OPA1611, OPA1612

OPA161x SoundPlus™ High-Performance, Bipolar-Input Audio Operational Amplifiers

1 Features

- Superior Sound Quality
- Ultralow Noise: 1.1 nV/√Hz at 1 kHz
- Ultralow Distortion: 0.000015% at 1 kHz
- High Slew Rate: 27 V/μs
- Wide Bandwidth: 40 MHz (G = +1)
- High Open-Loop Gain: 130 dB
- Unity Gain Stable
- Low Quiescent Current: 3.6 mA per Channel
- Rail-to-Rail Output
- Wide Supply Range: ±2.25 V to ±18 V
- Single and Dual Versions Available

2 Applications

- Professional Audio Equipment
- Microphone Preamplifiers
- Analog and Digital Mixing Consoles
- Broadcast Studio Equipment
- Audio Test And Measurement
- High-End A/V Receivers

3 Description

The OPA1611 (single) and OPA1612 (dual) bipolar-input operational amplifiers achieve very low 1.1-nV/√Hz noise density with an ultralow distortion of 0.000015% at 1 kHz. The OPA1611 and OPA1612 offer rail-to-rail output swing to within 600 mV with a 2-kΩ load, which increases headroom and maximizes dynamic range. These devices also have a high output drive capability of ±30 mA.

These devices operate over a very wide supply range of ±2.25 V to ±18 V, on only 3.6 mA of supply current per channel. The OPA1611 and OPA1612 op amps are unity-gain stable and provide excellent dynamic behavior over a wide range of load conditions.

The dual version features completely independent circuitry for lowest crosstalk and freedom from interactions between channels, even when overdriven or overloaded.

Both the OPA1611 and OPA1612 are available in SOIC-8 packages and the OPA1612 is available in SON-8. These devices are specified from –40°C to +85°C.

Device Information(1)

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA1611</td>
<td>SOIC (8)</td>
<td>4.90 mm × 3.91 mm</td>
</tr>
<tr>
<td>OPA1612</td>
<td>SOIC (8)</td>
<td>4.90 mm × 3.91 mm</td>
</tr>
<tr>
<td></td>
<td>SON (8)</td>
<td>3.00 mm × 3.00 mm</td>
</tr>
</tbody>
</table>

(1) For all available packages, see the orderable addendum at the end of the datasheet.

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.
Table of Contents

1 Features .. 1
2 Applications .. 1
3 Description ... 1
4 Revision History .. 2
5 Pin Configuration and Functions 3
6 Specifications .. 4
 6.1 Absolute Maximum Ratings 4
 6.2 Handling Ratings ... 4
 6.3 Recommended Operating Conditions 4
 6.4 Electrical Characteristics: \(V_S = \pm2.25 \text{ V} \) to \(\pm18 \text{ V} \) ... 5
 6.5 Typical Characteristics 7
7 Detailed Description .. 12
 7.1 Overview .. 12
 7.2 Functional Block Diagram 12
 7.3 Feature Description 12
8 Application and Implementation 15
9 Power-Supply Recommendations 19
10 Layout .. 20
 10.1 Layout Guidelines 20
 10.2 Layout Example---------- 20
11 Device and Documentation Support 21
 11.1 Documentation Support 21
 11.2 Related Links .. 21
 11.3 Trademarks ... 21
 11.4 Electrostatic Discharge Caution 21
 11.5 Glossary .. 21
12 Mechanical, Packaging, and Orderable Information .. 21

4 Revision History

Changes from Revision B (July 2011) to Revision C Page

- Changed format to meet latest data sheet standards; added new sections, and moved existing sections 1
- Added SON-8 (DRG) package to data sheet .. 1
- Changed SO to SOIC throughout document to match industry standard term .. 1
- Added front-page curve .. 1
- Added title to block diagram .. 1
- Deleted Package Information table; see package option addendum... 3

Changes from Revision A (August 2009) to Revision B Page

- Revised Features list items ... 1
- Updated front-page figure ... 1
- Added max specification for input voltage noise density at \(f = 1 \text{ kHz} \) .. 5
- Corrected typo in footnote 1 for Electrical Characteristics .. 5
- Revised Figure 4 ... 7
- Updated Figure 7 ... 7
- Changed Figure 9 ... 7
- Revised Figure 11 ... 7
- Corrected typo in Figure 15 .. 8
- Updated Figure 29 .. 12
- Revised fourth paragraph of Electrical Overstress section .. 13
- Revised table in Figure 34 .. 17

Submit Documentation Feedback

Copyright © 2009–2014, Texas Instruments Incorporated

Product Folder Links: OPA1611 OPA1612
5 Pin Configuration and Functions

(1) NC denotes no internal connection. Pin can be left floating or connected to any voltage between (V–) and (V+).

(2) Exposed thermal die pad on underside; connect thermal die pad to V–. Soldering the thermal pad improves heat dissipation and provides specified performance.

Pin Functions

<table>
<thead>
<tr>
<th>PIN NAME</th>
<th>NO.</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>−IN</td>
<td>2</td>
<td>I</td>
<td>Inverting input</td>
</tr>
<tr>
<td>+IN</td>
<td>3</td>
<td>I</td>
<td>Noninverting input</td>
</tr>
<tr>
<td>−IN A</td>
<td>2</td>
<td>I</td>
<td>Inverting input, channel A</td>
</tr>
<tr>
<td>+IN A</td>
<td>3</td>
<td>I</td>
<td>Noninverting input, channel A</td>
</tr>
<tr>
<td>−IN B</td>
<td>6</td>
<td>I</td>
<td>Inverting input, channel B</td>
</tr>
<tr>
<td>+IN B</td>
<td>5</td>
<td>I</td>
<td>Noninverting input, channel B</td>
</tr>
<tr>
<td>NC</td>
<td>1, 5, 8</td>
<td>—</td>
<td>No internal connection</td>
</tr>
<tr>
<td>OUT</td>
<td>6</td>
<td>O</td>
<td>Output</td>
</tr>
<tr>
<td>OUT A</td>
<td>1</td>
<td>O</td>
<td>Output, channel A</td>
</tr>
<tr>
<td>OUT B</td>
<td>7</td>
<td>O</td>
<td>Output, channel B</td>
</tr>
<tr>
<td>V–</td>
<td>4</td>
<td>—</td>
<td>Negative (lowest) power supply</td>
</tr>
<tr>
<td>V+</td>
<td>7</td>
<td>—</td>
<td>Positive (highest) power supply</td>
</tr>
</tbody>
</table>
6 Specifications

6.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted)\(^{(1)}\)

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage (V_S = (V+) - (V–))</td>
<td>40</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Input voltage ((V–) - 0.5)</td>
<td></td>
<td>((V+) + 0.5)</td>
<td>V</td>
</tr>
<tr>
<td>Input current (all pins except power-supply pins)</td>
<td>±10</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Output short-circuit(^{(2)})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating temperature (T_A)</td>
<td>−55</td>
<td>+125</td>
<td>°C</td>
</tr>
<tr>
<td>Junction temperature (T_J)</td>
<td>200</td>
<td></td>
<td>°C</td>
</tr>
</tbody>
</table>

\(^{(1)}\) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

\(^{(2)}\) Short-circuit to \(V_S / 2\) (ground in symmetrical dual supply setups), one amplifier per package.

6.2 Handling Ratings

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_{stg}) Storage temperature range</td>
<td>−65</td>
<td>+150</td>
<td>°C</td>
</tr>
<tr>
<td>(V_{(ESD)}) Electrostatic discharge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(^{(1)})</td>
<td>−3000</td>
<td>3000</td>
<td>V</td>
</tr>
<tr>
<td>Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(^{(2)})</td>
<td>−1000</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>Machine model (MM)</td>
<td>−200</td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>

\(^{(1)}\) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

\(^{(2)}\) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions
over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage ((V+ - V–))</td>
<td>4.5</td>
<td>±(2.5)</td>
<td>36</td>
<td>±(18)</td>
</tr>
<tr>
<td>Specified temperature</td>
<td>−40</td>
<td></td>
<td>+85</td>
<td></td>
</tr>
</tbody>
</table>
6.4 Electrical Characteristics: \(V_S = \pm 2.25 \text{ V to } \pm 18 \text{ V} \)

At \(T_A = +25°C \) and \(R_L = 2 \text{ k\O} \), unless otherwise noted. \(V_{CM} = V_{OUT} = \text{midsupply} \), unless otherwise noted.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUDIO PERFORMANCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THD+N</td>
<td>Total harmonic distortion + noise</td>
<td>(G = +1, f = 1 \text{ kHz}, V_O = 3 V_{RMS})</td>
<td>0.000015%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMD</td>
<td>Intermodulation distortion</td>
<td>SMpte/DIN two-tone, 4:1 (60 Hz and 7 kHz), (G = +1, V_O = 3 V_{RMS})</td>
<td>0.000015%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DIM 30 (3-kHz square wave and 15-kHz sine wave), (G = +1, V_O = 3 V_{RMS})</td>
<td>0.000012%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CCIF twin-tone (19 kHz and 20 kHz), (G = +1, V_O = 3 V_{RMS})</td>
<td>0.000008%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FREQUENCY RESPONSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GBW</td>
<td>Gain-bandwidth product</td>
<td>(G = 100)</td>
<td>80</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>SR</td>
<td>Slew rate</td>
<td>(G = –1)</td>
<td>27</td>
<td>(V/\mu \text{s})</td>
<td></td>
</tr>
<tr>
<td>Overload recovery time</td>
<td></td>
<td>(V_O = 1 V_{PP})</td>
<td>4</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>Channel separation (dual)</td>
<td></td>
<td>(f = 1 \text{ kHz})</td>
<td>500</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>NOISE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e_n)</td>
<td>Input voltage noise</td>
<td>(f = 20 \text{ Hz to } 20 \text{ kHz})</td>
<td>1.2</td>
<td>(\mu V_{PP})</td>
<td></td>
</tr>
<tr>
<td>(e_n)</td>
<td>Input voltage noise density(2)</td>
<td>(f = 10 \text{ Hz})</td>
<td>2</td>
<td>(nV/\sqrt{Hz})</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(f = 100 \text{ Hz})</td>
<td>1.5</td>
<td>(nV/\sqrt{Hz})</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(f = 1 \text{ kHz})</td>
<td>1.1</td>
<td>1.5</td>
<td>(nV/\sqrt{Hz})</td>
</tr>
<tr>
<td></td>
<td>Input current noise density</td>
<td>(f = 1 \text{ kHz})</td>
<td>1</td>
<td>(\mu A/\sqrt{Hz})</td>
<td></td>
</tr>
<tr>
<td>OFFSET VOLTAGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{OS})</td>
<td>Input offset voltage</td>
<td>(V_S = \pm 15 \text{ V})</td>
<td>±100</td>
<td>±500</td>
<td>(\mu V)</td>
</tr>
<tr>
<td>(dV_{OS}/dT)</td>
<td>(V_{OS}) over temperature(2)</td>
<td>(T_A = –40°C \text{ to } +85°C)</td>
<td>1</td>
<td>4</td>
<td>(\mu V/\text{°C})</td>
</tr>
<tr>
<td>PSRR</td>
<td>Power-supply rejection ratio</td>
<td>(V_S = \pm 2.25 \text{ V to } \pm 18 \text{ V})</td>
<td>0.1</td>
<td>1</td>
<td>(\mu V/\text{V})</td>
</tr>
<tr>
<td>INPUT BIAS CURRENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_B)</td>
<td>Input bias current</td>
<td>(V_{CM} = 0 \text{ V})</td>
<td>±60</td>
<td>±250</td>
<td>(nA)</td>
</tr>
<tr>
<td></td>
<td>VCM = 0 V, DRG package only</td>
<td>±60</td>
<td>±300</td>
<td>(nA)</td>
<td></td>
</tr>
<tr>
<td>(I_B) over temperature(2)</td>
<td>(T_A = –40°C \text{ to } +85°C)</td>
<td>±60</td>
<td>±300</td>
<td>(nA)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Input offset current</td>
<td>(V_{CM} = 0 \text{ V})</td>
<td>±25</td>
<td>±175</td>
<td>(nA)</td>
</tr>
<tr>
<td>INPUT VOLTAGE RANGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{CM})</td>
<td>Common-mode voltage range</td>
<td>((V–) + 2 \text{ V} \leq V_{CM} \leq (V+) – 2 \text{ V})</td>
<td>110</td>
<td>120</td>
<td>dB</td>
</tr>
<tr>
<td>CMRR</td>
<td>Common-mode rejection ratio</td>
<td>((V–) + 2 \text{ V} \leq V_{CM} \leq (V+) – 2 \text{ V})</td>
<td>1.1</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>INPUT IMPEDANCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential</td>
<td></td>
<td>20k</td>
<td></td>
<td>8</td>
<td>(\Omega)</td>
</tr>
<tr>
<td>Common-mode</td>
<td></td>
<td>10(^3)</td>
<td></td>
<td>2</td>
<td>(\Omega)</td>
</tr>
</tbody>
</table>

(1) Full-power bandwidth = \(SR / (2\pi \times V_P) \), where \(SR = \text{slew rate} \).
(2) Specified by design and characterization.
Electrical Characteristics: \(V_S = \pm 2.25 \, \text{V} \) to \(\pm 18 \, \text{V} \) (continued)

At \(T_A = +25^\circ \text{C} \) and \(R_L = 2 \, \text{k}\Omega \), unless otherwise noted. \(V_{CM} = V_{OUT} = \text{midsupply} \), unless otherwise noted.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPEN-LOOP GAIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A_{OL}) Open-loop voltage gain</td>
<td>((V-) + 0.2 , \text{V} \leq V_O \leq (V+) - 0.2 , \text{V}, R_L = 10 , \text{k}\Omega)</td>
<td>114</td>
<td>130</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>((V-) + 0.6 , \text{V} \leq V_O \leq (V+) - 0.6 , \text{V}, R_L = 2 , \text{k}\Omega)</td>
<td>110</td>
<td>114</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>OUTPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{OUT}) Voltage output</td>
<td>((V-) + 0.2 , \text{V} \leq V_O \leq (V+) - 0.2 , \text{V}, R_L = 10 , \text{k}\Omega)</td>
<td></td>
<td></td>
<td>114</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>((V-) + 0.6 , \text{V} \leq V_O \leq (V+) - 0.6 , \text{V}, R_L = 2 , \text{k}\Omega)</td>
<td></td>
<td></td>
<td>110</td>
<td>dB</td>
</tr>
<tr>
<td>(I_{OUT}) Output current</td>
<td>(R_L = 10 , \text{k}\Omega, A_{OL} \geq 114 , \text{dB})</td>
<td></td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>(R_L = 2 , \text{k}\Omega, A_{OL} \geq 110 , \text{dB})</td>
<td></td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>(I_{SC}) Short-circuit current</td>
<td>((V-) + 0.2 , \text{V} \leq V_O \leq (V+) - 0.2 , \text{V})</td>
<td>+55</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>((V-) + 0.6 , \text{V} \leq V_O \leq (V+) - 0.6 , \text{V})</td>
<td>-62</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>(C_{LOAD}) Capacitive load drive</td>
<td>See Figure 27</td>
<td></td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>POWER SUPPLY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_S) Specified voltage</td>
<td>(\pm 2.25 , \text{V} \leq \pm 18 , \text{V})</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(I_Q) Quiescent current (per channel)</td>
<td>(I_{OUT} = 0 , \text{A})</td>
<td>3.6</td>
<td>4.5</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>(T_A = -40^\circ \text{C}) to (+85^\circ \text{C})</td>
<td></td>
<td></td>
<td>5.5</td>
<td>mA</td>
</tr>
<tr>
<td>TEMPERATURE RANGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specified range</td>
<td>(-40) () (+85) °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating range</td>
<td>(-55) (+125) °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\theta_{JA}) Thermal resistance, SOIC-8</td>
<td>See Typical Characteristics</td>
<td>150</td>
<td></td>
<td></td>
<td>°C/W</td>
</tr>
</tbody>
</table>

(3) Specified by design and characterization.
6.5 Typical Characteristics

At $T_A = +25^\circ C$, $V_S = \pm 15\, V$, and $R_L = 2\, k\Omega$, unless otherwise noted.

Figure 1. Input Voltage Noise Density and Input Current Noise Density vs Frequency

Figure 2. 0.1-Hz to 10-Hz Noise

Figure 3. Voltage Noise vs Source Resistance

Figure 4. Maximum Output Voltage vs Frequency

Figure 5. Gain and Phase vs Frequency

Figure 6. Closed-Loop Gain vs Frequency
Typical Characteristics (continued)

At $T_A = +25°C$, $V_S = \pm 15\, V$, and $R_L = 2\, k\Omega$, unless otherwise noted.

- **Figure 7. THD+N Ratio vs Frequency**
- **Figure 8. THD+N Ratio vs Frequency**
- **Figure 9. THD+N Ratio vs Frequency**
- **Figure 10. THD+N Ratio vs Frequency**
- **Figure 11. THD+N Ratio vs Output Amplitude**
- **Figure 12. Intermodulation Distortion vs Output Amplitude**
Typical Characteristics (continued)

At $T_A = +25^\circ C$, $V_S = \pm 15 V$, and $R_L = 2 \, k\Omega$, unless otherwise noted.

![Channel Separation vs Frequency](Image)

Figure 13. Channel Separation vs Frequency

![CMRR and PSRR vs Frequency](Image)

Figure 14. CMRR and PSRR vs Frequency (Referred to Input)

![Small-Signal Step Response (100 mV)](Image)

Figure 15. Small-Signal Step Response (100 mV)

![Large-Signal Step Response](Image)

Figure 17. Large-Signal Step Response

![Small-Signal Step Response (100 mV)](Image)

Figure 16. Small-Signal Step Response (100 mV)

Figure 18. Large-Signal Step Response
Typical Characteristics (continued)

At $T_A = +25^\circ C$, $V_S = \pm 15$ V, and $R_L = 2$ kΩ, unless otherwise noted.
Typical Characteristics (continued)

At \(T_A = +25^\circ C, V_S = \pm 15 \text{ V}, \) and \(R_L = 2 \text{ k}\Omega, \) unless otherwise noted.

![Figure 25. Quiescent Current vs Supply Voltage](image)

![Figure 26. Short-Circuit Current vs Temperature](image)

![Figure 27. Output Voltage vs Output Current](image)

![Figure 28. Open-Loop Output Impedance vs Frequency](image)
7 Detailed Description

7.1 Overview
The OPA161x family of bipolar-input operational amplifiers achieve very low 1.1-nV/√Hz noise density with an ultralow distortion of 0.000015% at 1 kHz. The rail-to-rail output swing, within 600 mV with a 2-kΩ load, increases headroom and maximizes dynamic range. These devices also have a high output drive capability of ±40 mA. The wide supply range of ±2.25 V to ±18 V, on only 3.6 mA of supply current per channel, makes them applicable to both 5V systems and 36V audio applications. The OPA1611 and OPA1612 op amps are unity-gain stable and provide excellent dynamic behavior over a wide range of load conditions.

7.2 Functional Block Diagram

![Figure 29. OPA1611 Simplified Schematic](image)

7.3 Feature Description

7.3.1 Power Dissipation
The OPA1611 and OPA1612 series op amps are capable of driving 2-kΩ loads with a power-supply voltage up to ±18 V. Internal power dissipation increases when operating at high supply voltages. Copper leadframe construction used in the OPA1611 and OPA1612 series op amps improves heat dissipation compared to conventional materials. Circuit board layout can also help minimize junction temperature rise. Wide copper traces help dissipate the heat by acting as an additional heat sink. Temperature rise can be further minimized by soldering the devices to the circuit board rather than using a socket.

7.3.2 Electrical Overstress
Designers often ask questions about the capability of an operational amplifier to withstand electrical overstress. These questions tend to focus on the device inputs, but may involve the supply voltage pins or even the output pin. Each of these different pin functions have electrical stress limits determined by the voltage breakdown characteristics of the particular semiconductor fabrication process and specific circuits connected to the pin. Additionally, internal electrostatic discharge (ESD) protection is built into these circuits to protect them from accidental ESD events both before and during product assembly.
Feature Description (continued)

Having a good understanding of this basic ESD circuitry and its relevance to an electrical overstress event is helpful. **Figure 30** shows the ESD circuits contained in the OPA161x series (indicated by the dashed line area). The ESD protection circuitry involves several current-steering diodes connected from the input and output pins and routed back to the internal power-supply lines, where they meet at an absorption device internal to the operational amplifier. This protection circuitry is intended to remain inactive during normal circuit operation.

\[V_{IN} = +V_S + 500 \text{ mV}. \]

Figure 30. Equivalent Internal ESD Circuitry and its Relation to a Typical Circuit Application

An ESD event produces a short duration, high-voltage pulse that is transformed into a short duration, high-current pulse when discharged through a semiconductor device. The ESD protection circuits are designed to provide a current path around the operational amplifier core to prevent damage to the core. The energy absorbed by the protection circuitry is then dissipated as heat.

When an ESD voltage develops across two or more of the amplifier device pins, current flows through one or more of the steering diodes. Depending on the path that the current takes, the absorption device may activate. The absorption device internal to the OPA1611 triggers when a fast ESD voltage pulse is impressed across the supply pins. Once triggered, the absorption device quickly activates and clamps the ESD pulse to a safe voltage level.

When the operational amplifier connects into a circuit such as the one **Figure 30** shows, the ESD protection components are intended to remain inactive and not become involved in the application circuit operation. However, circumstances may arise where an applied voltage exceeds the operating voltage range of a given pin. If this condition occurs, some of the internal ESD protection circuits may possibly be biased on, and conduct current. Any such current flow occurs through steering diode paths and rarely involves the absorption device.

Figure 30 shows a specific example where the input voltage, \(V_{IN} \), exceeds the positive supply voltage (+\(V_S \)) by 500 mV or more. Much of what happens in the circuit depends on the supply characteristics. If +\(V_S \) can sink the current, one of the upper input steering diodes conducts and directs current to +\(V_S \). Excessively high current levels can flow with increasingly higher \(V_{IN} \). As a result, the datasheet specifications recommend that applications limit the input current to 10 mA.
Feature Description (continued)

If the supply is not capable of sinking the current, V_{IN} may begin sourcing current to the operational amplifier, and then take over as the source of positive supply voltage. The danger in this case is that the voltage can rise to levels that exceed the operational amplifier absolute maximum ratings. In extreme but rare cases, the absorption device triggers on while $+V_S$ and $-V_S$ are applied. If this event happens, a direct current path is established between the $+V_S$ and $-V_S$ supplies. The power dissipation of the absorption device is quickly exceeded, and the extreme internal heating destroys the operational amplifier.

Another common question involves what happens to the amplifier if an input signal is applied to the input while the power supplies $+V_S$ or $-V_S$ are at 0 V. Again, the result depends on the supply characteristic while at 0 V, or at a level below the input signal amplitude. If the supplies appear as high impedance, then the operational amplifier supply current may be supplied by the input source via the current steering diodes. This state is not a normal bias condition; the amplifier most likely does not operate normally. If the supplies are low impedance, then the current through the steering diodes can become quite high. The current level depends on the ability of the input source to deliver current, and any resistance in the input path.

If there is an uncertainty about the ability of the supply to absorb this current, external zener diodes may be added to the supply pins; see Figure 30. The zener voltage must be selected such that the diode does not turn on during normal operation. However, the zener diode voltage must be low enough so that the zener diode conducts if the supply pin begins to rise above the safe operating supply voltage level.

7.3.3 Operating Voltage

The OPA161x series op amps operate from ±2.25-V to ±18-V supplies while maintaining excellent performance. The OPA161x series can operate with as little as +4.5 V between the supplies and with up to +36 V between the supplies. However, some applications do not require equal positive and negative output voltage swing. With the OPA161x series, power-supply voltages do not need to be equal. For example, the positive supply could be set to +25 V with the negative supply at –5 V.

In all cases, the common-mode voltage must be maintained within the specified range. In addition, key parameters are assured over the specified temperature range of $T_A = -40°C$ to $+85°C$. Parameters that vary with operating voltage or temperature are shown in the Typical Characteristics.

7.3.4 Input Protection

The input terminals of the OPA1611 and the OPA1612 are protected from excessive differential voltage with back-to-back diodes, as Figure 31 shows. In most circuit applications, the input protection circuitry has no consequence. However, in low-gain or $G = +1$ circuits, fast ramping input signals can forward bias these diodes because the output of the amplifier cannot respond rapidly enough to the input ramp. This effect is illustrated in Figure 17 of the Typical Characteristics. If the input signal is fast enough to create this forward bias condition, the input signal current must be limited to 10 mA or less. If the input signal current is not inherently limited, an input series resistor (R_I) or a feedback resistor (R_F) can be used to limit the signal input current. This input series resistor degrades the low-noise performance of the OPA1611 and is examined in the Noise Performance section. Figure 31 shows an example configuration when both current-limiting input and feedback resistors are used.

![Figure 31. Pulsed Operation](image-url)
8 Application and Implementation

8.1 Application Information

The OPA1611 and OPA1612 are unity-gain stable, precision op amps with very low noise; these devices are also free from output phase reversal. Applications with noisy or high-impedance power supplies require decoupling capacitors close to the device power-supply pins. In most cases, 0.1-μF capacitors are adequate.

8.2 Noise Performance

Figure 32 shows the total circuit noise for varying source impedances with the op amp in a unity-gain configuration (no feedback resistor network, and therefore no additional noise contributions).

The OPA1611 (GBW = 40 MHz, G = +1) is shown with total circuit noise calculated. The op amp itself contributes both a voltage noise component and a current noise component. The voltage noise is commonly modeled as a time-varying component of the offset voltage. The current noise is modeled as the time-varying component of the input bias current and reacts with the source resistance to create a voltage component of noise. Therefore, the lowest noise op amp for a given application depends on the source impedance. For low source impedance, current noise is negligible, and voltage noise generally dominates. The low voltage noise of the OPA161x series op amps makes them a good choice for use in applications where the source impedance is less than 1 kΩ.

8.2.1 Detailed Design Procedure

The equation in Figure 32 shows the calculation of the total circuit noise, with these parameters:

- e_n = voltage noise
- I_n = current noise
- R_S = source impedance
- $k = \text{Boltzmann’s constant} = 1.38 \times 10^{-23} \text{ J/K}$
- $T = \text{temperature in degrees Kelvin (K)}$

8.2.2 Application Curve

Figure 32. Noise Performance of the OPA1611 In Unity-Gain Buffer Configuration

8.2.3 Basic Noise Calculations

Design of low-noise op amp circuits requires careful consideration of a variety of possible noise contributors: noise from the signal source, noise generated in the op amp, and noise from the feedback network resistors. The total noise of the circuit is the root-sum-square combination of all noise components.

The resistive portion of the source impedance produces thermal noise proportional to the square root of the resistance. Figure 32 plots this function. The source impedance is usually fixed; consequently, select the op amp and the feedback resistors to minimize the respective contributions to the total noise.
Noise Performance (continued)

Figure 33 shows both inverting and noninverting op amp circuit configurations with gain. In circuit configurations with gain, the feedback network resistors also contribute noise.

The current noise of the op amp reacts with the feedback resistors to create additional noise components. The feedback resistor values can generally be chosen to make these noise sources negligible. The equations for total noise are shown for both configurations.

Noise in Noninverting Gain Configuration

![Noninverting Gain Configuration Diagram]

Noise at the output:

\[
E_O^2 = \left(1 + \frac{R_2}{R_1}\right)^2 e_n^2 + e_1^2 + e_2^2 + \left(\frac{i_n R_2}{R_1}\right)^2 + e_{i_n}^2 + \left(\frac{i_n R_2}{R_1}\right)^2 \left(1 + \frac{R_2}{R_1}\right)^2
\]

Where:

- \(e_n = \sqrt{4kT R_S}\) = thermal noise of \(R_S\)
- \(e_1 = \sqrt{4kT R_1}\) = thermal noise of \(R_1\)
- \(e_2 = \sqrt{4kT R_2}\) = thermal noise of \(R_2\)

For the OPA161x series op amps at 1 kHz, \(e_n = 1.1 \text{nV}/\sqrt{\text{Hz}}\) and \(i_n = 1.7 \text{pA}/\sqrt{\text{Hz}}\).

Noise in Inverting Gain Configuration

![Inverting Gain Configuration Diagram]

Noise at the output:

\[
E_O^2 = \left(1 + \frac{R_2}{R_1 + R_S}\right)^2 e_n^2 + e_1^2 + e_2^2 + \left(\frac{i_n R_2}{R_1}\right)^2 + e_{i_n}^2
\]

Where:

- \(e_n = \sqrt{4kT R_S}\) = thermal noise of \(R_S\)
- \(e_1 = \sqrt{4kT R_1}\) = thermal noise of \(R_1\)
- \(e_2 = \sqrt{4kT R_2}\) = thermal noise of \(R_2\)

Figure 33. Noise Calculation in Gain Configurations
8.3 Total Harmonic Distortion Measurements

The OPA161x series op amps have excellent distortion characteristics. THD + noise is below 0.00008% (G = +1, \(V_O = 3 \ V_{RMS} \), BW = 80 kHz) throughout the audio frequency range, 20 Hz to 20 kHz, with a 2-kΩ load (see Figure 7 for characteristic performance).

The distortion produced by OPA1611 series op amps is below the measurement limit of many commercially available distortion analyzers. However, a special test circuit (such as Figure 34 shows) can be used to extend the measurement capabilities.

Op amp distortion can be considered an internal error source that can be referred to the input. Figure 34 shows a circuit that causes the op amp distortion to be 101 times (or approximately 40 dB) greater than that normally produced by the op amp. The addition of \(R_3 \) to the otherwise standard noninverting amplifier configuration alters the feedback factor or noise gain of the circuit. The closed-loop gain is unchanged, but the feedback available for error correction is reduced by a factor of 101, thus extending the resolution by 101. Note that the input signal and load applied to the op amp are the same as with conventional feedback without \(R_3 \). Keep the value of \(R_3 \) small to minimize its effect on the distortion measurements.

Validity of this technique can be verified by duplicating measurements at high gain and/or high frequency where the distortion is within the measurement capability of the test equipment. Measurements for this data sheet were made with an audio precision system two distortion and noise analyzer, which greatly simplifies such repetitive measurements. The measurement technique can, however, be performed with manual distortion measurement instruments.

![Distortion Test Circuit](image)

(1) For measurement bandwidth, see Figure 7 through Figure 12.

Figure 34. Distortion Test Circuit

8.4 Capacitive Loads

The dynamic characteristics of the OPA1611 and OPA1612 have been optimized for commonly encountered gains, loads, and operating conditions. The combination of low closed-loop gain and high capacitive loads decreases the phase margin of the amplifier and can lead to gain peaking or oscillations. As a result, heavier capacitive loads must be isolated from the output. The simplest way to achieve this isolation is to add a small resistor (\(R_S \) equal to 50 Ω, for example) in series with the output.

This small series resistor also prevents excess power dissipation if the output of the device becomes shorted. Figure 19 and Figure 20 illustrate graphs of Small-Signal Overshoot vs Capacitive Load for several values of \(R_S \). Also, refer to Applications Bulletin AB-028, Feedback Plots Define Op Amp AC Performance (SBOA015), available for download from the TI web site, for details of analysis techniques and application circuits.
8.5 Application Circuit

Figure 35 shows how to use the OPA1611 as an amplifier for professional audio headphones. The circuit shows the left side stereo channel. An identical circuit is used to drive the right side stereo channel.

![Application Circuit Diagram]

Figure 35. Audio DAC Post Filter (I/V Converter and Low-Pass Filter)
9 Power-Supply Recommendations

The OPA161x is specified for operation from 4.5 V to 36 V (±2.25 V to ±18 V); many specifications apply from –40°C to +85°C. Parameters that can exhibit significant variance with regard to operating voltage or temperature are presented in the Typical Characteristics section.

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltages larger than 40 V can permanently damage the device; see the Absolute Maximum Ratings.</td>
</tr>
</tbody>
</table>

Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-impedance power supplies. For more detailed information on bypass capacitor placement, refer to the Typical Characteristics section.
10 Layout

10.1 Layout Guidelines

For best operational performance of the device, use good printed circuit board (PCB) layout practices, including:

- Noise can propagate into analog circuitry through the power pins of the circuit as a whole and the op amp itself. Bypass capacitors are used to reduce the coupled noise by providing low-impedance power sources local to the analog circuitry.
 - Connect low-ESR, 0.1-μF ceramic bypass capacitors between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-supply applications.
- Separate grounding for analog and digital portions of the circuitry is one of the simplest and most-effective methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes. A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital and analog grounds while paying attention to the flow of the ground current. For more detailed information, refer to the application report *Circuit Board Layout Techniques* (SLOA089).
- In order to reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If these traces cannot be kept them separate, crossing the sensitive trace perpendicular as opposed to in parallel with the noisy trace is the preferred method.
- Place the external components as close to the device as possible. As shown in Figure 36, keeping RF and RG close to the inverting input minimizes parasitic capacitance.
- Keep the length of input traces as short as possible. Always remember that the input traces are the most sensitive part of the circuit.
- Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce leakage currents from nearby traces that are at different potentials.

10.2 Layout Example

![Schematic Representation](image-url)

Figure 36. Operational Amplifier Board Layout for a Noninverting Configuration
11 Device and Documentation Support

11.1 Documentation Support

11.1.1 Related Documentation
For related documentation see the following:

• Feedback Plots Define Op Amp AC Performance, SBOA015
• Circuit Board Layout Techniques, SLOA089

11.2 Related Links
The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

<table>
<thead>
<tr>
<th>PARTS</th>
<th>PRODUCT FOLDER</th>
<th>SAMPLE & BUY</th>
<th>TECHNICAL DOCUMENTS</th>
<th>TOOLS & SOFTWARE</th>
<th>SUPPORT & COMMUNITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA1611</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
</tr>
<tr>
<td>OPA1612</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
</tr>
</tbody>
</table>

11.3 Trademarks
SoundPlus is a trademark of Texas Instruments, Inc. All other trademarks are the property of their respective owners.

11.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
PACKAGING INFORMATION

| Orderable Device | Status
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA1611AID</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>OPA1611AIDR</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>OPA1612AID</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>OPA1612AIDR</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>OPA1612AIDRGR</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>OPA1612AIDRGT</td>
<td>ACTIVE</td>
</tr>
</tbody>
</table>

Orderable Device Details

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins Qty</th>
<th>Eco Plan</th>
<th>Lead finish/ Ball material</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA1611AID</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 85</td>
<td>OPA1611A</td>
<td></td>
</tr>
<tr>
<td>OPA1611AIDR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 85</td>
<td>OPA1611A</td>
<td></td>
</tr>
<tr>
<td>OPA1612AID</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 85</td>
<td>OPA1612A</td>
<td></td>
</tr>
<tr>
<td>OPA1612AIDR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 85</td>
<td>OPA1612A</td>
<td></td>
</tr>
<tr>
<td>OPA1612AIDRGR</td>
<td>ACTIVE</td>
<td>SON</td>
<td>DRG</td>
<td>8</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 85</td>
<td>OVII</td>
<td></td>
</tr>
<tr>
<td>OPA1612AIDRGT</td>
<td>ACTIVE</td>
<td>SON</td>
<td>DRG</td>
<td>8</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 85</td>
<td>OVII</td>
<td></td>
</tr>
</tbody>
</table>

Notes

1. The marketing status values are defined as follows:
 - **ACTIVE**: Product device recommended for new designs.
 - **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
 - **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
 - **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
 - **OBSOLETE**: TI has discontinued the production of the device.

2. **RoHS**: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
 - **RoHS Exempt**: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
 - **Green**: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

3. **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

4. There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

5. Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:
The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF OPA1612:

- Automotive: OPA1612-Q1

NOTE: Qualified Version Definitions:

- Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects
REEL DIMENSIONS

TAPE DIMENSIONS

A0 Dimension designed to accommodate the component width
B0 Dimension designed to accommodate the component length
K0 Dimension designed to accommodate the component thickness
W Overall width of the carrier tape
P1 Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Pocket Quadrants

Sprocket Holes

User Direction of Feed

*All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA1611AIDR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.4</td>
<td>5.2</td>
<td>2.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>OPA1612AIDR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.4</td>
<td>5.2</td>
<td>2.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>OPA1612AIDRGR</td>
<td>SON</td>
<td>DRG</td>
<td>8</td>
<td>3000</td>
<td>330.0</td>
<td>12.4</td>
<td>3.3</td>
<td>3.3</td>
<td>1.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q2</td>
</tr>
<tr>
<td>OPA1612AIDRGT</td>
<td>SON</td>
<td>DRG</td>
<td>8</td>
<td>250</td>
<td>180.0</td>
<td>12.4</td>
<td>3.3</td>
<td>3.3</td>
<td>1.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q2</td>
</tr>
</tbody>
</table>
TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA1611AIDR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>356.0</td>
<td>356.0</td>
<td>35.0</td>
</tr>
<tr>
<td>OPA1612AIDR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>356.0</td>
<td>356.0</td>
<td>35.0</td>
</tr>
<tr>
<td>OPA1612AIDRGR</td>
<td>SON</td>
<td>DRG</td>
<td>8</td>
<td>3000</td>
<td>356.0</td>
<td>356.0</td>
<td>35.0</td>
</tr>
<tr>
<td>OPA1612AIDRGT</td>
<td>SON</td>
<td>DRG</td>
<td>8</td>
<td>250</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>
TUBE

*T - Tube height

*L - Tube length

*W - Tube width

*B - Alignment groove width

*All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Name</th>
<th>Package Type</th>
<th>Pins</th>
<th>SPQ</th>
<th>L (mm)</th>
<th>W (mm)</th>
<th>T (µm)</th>
<th>B (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA1611AID</td>
<td>D</td>
<td>SOIC</td>
<td>8</td>
<td>75</td>
<td>506.6</td>
<td>8</td>
<td>3940</td>
<td>4.32</td>
</tr>
<tr>
<td>OPA1612AID</td>
<td>D</td>
<td>SOIC</td>
<td>8</td>
<td>75</td>
<td>506.6</td>
<td>8</td>
<td>3940</td>
<td>4.32</td>
</tr>
</tbody>
</table>
NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
4. This dimension does not include interlead flash.
5. Reference JEDEC registration MS-012, variation AA.
NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.
NOTES:
A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M–1994.
B. This drawing is subject to change without notice.
C. SON (Small Outline No-Lead) package configuration.
⚠️ The package thermal pad must be soldered to the board for thermal and mechanical performance. See the Product Data Sheet for details regarding the exposed thermal pad dimensions.
E. JEDEC MO-229 package registration pending.
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.
NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.
NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated