Precision, Low Power, 18MHz Transimpedance Amplifier

FEATURES
- OVER 250kHz TRANSIMPEDANCE BANDWIDTH
- DYNAMIC RANGE: 5 Decades
- EXCELLENT LONG-TERM STABILITY
- LOW VOLTAGE NOISE: 10nV/√Hz
- BIAS CURRENT: 3pA
- OFFSET VOLTAGE: 25µV (max)
- OFFSET DRIFT: 0.1µV/°C (max)
- GAIN BANDWIDTH: 18MHz
- QUIESCENT CURRENT: 800µA
- FAST OVERLOAD RECOVERY
- SUPPLY RANGE: 2.7V to 5.5V
- SINGLE AND DUAL VERSIONS
- MicroPACKAGE: DFN-8, MSOP-8

APPLICATIONS
- PRECISION I/V CONVERSION
- PHOTODIODE MONITORING
- OPTICAL AMPLIFIERS
- CAT-SCANNER FRONT-END
- PHOTO LAB EQUIPMENT

DESCRIPTION
The OPA381 family of transimpedance amplifiers provides 18MHz of Gain Bandwidth (GBW), with extremely high precision, excellent long-term stability, and very low 1/f noise. The OPA381 features an offset voltage of 25µV (max), offset drift of 0.1µV/°C (max), and bias current of 3pA. The OPA381 far exceeds the offset, drift, and noise performance that conventional JFET op amps provide.

The signal bandwidth of a transimpedance amplifier depends largely on the GBW of the amplifier and the parasitic capacitance of the photodiode, as well as the feedback resistor. The 18MHz GBW of the OPA381 enables a transimpedance bandwidth of > 250kHz in most configurations. The OPA381 is ideally suited for fast control loops for power level measurement on an optical fiber.

As a result of the high precision and low-noise characteristics of the OPA381, a dynamic range of 5 decades can be achieved. This capability allows the measurement of signal currents on the order of 10nA, and up to 1mA in a single I/V conversion stage. In contrast to logarithmic amplifiers, the OPA381 provides very wide bandwidth throughout the full dynamic range. By using an external pulldown resistor to –5V, the output voltage range can be extended to include 0V.

The OPA381 and OPA2381 are both available in MSOP-8 and DFN-8 (3mm x 3mm) packages. They are specified from –40°C to +125°C.

OPA381 RELATED DEVICES

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>FEATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA380</td>
<td>90MHz GBW, 2.7V to 5.5V Supply Transimpedance Amplifier</td>
</tr>
<tr>
<td>OPA132</td>
<td>16MHz GBW, Precision FET Op Amp ±15V</td>
</tr>
<tr>
<td>OPA300</td>
<td>150MHz GBW, Low-Noise, 2.7V to 5.5V Supply</td>
</tr>
<tr>
<td>OPA335</td>
<td>10µV VOS, Zero-Drift, 2.5V to 5V Supply</td>
</tr>
<tr>
<td>OPA350</td>
<td>500µV VOS, 38MHz, 2.5V to 5V Supply</td>
</tr>
<tr>
<td>OPA354</td>
<td>100MHz GBW CMOS, RRIO, 2.5V to 5V Supply</td>
</tr>
<tr>
<td>OPA355</td>
<td>200MHz GBW CMOS, 2.5V to 5V Supply</td>
</tr>
<tr>
<td>OPA656/7</td>
<td>230MHz, Precision FET, ±5V</td>
</tr>
</tbody>
</table>
ABSOLUTE MAXIMUM RATINGS (1)

Voltage Supply ... +7V
Signal Input Terminals (2), Voltage (V−) −0.5V to (V+) + 0.5V
Current ... ±10mA
Short-Circuit Current (3) Continuous
Operating Temperature Range −40°C to +125°C
Storage Temperature Range −65°C to +150°C
Junction Temperature +150°C
Lead Temperature (soldering, 10s) +300°C
OPA381 ESD Rating (Human Body Model) 2000V
OPA2381 ESD Rating (Human Body Model) 1500V

(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.
(2) Input terminals are diode clamped to the power-supply rails. Input signals that can swing more than 0.5V beyond the supply rails should be current limited to 10mA or less.
(3) Short-circuit to ground; one amplifier per package.

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PACKAGE/ORDERING INFORMATION (1)

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>PACKAGE-LEAD</th>
<th>PACKAGE DESIGNATOR</th>
<th>SPECIFIED TEMPERATURE RANGE</th>
<th>PACKAGE MARKING</th>
<th>ORDERING NUMBER</th>
<th>TRANSPORT MEDIA, QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA381</td>
<td>MSOP-8</td>
<td>DGK</td>
<td>−40°C to +125°C</td>
<td>A64</td>
<td>OPA381AIDGKT</td>
<td>Tape and Reel, 250</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OPA381AIDGKR</td>
<td>Tape and Reel, 2500</td>
</tr>
<tr>
<td>OPA381</td>
<td>DFN-8</td>
<td>DRB</td>
<td>−40°C to +125°C</td>
<td>A65</td>
<td>OPA381AIDRBT</td>
<td>Tape and Reel, 250</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OPA381AIDRBR</td>
<td>Tape and Reel, 3000</td>
</tr>
<tr>
<td>OPA2381</td>
<td>MSOP-8</td>
<td>DGK</td>
<td>−40°C to +125°C</td>
<td>A62</td>
<td>OPA2381AIDGKT</td>
<td>Tape and Reel, 250</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OPA2381AIDGKR</td>
<td>Tape and Reel, 2500</td>
</tr>
<tr>
<td>OPA2381</td>
<td>DFN-8</td>
<td>DRB</td>
<td>−40°C to +125°C</td>
<td>A63</td>
<td>OPA2381AIDRBT</td>
<td>Tape and Reel, 250</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OPA2381AIDRBR</td>
<td>Tape and Reel, 3000</td>
</tr>
</tbody>
</table>

(1) For the most current package and ordering information, see the Package Option Addendum located at the end of this data sheet.

PIN ASSIGNMENTS

![Pin Assignments Diagram]

NOTE: (1) NC indicates no internal connection.
ELECTRICAL CHARACTERISTICS: $V_S = +2.7V$ to $+5.5V$

Boldface limits apply over the temperature range, $T_A = -40°C$ to $+125°C$.

All specifications at $T_A = +25°C$, $R_L = 10kΩ$ connected to $V_S/2$, and $V_{OUT} = V_S/2$, unless otherwise noted.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITION</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFFSET VOLTAGE</td>
<td>V_{OS}</td>
<td>$V_S = +5V$, $V_{CM} = 0V$</td>
<td>7</td>
<td>25</td>
<td>µV</td>
</tr>
<tr>
<td>Drift</td>
<td>dV_{OS}/dT</td>
<td>$V_S = +2.7V$ to $+5.5V$, $V_{CM} = 0V$</td>
<td>0.03</td>
<td>0.1</td>
<td>µV/C</td>
</tr>
<tr>
<td>vs Power Supply</td>
<td>PSRR</td>
<td>$V_S = +2.7V$ to $+5.5V$, $V_{CM} = 0V$</td>
<td>3.5</td>
<td>20</td>
<td>µV/V</td>
</tr>
<tr>
<td>Over Temperature</td>
<td>Long-Term Stability</td>
<td>$V_S = +2.7V$ to $+5.5V$, $V_{CM} = 0V$</td>
<td>See Note (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel Separation, dc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INPUT BIAS CURRENT</td>
<td>I_B</td>
<td>$V_{CM} = V_S/2$</td>
<td>3</td>
<td>±50</td>
<td>pA</td>
</tr>
<tr>
<td>Over Temperature</td>
<td></td>
<td></td>
<td>See Typical Characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Offset Current</td>
<td>I_{OS}</td>
<td>$V_{CM} = V_S/2$</td>
<td>6</td>
<td>±100</td>
<td>pA</td>
</tr>
<tr>
<td>NOISE</td>
<td>Input Offset Voltage, $f = 0.1Hz$ to 10Hz</td>
<td>$V_S = +5V$, $V_{CM} = 0V$</td>
<td>3</td>
<td></td>
<td>µVpp</td>
</tr>
<tr>
<td>Input Voltage Noise Density, $f = 10kHz$</td>
<td>e_n</td>
<td>$V_S = +5V$, $V_{CM} = 0V$</td>
<td>70</td>
<td></td>
<td>nV/√Hz</td>
</tr>
<tr>
<td>Input Current Noise Density, $f = 10kHz$</td>
<td>i_n</td>
<td>$V_S = +5V$, $V_{CM} = 0V$</td>
<td>10</td>
<td></td>
<td>nA/√Hz</td>
</tr>
<tr>
<td>INPUT VOLTAGE RANGE</td>
<td>Common-Mode Voltage Range</td>
<td>V_{CM}</td>
<td>$V_S = +5V$, $(V-) < V_{CM} < (V+) − 1.8V$</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Common-Mode Rejection Ratio</td>
<td>CMRR</td>
<td>$V_S = +5V$, $(V-) < V_{CM} < (V+) − 1.8V$</td>
<td>95</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>INPUT IMPEDANCE</td>
<td>Differential Capacitance</td>
<td></td>
<td></td>
<td>1013</td>
<td></td>
</tr>
<tr>
<td>Common-Mode Resistance and Capacitance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Omega</td>
</tr>
<tr>
<td>OPEN-LOOP GAIN</td>
<td>Open-Loop Voltage Gain</td>
<td>A_{OL}</td>
<td>$0.05V < V_O < (V+) − 0.6V$, $V_{CM} = V_S/2$, $V_S = 5V$</td>
<td>110</td>
<td>135</td>
</tr>
<tr>
<td>OUTPUT</td>
<td>Voltage Output Swing from Positive Rail</td>
<td>R_L = 10kΩ</td>
<td>$V_S = 4V$ Step, $G = +1$, OPA381</td>
<td>180</td>
<td>600</td>
</tr>
<tr>
<td>Voltage Output Swing from Negative Rail</td>
<td>R_L = 10kΩ</td>
<td>$0V < V_O < (V+) − 0.6V$, $V_{CM} = 0V$, $R_P = 10kΩ$ to $−5V$, $V_S = 5V$</td>
<td>30</td>
<td>50</td>
<td>mV</td>
</tr>
<tr>
<td>FREQUENCY RESPONSE</td>
<td>Gain-Bandwidth Product</td>
<td>GBW</td>
<td>$G = +1$</td>
<td>7</td>
<td>µs</td>
</tr>
<tr>
<td>Slew Rate</td>
<td>SR</td>
<td>$V_S = +5V$, 4V Step, $G = +1$, OPA381</td>
<td>7</td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>Settling Time, 0.0015%</td>
<td></td>
<td>$V_S = +5V$, 4V Step, $G = +1$, OPA2381</td>
<td>7</td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>Overload Recovery Time</td>
<td></td>
<td>$V_{IN} • G = > V_S$</td>
<td>200</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>OUTPUT</td>
<td>Voltage Output Swing from Positive Rail</td>
<td>R_L = 10kΩ</td>
<td>400</td>
<td>600</td>
<td>mV</td>
</tr>
<tr>
<td>Voltage Output Swing from Negative Rail</td>
<td>R_L = 10kΩ</td>
<td>30</td>
<td>50</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>Voltage Output Swing from Positive Rail</td>
<td>R_P = 10kΩ to $−5V(2)$</td>
<td>400</td>
<td>600</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>Voltage Output Swing from Negative Rail</td>
<td>R_P = 10kΩ to $−5V(2)$</td>
<td>$−20$</td>
<td>0</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>Output Current</td>
<td>I_{OUT}</td>
<td>10</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short-Circuit Current</td>
<td>I_{SC}</td>
<td>20</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacitive Load Drive</td>
<td>C_{LOAD}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open-Loop Output Impedance</td>
<td>R_O</td>
<td>$F = 1MHz$, $I_O = 0$</td>
<td>See Typical Characteristics</td>
<td>250</td>
<td>Ω</td>
</tr>
<tr>
<td>POWER SUPPLY</td>
<td>Specified Voltage Range</td>
<td>V_S</td>
<td>2.7</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>Quiescent Current (per amplifier)</td>
<td>I_Q</td>
<td>$I_O = 0A$</td>
<td>0.8</td>
<td>1</td>
<td>mA</td>
</tr>
<tr>
<td>Over Temperature</td>
<td></td>
<td></td>
<td>1.1</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>TEMPERATURE RANGE</td>
<td>Specified and Operating Range</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage Range</td>
<td>T_J</td>
<td>−40</td>
<td>+125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance</td>
<td>R_{Th}</td>
<td>−65</td>
<td>+150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>MSOP-8</td>
<td></td>
<td></td>
<td>150</td>
<td>°C/W</td>
<td></td>
</tr>
<tr>
<td>DFN-8</td>
<td></td>
<td></td>
<td>65</td>
<td>°C/W</td>
<td></td>
</tr>
</tbody>
</table>

(1) High temperature operating life characterization of zero-drift op amps applying the techniques used in the OPA381 have repeatedly demonstrated randomly distributed variation approximately equal to measurement repeatability of $1µV$. This consistency gives confidence in the stability and repeatability of these zero-drift techniques.

(2) Tested with output connected only to R_P, a pulldown resistor connected between V_{OUT} and $−5V$, as shown in Figure 3. See also Applications section, Achieving Output Swing to Negative Rail.

(3) Transimpedance frequency of 250kHz.

(4) Time required to return to linear operation.

(5) From positive rail.
TYPICAL CHARACTERISTICS: $V_S = +2.7V$ to $+5.5V$

All specifications at $T_A = +25^\circ C$, $R_L = 10k\Omega$ connected to $V_S/2$, and $V_{OUT} = V_S/2$, unless otherwise noted.
TYPICAL CHARACTERISTICS: $V_S = +2.7V$ to $+5.5V$ (continued)

All specifications at $T_A = +25^\circ C$, $R_L = 10k\Omega$ connected to $V_S/2$, and $V_{OUT} = V_S/2$, unless otherwise noted.
TYPICAL CHARACTERISTICS: $V_S = +2.7V$ to $+5.5V$ (continued)

All specifications at $T_A = +25°C$, $R_L = 10kΩ$ connected to $V_S/2$, and $V_{OUT} = V_S/2$, unless otherwise noted.
TYPICAL CHARACTERISTICS: $V_S = +2.7V$ to $+5.5V$ (continued)

All specifications at $T_A = +25^\circ C$, and $R_L = 10k\Omega$ connected to $V_S/2$, unless otherwise noted.

SMALL–SIGNAL STEP RESPONSE (with or without pull–down)

LARGE–SIGNAL STEP RESPONSE (without pull–down)

LARGE–SIGNAL STEP RESPONSE (with pull–down)

OVERLOAD RECOVERY

INPUT VOLTAGE NOISE SPECTRAL DENSITY

CHANNEL SEPARATION vs INPUT FREQUENCY
APPLICATIONS INFORMATION

BASIC OPERATION

The OPA381 is a high-precision transimpedance amplifier with very low 1/f noise. Due to its unique architecture, the OPA381 has excellent long-term input voltage offset stability.

The OPA381 performance results from an internal auto-zero amplifier combined with a high-speed amplifier. The OPA381 has been designed with circuitry to improve overload recovery and settling time over that achieved by a traditional composite approach. It has been specifically designed and characterized to accommodate circuit options to allow 0V output operation (see Figure 3).

The OPA381 is used in inverting configurations, with the noninverting input used as a fixed biasing point. Figure 1 shows the OPA381 in a typical configuration. Power-supply pins should be bypassed with 1µF ceramic or tantalum capacitors. Electrolytic capacitors are not recommended.

![Figure 1. OPA381 Typical Configuration](image_url)

NOTE: (1) V_OUT = 0.5V in dark conditions.

OPERATING VOLTAGE

OPA381 series op amps are fully specified from 2.7V to 5.5V over a temperature range of −40°C to +125°C. Parameters that vary significantly with operating voltages or temperature are shown in the Typical Characteristics.

INTERNAL OFFSET CORRECTION

The OPA381 series op amps use an auto-zero topology with a time-continuous 18MHz op amp in the signal path. This amplifier is zero-corrected every 100µs using a proprietary technique. Upon power-up, the amplifier requires approximately 400µs to achieve specified V_OS accuracy, which includes one full auto-zero cycle of approximately 100µs and the start-up time for the bias circuitry. Prior to this time, the amplifier will function properly but with unspecified offset voltage.

This design has virtually no aliasing and low noise. Zero correction occurs at a 10kHz rate, but there is virtually no fundamental noise energy present at that frequency due to internal filtering. For all practical purposes, any glitches have energy at 20MHz or higher and are easily filtered, if necessary. Most applications are not sensitive to such high-frequency noise, and no filtering is required.

INPUT VOLTAGE

The input common-mode voltage range of the OPA381 series extends from V− to (V+)−1.8V. With input signals above this common-mode range, the amplifier will no longer provide a valid output value, but it will not latch or invert.

INPUT OVERVOLTAGE PROTECTION

Device inputs are protected by ESD diodes that will conduct if the input voltages exceed the power supplies by more than approximately 500mV. Momentary voltages greater than 500mV beyond the power supply can be tolerated if the current is limited to 10mA. The OPA381 family features no phase inversion when the inputs extend beyond supplies if the input is current limited.
OUTPUT RANGE

The OPA381 is specified to swing within at least 600mV of the positive rail and 50mV of the negative rail with a 10kΩ load while maintaining good linearity. Swing to the negative rail while maintaining linearity can be extended to 0V—see the section, Achieving Output Swing to Ground. See the Typical Characteristic curve, Output Voltage Swing vs Output Current.

The OPA381 can swing slightly closer than specified to the positive rail; however, linearity will decrease and a high-speed overload recovery clamp limits the amount of positive output voltage swing available—see Figure 2.

ACHIEVING OUTPUT SWING TO GROUND

Some applications require output voltage swing from 0V to a positive full-scale voltage (such as +4.096V) with excellent accuracy. With most single-supply op amps, problems arise when the output signal approaches 0V, near the lower output swing limit of a single-supply op amp. A good single-supply op amp may swing close to single-supply ground, but will not reach 0V.

The output of the OPA381 can be made to swing to 0V, or slightly below, on a single-supply power source. This extended output swing requires the use of another resistor and an additional negative power supply. A pulldown resistor may be connected between the output and the negative supply to pull the output down to 0V; see Figure 3.

Figure 2. Effect of High-Speed Overload Recovery Clamp on Output Voltage

Figure 3. Amplifier with Pull-Down Resistor to Achieve $V_{OUT} = 0V$

OVERLOAD RECOVERY

The OPA381 has been designed to prevent output saturation. After being overdriven to the positive rail, it will typically require only 200ns to return to linear operation. The time required for negative overload recovery is greater, unless a pulldown resistor connected to a more negative supply is used to extend the output swing all the way to the negative rail—see the following section, Achieving Output Swing to Ground.
BIASING PHOTODIODES IN SINGLE-SUPPLY CIRCUITS

The +IN input can be biased with a positive DC voltage to offset the output voltage and allow the amplifier output to indicate a true zero photodiode measurement when the photodiode is not exposed to any light. It will also prevent the added delay that results from coming out of the negative rail. This bias voltage appears across the photodiode, providing a reverse bias for faster operation. An RC filter placed at this bias point will reduce noise. (Refer to Figure 4.) This bias voltage can also serve as an offset bias point for an ADC with range that does not include ground.

\[V_{OUT} = I_D R_F + V_{BIAS} \]

The desired transimpedance gain (\(R_F \));

- the Gain Bandwidth Product (GBW) for the OPA381 (18MHz).

With these three variables set, the feedback capacitor value (\(C_F \)) can be set to control the frequency response. \(C_{STRAY} \) is the stray capacitance of \(R_F \), which is 0.2pF for a typical surface-mount resistor.

To achieve a maximally flat 2nd-order Butterworth frequency response, the feedback pole should be set to:

\[\frac{1}{2\pi R_F(C_F + C_{STRAY})} = \frac{\sqrt{GBW}}{4\pi R_F C_{TOT}} \]

(1)

Bandwidth is calculated by:

\[f_{-3dB} = \frac{\sqrt{GBW}}{2\pi R_F C_{TOT}} \]

(2)

These equations will result in maximum transimpedance bandwidth. For even higher transimpedance bandwidth, the high-speed CMOS OPA380 (90MHz GBW), the OPA300 (150MHz GBW), or the OPA656 (230MHz GBW) may be used.

For additional information, refer to Application Bulletin AB−050 (SBOA055), Compensate Transimpedance Amplifiers Intuitively, available for download at www.ti.com.

Figure 4. Photodiode with Filtered Reverse Bias Voltage

TRANSIMPEDEANCE AMPLIFIER

Wide bandwidth, low input bias current and low input voltage and current noise make the OPA381 an ideal wideband photodiode transimpedance amplifier. Low voltage noise is important because photodiode capacitance causes the effective noise gain of the circuit to increase at high frequency.

The key elements to a transimpedance design are shown in Figure 5:

- the total input capacitance (\(C_{TOT} \)), consisting of the photodiode capacitance (\(C_{DIODE} \)) plus the parasitic common-mode and differential-mode input capacitance (2.5pF + 1pF for the OPA381);

\[R_P \] (optional pulldown resistor)

Figure 5. Transimpedance Amplifier

NOTE: (1) \(C_F \) is optional to prevent gain peaking. It includes the stray capacitance of \(R_F \).

(2) \(C_{STRAY} \) is the stray capacitance of \(R_F \) (typically, 0.2pF for a surface-mount resistor).

(3) \(C_{TOT} \) is the photodiode capacitance plus OPA381 input capacitance.
TRANSIMпедANCE BANDWIDTH AND NOISE

Limiting the gain set by R_F can decrease the noise occurring at the output of the transimpedance circuit. However, all required gain should occur in the transimpedance stage, since adding gain after the transimpedance amplifier generally produces poorer noise performance. The noise spectral density produced by R_F increases with the square-root of R_F, whereas the signal increases linearly. Therefore, signal-to-noise ratio is improved when all the required gain is placed in the transimpedance stage.

Total noise increases with increased bandwidth. Limit the circuit bandwidth to only that required. Use a capacitor, C_F, across the feedback resistor, R_F, to limit bandwidth (even if not required for stability), if total output noise is a concern.

Figure 6a shows the transimpedance circuit without any feedback capacitor. The resulting transimpedance gain of this circuit is shown in Figure 7. The $–3$dB point is approximately 3MHz. Adding a 16pF feedback capacitor (Figure 6b) will limit the bandwidth and result in a $–3$dB point at approximately 200kHz (seen in Figure 7). Output noise will be further reduced by adding a filter (R_{FILTER} and C_{FILTER}) to create a second pole (Figure 6c). This second pole is placed within the feedback loop to maintain the amplifier’s low output impedance. (If the pole was placed outside the feedback loop, an additional buffer would be required and would inadvertently increase noise and dc error).

Using R_{DIODE} to represent the equivalent diode resistance, and C_{TOT} for equivalent diode capacitance plus OPA381 input capacitance, the noise zero, f_z, is calculated by:

$$f_z = \frac{(R_{DIODE} + R_F)}{2\pi R_{DIODE} R_F (C_{TOT} + C_F)}$$

(3)

![Figure 6. Transimpedance Circuit Configurations with Varying Total and Integrated Noise Gain](image-url)
The effects of these circuit configurations on output noise are shown in Figure 8 and on integrated output noise in Figure 9. A 2-pole Butterworth filter (maximally flat in passband) is created by selecting the filter values using the equation:

$$C_F R_F = 2C_{\text{FILTER}} R_{\text{FILTER}}$$ \hspace{1cm} (4)

The circuit in Figure 6b rolls off at 20dB/decade. The circuit with the additional filter shown in Figure 6c rolls off at 40dB/decade, resulting in improved noise performance.

Figure 8 shows the effects of diode capacitance on integrated output noise, using the circuit in Figure 6c. For additional information, refer to *Noise Analysis of FET Transimpedance Amplifiers* (SBOA060), and *Noise Analysis for High Speed Op Amps* (SBOA066), available for download from the TI web site.
BOARD LAYOUT
Minimize photodiode capacitance and stray capacitance at the summing junction (inverting input). This capacitance causes the voltage noise of the op amp to be amplified (increasing amplification at high frequency). Using a low-noise voltage source to reverse-bias a photodiode can significantly reduce its capacitance. Smaller photodiodes have lower capacitance. Use optics to concentrate light on a small photodiode.

Circuit board leakage can degrade the performance of an otherwise well-designed amplifier. Clean the circuit board carefully. A circuit board guard trace that encircles the summing junction and is driven at the same voltage can help control leakage. See Figure 11.

OTHER WAYS TO MEASURE SMALL CURRENTS
Logarithmic amplifiers are used to compress extremely wide dynamic range input currents to a much narrower range. Wide input dynamic ranges of 8 decades, or 100pA to 10mA, can be accommodated for input to a 12-bit ADC. (Suggested products: LOG101, LOG102, LOG104, LOG112.)

Extremely small currents can be accurately measured by integrating currents on a capacitor. (Suggested product: IVC102.)

Low-level currents can be converted to high-resolution data words. (Suggested product: DDC112.)

For further information on the range of products available, search www.ti.com using the above specific model names or by using keywords transimpedance and logarithmic.

CAPACITIVE LOAD AND STABILITY
The OPA381 series op amps can drive greater than 100pF pure capacitive load. Increasing the gain enhances the amplifier’s ability to drive greater capacitive loads. See the Phase Margin vs Load Capacitance typical characteristic curve.

One method of improving capacitive load drive in the unity-gain configuration is to insert a 10Ω to 20Ω resistor inside the feedback loop, as shown in Figure 12. This reduces ringing with large capacitive loads while maintaining DC accuracy.

DRIVING 16-BIT ANALOG-TO-DIGITAL CONVERTERS (ADC)
The OPA381 series is optimized for driving a 16-bit ADC such as the ADS8325. The OPA381 op amp buffers the converter input capacitance and resulting charge injection while providing signal gain. Figure 13 shows the OPA381 in a single-ended method of interfacing the ADS8325 16-bit, 100kSPS ADC. For additional information, refer to the ADS8325 data sheet.
INAVERTING AMPLIFIER

Its excellent dc precision characteristics make the OPA381 also useful as an inverting amplifier. Figure 14 shows it configured for use on a single-supply set to a gain of 10.

DFN (DRB) THERMALLY-ENHANCED PACKAGE

One of the package options for the OPA381 and OPA2381 is the DFN-8 package, a thermally-enhanced package designed to eliminate the use of bulky heat sinks and slugs traditionally used in thermal packages. The absence of external leads eliminates bent-lead concerns and issues.

Although the power dissipation requirements of a given application might not require a heat sink, for mechanical reliability, the exposed power pad must be soldered to the board and connected to V− (pin 4). This package can be easily mounted using standard PCB assembly techniques. See Application Note SLUA271, QFN/SON PCB Attachment, located at www.ti.com. These DFN packages have reliable solderability with either SnPb or Pb-free solder paste.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead finish/Ball material</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA2381AIDGKR</td>
<td>ACTIVE</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>2500</td>
<td>RoHS & Green</td>
<td>Call TI</td>
<td>NIPDAUAG</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>A62</td>
</tr>
<tr>
<td>OPA2381AIDGKT</td>
<td>ACTIVE</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>250</td>
<td>RoHS & Green</td>
<td>Call TI</td>
<td>NIPDAUAG</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>A62</td>
</tr>
<tr>
<td>OPA2381AIDRBT</td>
<td>ACTIVE</td>
<td>SON</td>
<td>DRB</td>
<td>8</td>
<td>250</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>A63</td>
<td>Samples</td>
</tr>
<tr>
<td>OPA381AIDGKR</td>
<td>ACTIVE</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>2500</td>
<td>RoHS & Green</td>
<td>Call TI</td>
<td>NIPDAUAG</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>A64</td>
</tr>
<tr>
<td>OPA381AIDGKT</td>
<td>ACTIVE</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>250</td>
<td>RoHS & Green</td>
<td>Call TI</td>
<td>NIPDAUAG</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>A64</td>
</tr>
<tr>
<td>OPA381AIDRBT</td>
<td>ACTIVE</td>
<td>SON</td>
<td>DRB</td>
<td>8</td>
<td>250</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>A65</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
 - ACTIVE: Product device recommended for new designs.
 - LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
 - NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
 - PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
 - OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
 - RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
 - Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JESD709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

REEL DIMENSIONS

- **Reel Diameter**
- **Reel Width (W1)**

TAPE DIMENSIONS

- **A0**: Dimension designed to accommodate the component width
- **B0**: Dimension designed to accommodate the component length
- **K0**: Dimension designed to accommodate the component thickness
- **W**: Overall width of the carrier tape
- **P1**: Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

- **Pocket Quadrants**
- **Sprocket Holes**
- **User Direction of Feed**

All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA2381AIDRBT</td>
<td>SON</td>
<td>DRB</td>
<td>8</td>
<td>250</td>
<td>180.0</td>
<td>12.4</td>
<td>3.3</td>
<td>3.3</td>
<td>1.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q2</td>
</tr>
<tr>
<td>OPA381AIDRBT</td>
<td>SON</td>
<td>DRB</td>
<td>8</td>
<td>250</td>
<td>180.0</td>
<td>12.4</td>
<td>3.3</td>
<td>3.3</td>
<td>1.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q2</td>
</tr>
</tbody>
</table>
TAPE AND REEL BOX DIMENSIONS

All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA2381AIDRBT</td>
<td>SON</td>
<td>DRB</td>
<td>8</td>
<td>250</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>OPA381AIDRBT</td>
<td>SON</td>
<td>DRB</td>
<td>8</td>
<td>250</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>
Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.
NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.
NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:
A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.

D. Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.

E. Falls within JEDEC MO-187 variation AA, except interlead flash.

4073329/E 05/06
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated