OPA2333P 1.8-V, microPower, Zero-Drift Operational Amplifier

1 Features

- Low Offset Voltage: 10 μV (Maximum)
- Zero Drift: 0.05 μV/°C (Maximum)
- Specified Start-Up Time: 500 μs (Maximum)
- 0.01-Hz to 10-Hz Noise: 1.1 μVpp
- Quiescent Current: 17 μA
- Single-Supply Operation
- Supply Voltage: 1.8 V to 5.5 V
- Rail-to-Rail Input/Output
- microSize Package: 2-mm × 2-mm WSON

2 Applications

- Smartphones
- Wearables
- Fitness and Healthcare Products
- Electronic Scales
- Medical Instrumentation
- Battery-Powered Instruments
- Handheld Test Equipment
- Circuit Breakers

3 Description

The OPA2333P is a CMOS operational amplifier that uses a proprietary auto-calibration technique to simultaneously provide very low offset voltage (10 μV, maximum) and near-zero drift over time and temperature. This miniature, high-precision, low quiescent current amplifier offers high-impedance inputs that have a common-mode range 100 mV beyond the rails, and rail-to-rail output that swings within 50 mV of the rails. Single or dual supplies as low as 1.8 V (±0.9 V) and up to 5.5 V (±2.75 V) can be used. This device is optimized for low-voltage, single-supply operation.

The OPA2333P also features a specified maximum start-up time. Specified start-up time ensures high-precision performance after 500 μs of powering the amplifier, allowing for reliable use in dynamic supply operation.

The OPA2333P offers excellent CMRR without the crossover associated with traditional complementary input stages. This design results in superior performance for driving analog-to-digital converters (ADCs) without degradation of differential linearity.

The OPA2333P is available in a 2-mm × 2-mm 8-pin WSON package and is specified for operation from –40°C to 125°C.

Device Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA2333P</td>
<td>WSON (8)</td>
<td>2.00 mm × 2.00 mm</td>
</tr>
</tbody>
</table>

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Bidirectional, Low-Side Current Shunt Amplifier

Offset Voltage vs Temperature

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.
5 Pin Configuration and Functions

DSG Package
8-Pin WSON With Exposed Thermal Pad
Top View

<table>
<thead>
<tr>
<th>PIN</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>+IN A</td>
<td>3</td>
<td>Noninverting input, channel A</td>
</tr>
<tr>
<td>+IN B</td>
<td>5</td>
<td>Noninverting input, channel B</td>
</tr>
<tr>
<td>–IN A</td>
<td>2</td>
<td>Inverting input, channel A</td>
</tr>
<tr>
<td>–IN B</td>
<td>6</td>
<td>Inverting input, channel B</td>
</tr>
<tr>
<td>OUT A</td>
<td>1</td>
<td>Output, channel A</td>
</tr>
<tr>
<td>OUT B</td>
<td>7</td>
<td>Output, channel B</td>
</tr>
<tr>
<td>V+</td>
<td>8</td>
<td>Positive (highest) power supply</td>
</tr>
<tr>
<td>V−</td>
<td>4</td>
<td>Negative (lowest) power supply</td>
</tr>
<tr>
<td>Thermal Pad</td>
<td>—</td>
<td>Thermal Pad, Connect to V−</td>
</tr>
</tbody>
</table>
6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)\(^{(1)}\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage, (V_S = (V+) - (V-))</td>
<td>Single-supply</td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Dual-supply</td>
<td>±3.5</td>
<td></td>
</tr>
<tr>
<td>Signal input pins</td>
<td>Voltage</td>
<td>((V-) - 0.3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Differential(^{(2)})</td>
<td>((V+) + 0.3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Current</td>
<td>±0.5</td>
<td>mA</td>
</tr>
<tr>
<td>Output short current(^{(4)})</td>
<td>Continuous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>Operating, (T_A)</td>
<td>−55</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Junction, (T_J)</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Storage, (T_{stg})</td>
<td>−65</td>
<td>150</td>
</tr>
</tbody>
</table>

(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.3 V beyond the supply rails must be current-limited to 1 mA or less.

(3) Input terminals are anti-parallel diode-clamped to each other. Input signals that can cause differential voltages of swing more than ±0.5 V must be current-limited to 1 mA or less.

(4) Short-circuit to ground, one amplifier per package.

6.2 ESD Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{(ESD)})</td>
<td>Electrostatic discharge</td>
<td>Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(^{(1)})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(^{(2)})</td>
</tr>
</tbody>
</table>

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_S)</td>
<td>Supply voltage, ((V+) - (V-))</td>
<td>Single supply</td>
<td>1.8</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>Dual supply</td>
<td>±0.9</td>
<td>±2.75</td>
<td></td>
</tr>
<tr>
<td>Specified temperature</td>
<td></td>
<td>−40</td>
<td>125</td>
<td>°C</td>
</tr>
</tbody>
</table>

6.4 Thermal Information: OPA2333P

<table>
<thead>
<tr>
<th>THERMAL METRIC(^{(1)})</th>
<th>OPA2333P</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSG (WSON)</td>
<td>UNIT</td>
</tr>
<tr>
<td>8 PINS</td>
<td></td>
</tr>
<tr>
<td>(R_{JA})</td>
<td>Junction-to-ambient thermal resistance</td>
</tr>
<tr>
<td>(R_{JC(top)})</td>
<td>Junction-to-case (top) thermal resistance</td>
</tr>
<tr>
<td>(R_{JB})</td>
<td>Junction-to-board thermal resistance</td>
</tr>
<tr>
<td>(\Psi_JT)</td>
<td>Junction-to-top characterization parameter</td>
</tr>
<tr>
<td>(\Psi_{JB})</td>
<td>Junction-to-board characterization parameter</td>
</tr>
<tr>
<td>(R_{JC(bot)})</td>
<td>Junction-to-case (bottom) thermal resistance</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.
6.5 Electrical Characteristics

At $T_A = 25^\circ C$, $R_L = 10 \, k\Omega$ connected to $V_S / 2$, $V_{CM} = V_S / 2$, and $V_{OUT} = V_S / 2$ (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFFSET VOLTAGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OS}</td>
<td>Input offset voltage $V_S = 5 , V$</td>
<td>±2</td>
<td>±10</td>
<td>μV</td>
<td></td>
</tr>
<tr>
<td>dV_{OS}/dT</td>
<td>Input offset voltage drift $V_S = 5 , V$ $T_A = -40^\circ C$ to $+125^\circ C$</td>
<td>0.02</td>
<td>±0.05</td>
<td>μV/°C</td>
<td></td>
</tr>
<tr>
<td>PSRR</td>
<td>Power-supply rejection ratio $1.8 , V \leq V_S \leq 5.5 , V$ $T_A = -40^\circ C$ to $+125^\circ C$</td>
<td>1</td>
<td>±5</td>
<td>μV/V</td>
<td></td>
</tr>
<tr>
<td>Channel separation, dc</td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td>μV/V</td>
</tr>
<tr>
<td>INPUT BIAS CURRENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_b</td>
<td>Input bias current $T_A = -40^\circ C$ to $+125^\circ C$</td>
<td>±70</td>
<td>±200</td>
<td>pA</td>
<td></td>
</tr>
<tr>
<td>I_{OS}</td>
<td>Input offset current $T_A = -40^\circ C$ to $+125^\circ C$</td>
<td>±150</td>
<td></td>
<td>pA</td>
<td></td>
</tr>
<tr>
<td>NOISE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_N</td>
<td>Input voltage noise $f = 0.1 , Hz$ to $10 , Hz$, peak-to-peak</td>
<td>1.1</td>
<td></td>
<td>μV_{PP}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$f = 0.1 , Hz$ to $10 , Hz$, RMS</td>
<td>0.2</td>
<td></td>
<td>μV_{RMS}</td>
<td></td>
</tr>
<tr>
<td>e_N</td>
<td>Input voltage noise density $f = 10 , Hz$</td>
<td>55</td>
<td></td>
<td>nV/√Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$f = 1 , kHz$</td>
<td>55</td>
<td></td>
<td>nV/√Hz</td>
<td></td>
</tr>
<tr>
<td>I_N</td>
<td>Input current noise density $f = 10 , Hz$</td>
<td></td>
<td>100</td>
<td>fA/√Hz</td>
<td></td>
</tr>
<tr>
<td>INPUT VOLTAGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{CM}</td>
<td>Common-mode voltage range $(V^-) - 0.1 , V \leq V_{CM} \leq (V^+) + 0.1 , V$, $V_S = 5.5 , V$</td>
<td>106</td>
<td>130</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>CMRR</td>
<td>Common-mode rejection ratio $(V^-) - 0.1 , V \leq V_{CM} \leq (V^+) + 0.1 , V$, $V_S = 5.5 , V$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INPUT IMPEDANCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z_{ID}</td>
<td>Differential</td>
<td>$10^{13}</td>
<td></td>
<td>2$</td>
<td>Ω</td>
</tr>
<tr>
<td>Z_{ICM}</td>
<td>Common-mode</td>
<td>$10^{13}</td>
<td></td>
<td>4$</td>
<td>Ω</td>
</tr>
<tr>
<td>OPEN-LOOP GAIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_{OL}</td>
<td>Open-loop voltage gain $T_A = -40^\circ C$ to $+125^\circ C$ $(V^-) + 100 , mV \leq V_O \leq (V^+) - 100 , mV$, $R_L = 10 , k\Omega$</td>
<td>106</td>
<td>130</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>FREQUENCY RESPONSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>φ_m</td>
<td>Phase margin $V_O = 10 , mV_{PP}$</td>
<td>65</td>
<td></td>
<td>Degrees</td>
<td></td>
</tr>
<tr>
<td>GBW</td>
<td>Gain-bandwidth product $V_O = 10 , mV_{PP}$</td>
<td>350</td>
<td></td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>SR</td>
<td>Slew rate $V_O = 4$-V step $G = 1$</td>
<td>0.16</td>
<td></td>
<td>V/µs</td>
<td></td>
</tr>
<tr>
<td>OUTPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Output voltage swing $T_A = -40^\circ C$ to $+125^\circ C$</td>
<td>30</td>
<td>50</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>I_{SC}</td>
<td>Short-circuit current $T_A = -40^\circ C$ to $+125^\circ C$</td>
<td>±5</td>
<td></td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>C_L</td>
<td>Capacitive load drive $2 , k\Omega$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z_O</td>
<td>Open-loop output impedance $f = 350 , kHz$, $I_O = 0 , mA$</td>
<td></td>
<td>500</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td>Start-up time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_S = 5 , V$</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POWER SUPPLY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_S</td>
<td>Specified voltage $1.8 \leq V_S \leq 5.5 , V$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_Q</td>
<td>Quiescent current (per amplifier) $I_O = 0 , A$ $T_A = -40^\circ C$ to $+125^\circ C$</td>
<td>17</td>
<td>25</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>TEMPERATURE RANGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_A</td>
<td>Specified range $-40 \leq T_A \leq 125 , ^\circ C$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_A</td>
<td>Operating range $-55 \leq T_A \leq 150 , ^\circ C$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.6 Typical Characteristics

Table 1. List of Typical Characteristics

<table>
<thead>
<tr>
<th>TITLE</th>
<th>FIGURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offset Voltage Production Distribution</td>
<td>Figure 1</td>
</tr>
<tr>
<td>Offset Voltage Drift Production Distribution</td>
<td>Figure 2</td>
</tr>
<tr>
<td>Quiescent Current Production Distribution</td>
<td>Figure 3</td>
</tr>
<tr>
<td>Open-Loop Gain vs Frequency</td>
<td>Figure 4</td>
</tr>
<tr>
<td>Common-Mode Rejection Ratio vs Frequency</td>
<td>Figure 5</td>
</tr>
<tr>
<td>Power-Supply Rejection Ratio vs Frequency</td>
<td>Figure 6</td>
</tr>
<tr>
<td>Output Voltage Swing vs Output Current</td>
<td>Figure 7</td>
</tr>
<tr>
<td>Input Bias Current vs Common-Mode Voltage</td>
<td>Figure 8</td>
</tr>
<tr>
<td>Input Bias Current vs Temperature</td>
<td>Figure 9</td>
</tr>
<tr>
<td>Quiescent Current vs Temperature</td>
<td>Figure 10</td>
</tr>
<tr>
<td>Large-Signal Step Response</td>
<td>Figure 11</td>
</tr>
<tr>
<td>Small-Signal Step Response</td>
<td>Figure 12</td>
</tr>
<tr>
<td>Positive Overvoltage Recovery</td>
<td>Figure 13</td>
</tr>
<tr>
<td>Negative Overvoltage Recovery</td>
<td>Figure 14</td>
</tr>
<tr>
<td>Settling Time vs Closed-Loop Gain</td>
<td>Figure 15</td>
</tr>
<tr>
<td>Small-Signal Overshoot vs Load Capacitance</td>
<td>Figure 16</td>
</tr>
<tr>
<td>0.1-Hz to 10-Hz Noise</td>
<td>Figure 17</td>
</tr>
<tr>
<td>Current and Voltage Noise Spectral Density vs Frequency</td>
<td>Figure 18</td>
</tr>
</tbody>
</table>

At $T_A = 25^\circ$C, $V_S = 5$ V, and $C_L = 0$ pF, unless otherwise noted.
At $T_A = 25^\circ C$, $V_S = 5\, V$, and $C_L = 0\, pF$, unless otherwise noted.

Figure 3. Quiescent Current Production Distribution

Figure 4. Open-Loop Gain and Phase vs Frequency

Figure 5. Common-Mode Rejection Ratio vs Frequency

Figure 6. Power-Supply Rejection Ratio vs Frequency

Figure 7. Output Voltage Swing vs Output Current

Figure 8. Input Bias Current vs Common-Mode Voltage
At $T_A = 25^\circ C$, $V_S = 5$ V, and $C_L = 0$ pF, unless otherwise noted.
At $T_A = 25^\circ C$, $V_S = 5 V$, and $C_L = 0 \text{ pF}$, unless otherwise noted.

Figure 15. Settling Time vs Closed-Loop Gain

Figure 16. Small-Signal Overshoot vs Load Capacitance

Figure 17. 0.1-Hz to 10-Hz Noise

Figure 18. Current and Voltage Noise Spectral Density vs Frequency
7 Detailed Description

7.1 Overview

The OPA2333P is a Zero-Drift, low-power, rail-to-rail input and output operational amplifier. The device operates from 1.8 V to 5.5 V, is unity-gain stable, and is suitable for a wide range of general-purpose applications. The Zero-Drift architecture provides ultra-low offset voltage and near-zero offset voltage drift.

7.2 Functional Block Diagram

![Functional Block Diagram]

7.3 Feature Description

The OPA2333P is unity-gain stable and free from unexpected output phase reversal. This device uses a proprietary auto-calibration technique to provide low offset voltage and very low drift over time and temperature. For lowest offset voltage and precision performance, optimize circuit layout and mechanical conditions. Avoid temperature gradients that create thermoelectric (Seebeck) effects in the thermocouple junctions formed from connecting dissimilar conductors. Cancel these thermally-generated potentials by assuring they are equal on both input terminals. Other layout and design considerations include:

- Use low thermoelectric-coefficient conditions (avoid dissimilar metals).
- Thermally isolate components from power supplies or other heat sources.
- Shield operational amplifier and input circuitry from air currents, such as cooling fans.

Following these guidelines reduces the likelihood of junctions being at different temperatures, which can cause thermoelectric voltages of 0.1 \(\mu\)V/°C or higher, depending on materials used.

7.3.1 Operating Voltage

The OPA2333P operational amplifier operates over a power-supply range of 1.8 V to 5.5 V (±0.9 V to ±2.75 V). Parameters that vary over supply voltage or temperature are shown in the Typical Characteristics section.

CAUTION

Supply voltages higher than +7 V (absolute maximum) can permanently damage the device.
Feature Description (continued)

7.3.2 Input Voltage

The OPA2333P input common-mode voltage range extends 0.1 V beyond the supply rails. The OPA2333P is designed to cover the full range without the troublesome transition region found in some other rail-to-rail amplifiers.

Typically, input bias current is approximately 70 pA; however, input voltages that exceed the power supplies can cause excessive current to flow into or out of the input pins. Momentary voltages greater than the power supply can be tolerated if the input current is limited to 10 mA. This limitation is easily accomplished with an input resistor, as shown in Figure 19.

![Figure 19. Input Current Protection](image)

7.3.3 Internal Offset Correction

The OPA2333P operational amplifier uses an auto-calibration technique with a time-continuous 350-kHz operational amplifier in the signal path. This amplifier is zero-corrected every 8 μs using a proprietary technique. Upon power up, the amplifier requires approximately 100 μs to achieve specified V\text{OS} accuracy. This design has no aliasing or flicker noise.

7.3.4 Achieving Output Swing to the Op Amp Negative Rail

Some applications require output voltage swings from 0 V to a positive full-scale voltage (such as 2.5 V) with excellent accuracy. With most single-supply operational amplifiers, problems arise when the output signal approaches 0 V, near the lower output swing limit of a single-supply operational amplifier. A good, single-supply operational amplifier may swing close to single-supply ground, but does not reach ground. The output of the OPA2333P can be made to swing to, or slightly below, ground on a single-supply power source. This swing is achieved with the use of the use of another resistor and an additional, more negative power supply than the operational amplifier negative supply. A pulldown resistor can be connected between the output and the additional negative supply to pull the output down below the value that the output would otherwise achieve, as shown in Figure 20.

![Figure 20. V_{OUT} Range to Ground](image)
Feature Description (continued)

The OPA2333P has an output stage that allows the output voltage to be pulled to the negative supply rail, or slightly below, using the technique previously described. This technique only works with some types of output stages. The OPA2333P is characterized to perform with this technique; the recommended resistor value is approximately 20 kΩ.

NOTE

This configuration increases the current consumption by several hundreds of microamps.

Accuracy is excellent down to 0 V and as low as –2 mV. Limiting and nonlinearity occur below –2 mV, but excellent accuracy returns after the output is again driven above –2 mV. Lowering the resistance of the pulldown resistor allows the operational amplifier to swing even further below the negative rail. Resistances as low as 10 kΩ can be used to achieve excellent accuracy down to –10 mV.

7.3.5 Specified Start-Up Performance

The OPA2333P has a dedicated start-up circuit that ensures a fast, repeatable startup for all supply conditions. The OPA2333P is specified to have a maximum start-up time that is production-tested as illustrated in the configuration shown in Figure 21. Start-up time is defined as the time from when the power supply reaches the minimum specified voltage to the time the output has settled to within 20 mV of the nominal value. See Figure 22.

![Figure 21. OPA2333P Equivalent Start-Up Test Configuration](image)

![Figure 22. OPA2333P Start-Up Timing](image)
Feature Description (continued)

7.3.6 WSON Package

The OPA2333P is offered in an WSON-8 package (also known as DFN). The WSON is a QFN package with lead contacts on only two sides of the bottom of the package. This leadless package maximizes board space and enhances thermal and electrical characteristics through an exposed pad.

WSON packages are physically small, have a smaller routing area, improved thermal performance, and improved electrical parasitics. Additionally, the absence of external leads eliminates bent-lead issues.

The WSON package can be easily mounted using standard PCB assembly techniques. See application reports QFN/SON PCB Attachment and Quad Flatpack No-Lead Logic Packages, both available for download at www.ti.com.

NOTE
The exposed leadframe die pad on the bottom of the package should be connected to V– or left unconnected.

7.4 Device Functional Modes

The OPA2333P device has a single functional mode. The device is powered on as long as the power supply voltage is between 1.8 V (±0.9 V) and 5.5 V (±2.75 V).
8 Application and Implementation

NOTE
Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information
The OPA2333P is a unity-gain stable, precision operational amplifier with very low offset voltage drift; these devices are also free from output phase reversal. Applications with noisy or high-impedance power supplies require decoupling capacitors close to the device power-supply pins. In most cases, 0.1-μF capacitors are adequate.

8.2 Typical Application

8.2.1 Bidirectional Current-Sensing
This single-supply, low-side, bidirectional current-sensing solution detects load currents from –1 A to 1 A. The single-ended output spans from 110 mV to 3.19 V. This design uses the OPA2333P because of its low offset voltage and rail-to-rail input and output. One of the amplifiers is configured as a difference amplifier and the other provides the reference voltage.

Figure 23 shows the solution.

Figure 23. Bidirectional Current-Sensing Schematic
Typical Application (continued)

8.2.1.1 Design Requirements
This solution has the following requirements:
• Supply voltage: 3.3 V
• Input: –1 A to 1 A
• Output: 1.65 V ±1.54 V (110 mV to 3.19 V)

8.2.1.2 Detailed Design Procedure
The load current, \(I_{\text{LOAD}} \), flows through the shunt resistor (\(R_{\text{SHUNT}} \)) to develop the shunt voltage, \(V_{\text{SHUNT}} \). The shunt voltage is then amplified by the difference amplifier, which consists of U1A and \(R_4 \) through \(R_3 \). The gain of the difference amplifier is set by the ratio of \(R_4 \) to \(R_3 \). To minimize errors, set \(R_2 = R_4 \) and \(R_1 = R_3 \). The reference voltage, \(V_{\text{REF}} \), is supplied by buffering a resistor divider using U1B. The transfer function is given by Equation 1.

\[
V_{\text{OUT}} = V_{\text{SHUNT}} \times \text{Gain}_{\text{Diff Amp}} + V_{\text{REF}}
\]

where

\[
\text{Gain}_{\text{Diff Amp}} = \frac{R_4}{R_3}
\]

\[
V_{\text{REF}} = V_{\text{CC}} \times \left(\frac{R_S}{R_S + R_6} \right)
\]

There are two types of errors in this design: offset and gain. Gain errors are introduced by the tolerance of the shunt resistor and the ratios of \(R_4 \) to \(R_3 \) and, similarly, \(R_2 \) to \(R_1 \). Offset errors are introduced by the voltage divider (\(R_5 \) and \(R_6 \)) and how closely the ratio of \(R_4/R_3 \) matches \(R_2/R_1 \). The latter value impacts the CMRR of the difference amplifier, which ultimately translates to an offset error.

Because this is a low-side measurement, the value of \(V_{\text{SHUNT}} \) is the ground potential for the system load. Therefore, it is important to place a maximum value on \(V_{\text{SHUNT}} \). In this design, the maximum value for \(V_{\text{SHUNT}} \) is set to 100 mV. Equation 2 calculates the maximum value of the shunt resistor given a maximum shunt voltage of 100 mV and maximum load current of 1 A.

\[
R_{\text{SHUNT(\text{Max})}} = \frac{V_{\text{SHUNT(Max)}}}{I_{\text{LOAD(\text{Max})}}} = \frac{100 \text{ mV}}{1 \text{ A}} = 100 \text{ m\Omega}
\]

The tolerance of \(R_{\text{SHUNT}} \) is directly proportional to cost. For this design, a shunt resistor with a tolerance of 0.5% was selected. If greater accuracy is required, select a 0.1% resistor or better.

The load current is bidirectional; therefore, the shunt voltage range is –100 mV to 100 mV. This voltage is divided down by \(R_1 \) and \(R_2 \) before reaching the operational amplifier, U1A. Take care to ensure that the voltage present at the noninverting node of U1A is within the common-mode range of the device. Therefore, it is important to use an operational amplifier, such as the OPA2333P, that has a common-mode range that extends below the negative supply voltage. Finally, to minimize offset error, note that the OPA2333P has a typical offset voltage of ±2 µV (±10 µV maximum).

Given a symmetric load current of –1 A to 1 A, the voltage divider resistors (\(R_5 \) and \(R_6 \)) must be equal. To be consistent with the shunt resistor, a tolerance of 0.5% was selected. To minimize power consumption, 10-kΩ resistors were used.

To set the gain of the difference amplifier, the common-mode range and output swing of the OPA2333P must be considered. Equation 3 and Equation 4 depict the typical common-mode range and maximum output swing, respectively, of the OPA2333P given a 3.3-V supply.

\[
-100 \text{ mV} < V_{\text{CM}} < 3.4 \text{ V}
\]

\[
100 \text{ mV} < V_{\text{OUT}} < 3.2 \text{ V}
\]

The gain of the difference amplifier can now be calculated as shown in Equation 5.

\[
\text{Gain}_{\text{Diff Amp}} = \frac{V_{\text{OUT(Max)} - V_{\text{OUT(Min)}}}}{R_{\text{SHUNT}} \times (I_{\text{MAX}} - I_{\text{MIN}})} = \frac{3.2 \text{ V} - 100 \text{ mV}}{100 \text{ m\Omega} \times [1 \text{ A} - (-1 \text{ A})]} = 15.5 \frac{\text{V}}{\text{V}}
\]
Typical Application (continued)

The resistor value selected for \(R_1 \) and \(R_3 \) was 1 kΩ. 15.4 kΩ was selected for \(R_2 \) and \(R_4 \) because it is the nearest standard value. Therefore, the ideal gain of the difference amplifier is 15.4 V/V.

The gain error of the circuit primarily depends on \(R_1 \) through \(R_4 \). As a result of this dependence, 0.1% resistors were selected. This configuration reduces the likelihood that the design requires a two-point calibration. A simple one-point calibration, if desired, removes the offset errors introduced by the 0.5% resistors.

8.2.1.3 Application Curve

![Application Curve](image)

Figure 24. Bidirectional Current-Sensing Circuit Performance: Output Voltage vs Input Current

8.2.2 High-Side Voltage-to-Current (V-I) Converter

The circuit shown in Figure 25 is a high-side voltage-to-current (V-I) converter. It translates to an input voltage of 0 V to 2 V and output current of 0 mA to 100 mA. Figure 26 shows the measured transfer function for this circuit. The low offset voltage and offset drift of the OPA2333P facilitate excellent dc accuracy for the circuit.

![High-Side Voltage-to-Current Converter](image)

Figure 25. High-Side Voltage-to-Current (V-I) Converter
Typical Application (continued)

8.2.2.1 Design Requirements

The design requirements are as follows:
- Supply Voltage: 5 V DC
- Input: 0 V to 2 V DC
- Output: 0 mA to 100 mA DC

8.2.2.2 Detailed Design Procedure

The V-I transfer function of the circuit is based on the relationship between the input voltage, \(V_{IN} \), and the three current sensing resistors, \(R_{S1} \), \(R_{S2} \), and \(R_{S3} \). The relationship between \(V_{IN} \) and \(R_{S1} \) determines the current that flows through the first stage of the design. The current gain from the first stage to the second stage is based on the relationship between \(R_{S2} \) and \(R_{S3} \).

For a successful design, pay close attention to the dc characteristics of the operational amplifier chosen for the application. To meet the performance goals, this application benefits from an operational amplifier with low offset voltage, low temperature drift, and rail-to-rail output. The OPA2333P CMOS operational amplifier is a high-precision, 2-uV offset, 0.02-\(\mu \)V/°C drift amplifier optimized for low-voltage, single-supply operation with an output swing to within 50 mV of the positive rail. The OPA2333P family uses chopping techniques to provide low initial offset voltage and near-zero drift over time and temperature. Low offset voltage and low drift reduce the offset error in the system, making these devices appropriate for precise dc control. The rail-to-rail output stage of the OPA2333P ensures that the output swing of the operational amplifier is able to fully control the gate of the MOSFET devices within the supply rails.

A detailed error analysis, design procedure, and additional measured results are given in TIPD102.

8.2.2.3 Application Curve

![Figure 26. Measured Transfer Function for High-Side V-I Converter](image-url)
Typical Application (continued)

8.2.3 Other Applications

Additional application ideas are shown in Figure 27 and Figure 28.

(1) Zener rated for op amp supply capability (that is, 5.1 V for OPA2333P).
(2) Current-limiting resistor.
(3) Choose zener biasing resistor or dual N-MOSFETs (FDG6301N, NTJD4001N, or Si1034).

Figure 27. High-Side Current Monitor

Figure 28. Precision Instrumentation Amplifier

9 Power Supply Recommendations

The OPA2333P is specified for operation from 1.8 V to 5.5 V (±0.9 V to ±2.75 V); many specifications apply from –40°C to 125°C. The Typical Characteristics presents parameters that can exhibit significant variance with regard to operating voltage or temperature.

CAUTION

Supply voltages larger than 7 V can permanently damage the device (see Absolute Maximum Ratings).
TI recommends placing 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-impedance power supplies. For more detailed information on bypass capacitor placement, refer to the Layout section.
10 Layout

10.1 Layout Guidelines

10.1.1 General Layout Guidelines

Pay attention to good layout practices. Keep traces short and when possible and use a printed-circuit-board (PCB) ground plane with surface-mount components placed as close to the device pins as possible. Place a 0.1-μF capacitor closely across the supply pins. Apply these guidelines throughout the analog circuit to improve performance and provide benefits, such as reducing the electromagnetic interference (EMI) susceptibility.

Operational amplifiers vary in susceptibility to radio frequency interference (RFI). RFI can generally be identified as a variation in offset voltage or DC signal levels with changes in the interfering RF signal. The OPA2333P is specifically designed to minimize susceptibility to RFI and demonstrates remarkably low sensitivity compared to previous generation devices. Strong RF fields may still cause varying offset levels.

10.1.2 WSON (DFN) Layout Guidelines

Solder the exposed leadframe die pad on the WSON package to a thermal pad on the PCB. A mechanical drawing showing an example layout is attached at the end of this data sheet. Refinements to this layout may be necessary based on assembly process requirements. Mechanical drawings located at the end of this data sheet list the physical dimensions for the package and pad. The five holes in the landing pattern are optional, and are intended for use with thermal vias that connect the leadframe die pad to the heatsink area on the PCB.

Soldering the exposed pad significantly improves board-level reliability during temperature cycling, key push, package shear, and similar board-level tests. Even with applications that have low-power dissipation, the exposed pad must be soldered to the PCB to provide structural integrity and long-term reliability.

10.2 Layout Example

![Layout Example Diagram]

Copyright © 2017, Texas Instruments Incorporated

Figure 29. Layout Example
11 Device and Documentation Support

11.1 Device Support

11.1.1 Development Support
For development support on this product, see the following:

- High-Side V-I Converter, 0 V to 2 V to 0 mA to 100 mA, 1% Full-Scale Error
- Low-Level V-to-I Converter Reference Design, 0-V to 5-V Input to 0-µA to 5-µA Output
- ADS8881x 18-Bit, 1-MSPS, Serial Interface, microPower, Miniature, True-Differential Input, SAR Analog-to-Digital Converter
- Data Acquisition Optimized for Lowest Distortion, Lowest Noise, 18-bit, 1-MSPS Reference Design
- ADS1100 Self-Calibrating, 16-Bit Analog-to-Digital Converter
- REF31xx 15ppm/°C Maximum, 100-µA, SOT-23 Series Voltage Reference
- INA326, INA327 Precision, Low Drift, CMOS Instrumentation Amplifier

11.2 Documentation Support

11.2.1 Related Documentation
For related documentation, see the following:

- QFN/SON PCB Attachment
- Zero-drift Amplifiers: Features and Benefits

11.3 Receiving Notification of Documentation Updates
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.4 Community Resources
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's **Engineer-to-Engineer (E2E) Community.** Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's **Design Support** Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.5 Trademarks
E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

11.6 Electrostatic Discharge Caution
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.7 Glossary
SLYZ022 — TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.
12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA2333PIDSGR</td>
<td>ACTIVE</td>
<td>WSON</td>
<td>DSG</td>
<td>8</td>
<td>3000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>1GFY</td>
<td>Samples</td>
</tr>
<tr>
<td>OPA2333PIDSGT</td>
<td>ACTIVE</td>
<td>WSON</td>
<td>DSG</td>
<td>8</td>
<td>250</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>1GFY</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBsolete: TI has discontinued the production of the device.

(2) RoHS: TI defines “RoHS” to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, “RoHS” products are suitable for use in specified lead-free processes. TI may reference these types of products as “Pb-Free”.
RoHS Exempt: TI defines “RoHS Exempt” to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines “Green” to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

TAPE DIMENSIONS

- **A0**: Dimension designed to accommodate the component width
- **B0**: Dimension designed to accommodate the component length
- **K0**: Dimension designed to accommodate the component thickness
- **W**: Overall width of the carrier tape
- **P1**: Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin 1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA2333PIDSGR</td>
<td>WSON</td>
<td>DSG</td>
<td>8</td>
<td>3000</td>
<td>180.0</td>
<td>8.4</td>
<td>2.3</td>
<td>2.3</td>
<td>1.15</td>
<td>4.0</td>
<td>8.0</td>
<td>Q2</td>
</tr>
<tr>
<td>OPA2333PIDSGT</td>
<td>WSON</td>
<td>DSG</td>
<td>8</td>
<td>250</td>
<td>180.0</td>
<td>8.4</td>
<td>2.3</td>
<td>2.3</td>
<td>1.15</td>
<td>4.0</td>
<td>8.0</td>
<td>Q2</td>
</tr>
</tbody>
</table>
TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA2333PIDSGR</td>
<td>WSON</td>
<td>DSG</td>
<td>8</td>
<td>3000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>OPA2333PIDSGT</td>
<td>WSON</td>
<td>DSG</td>
<td>8</td>
<td>250</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>
This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.
NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.
NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2020, Texas Instruments Incorporated