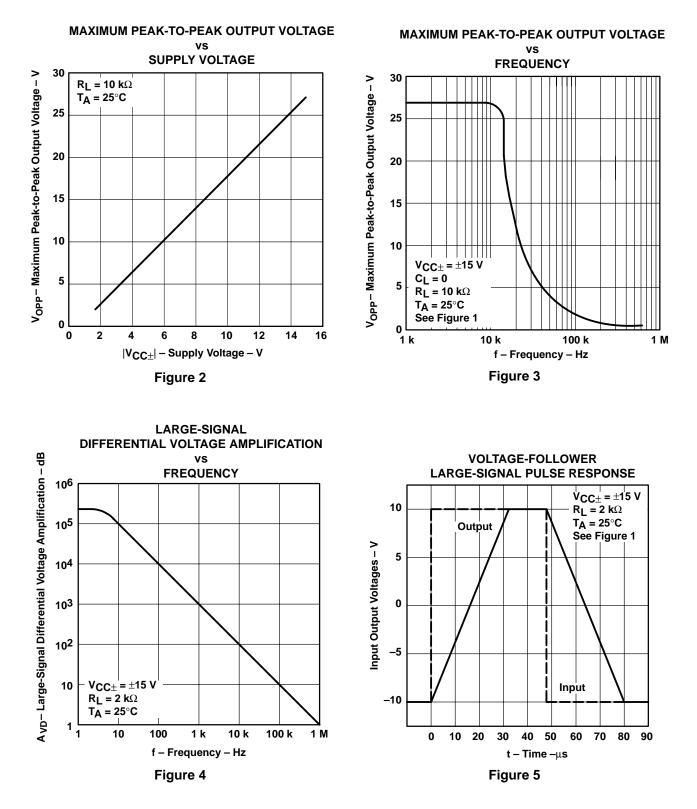
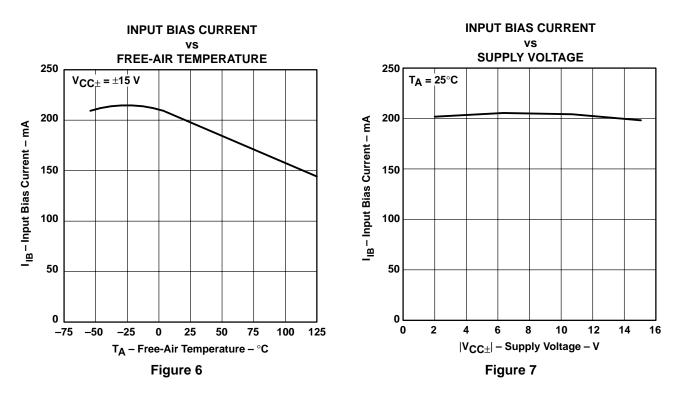



Figure 1. Unity-Gain Amplifier

SLOS101C - FEBRUARY 1979 - REVISED FEBRUARY 2002



TYPICAL CHARACTERISTICS[†]

[†] Operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied.

SLOS101C - FEBRUARY 1979 - REVISED FEBRUARY 2002

TYPICAL CHARACTERISTICS[†]

[†] Operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
MC3303D	LIFEBUY	SOIC	D	14	50	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	MC3303	
MC3303DG4	LIFEBUY	SOIC	D	14	50	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	MC3303	
MC3303DR	ACTIVE	SOIC	D	14	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	MC3303	Samples
MC3303N	ACTIVE	PDIP	N	14	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-40 to 85	MC3303N	Samples
MC3303PW	LIFEBUY	TSSOP	PW	14	90	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	M3303	
MC3303PWR	ACTIVE	TSSOP	PW	14	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	M3303	Samples
MC3403D	LIFEBUY	SOIC	D	14	50	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	MC3403	
MC3403DR	ACTIVE	SOIC	D	14	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	MC3403	Samples
MC3403N	ACTIVE	PDIP	N	14	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	MC3403N	Samples
MC3403NE4	LIFEBUY	PDIP	N	14	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	MC3403N	
MC3403NSR	ACTIVE	SO	NS	14	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	MC3403	Samples
MC3403PWR	LIFEBUY	TSSOP	PW	14	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	M3403	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

www.ti.com

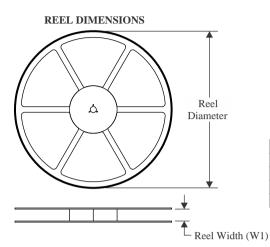
PACKAGE OPTION ADDENDUM

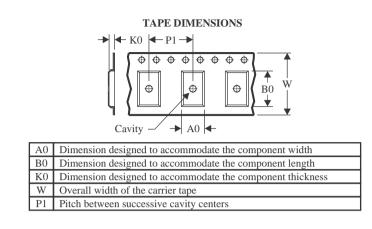
⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

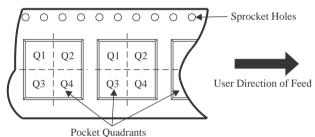
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.



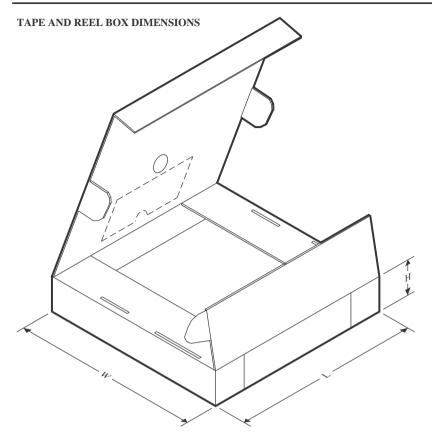

Texas

*All dimensions are nominal


STRUMENTS

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

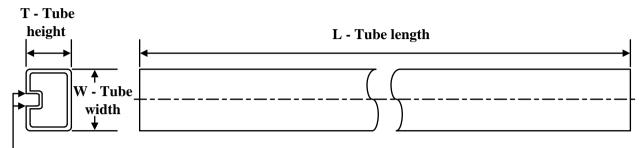

Device	-	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
MC3303DR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
MC3303PWR	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
MC3403DR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
MC3403NSR	SO	NS	14	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
MC3403PWR	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

5-Apr-2023

*All dimensions are nominal


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
MC3303DR	SOIC	D	14	2500	356.0	356.0	35.0
MC3303PWR	TSSOP	PW	14	2000	356.0	356.0	35.0
MC3403DR	SOIC	D	14	2500	340.5	336.1	32.0
MC3403NSR	SO	NS	14	2000	356.0	356.0	35.0
MC3403PWR	TSSOP	PW	14	2000	356.0	356.0	35.0

TEXAS INSTRUMENTS

www.ti.com

5-Apr-2023

TUBE

- B - Alignment groove width

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
MC3303D	D	SOIC	14	50	506.6	8	3940	4.32
MC3303DG4	D	SOIC	14	50	506.6	8	3940	4.32
MC3303N	N	PDIP	14	25	506	13.97	11230	4.32
MC3303PW	PW	TSSOP	14	90	530	10.2	3600	3.5
MC3403D	D	SOIC	14	50	506.6	8	3940	4.32
MC3403N	N	PDIP	14	25	506	13.97	11230	4.32
MC3403NE4	N	PDIP	14	25	506	13.97	11230	4.32

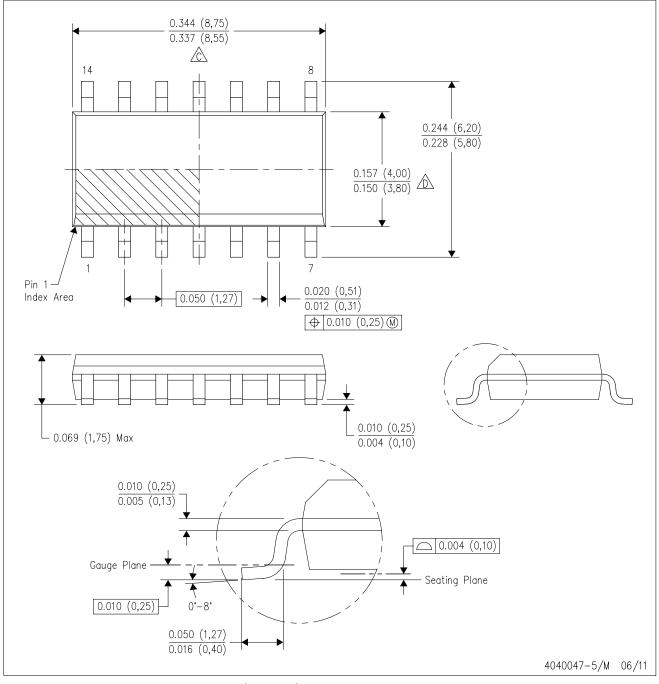
MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0°-10° Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

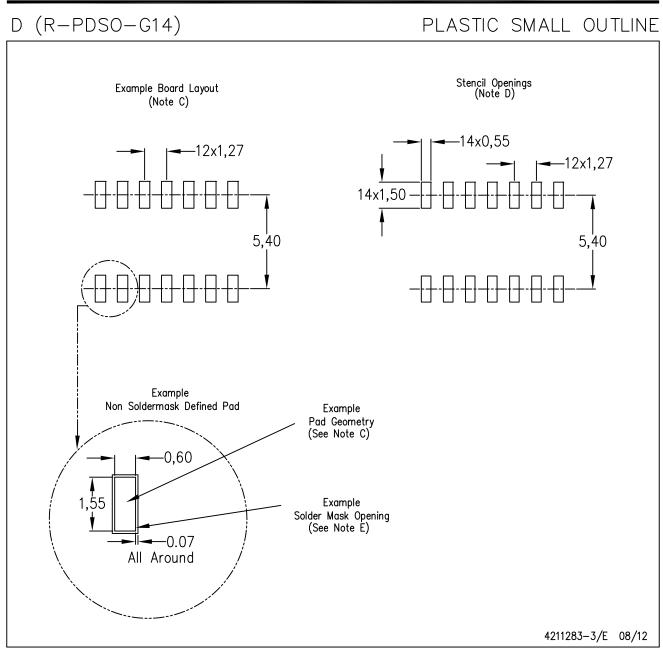
NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)


14-PINS SHOWN

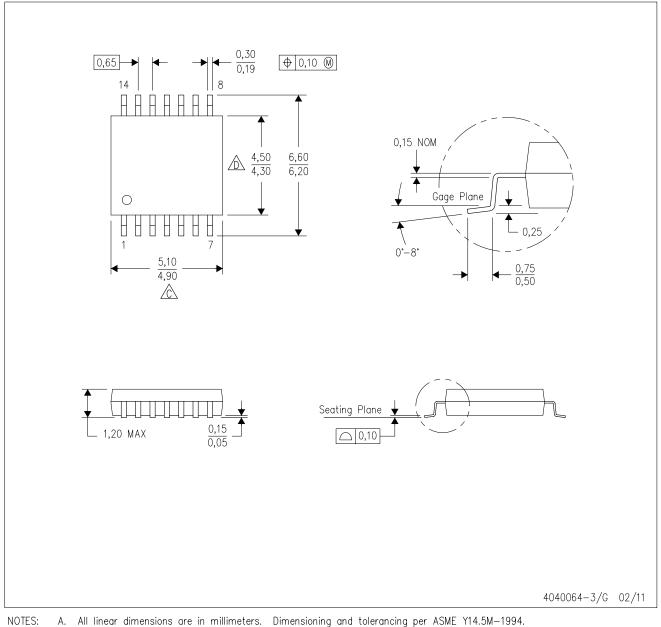
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

D (R-PDSO-G14)


PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE

A. An integration of the information o

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated