Stereo Audio Volume Control

FEATURES
- DIGITALLY-CONTROLLED ANALOG VOLUME CONTROL:
 Two Independent Audio Channels
 Serial Control Interface
 Zero Crossing Detection
 Mute Function
- WIDE GAIN AND ATTENUATION RANGE:
 +31.5dB to −95.5dB with 0.5dB Steps
- LOW NOISE AND DISTORTION:
 120dB Dynamic Range
 0.0003% THD+N at 1kHz
- LOW INTERCHANNEL CROSSTALK:
 −126dBFS
- NOISE-FREE LEVEL TRANSITIONS
- POWER SUPPLIES: ±15V Analog, +5V Digital
- AVAILABLE IN SOL−16 PACKAGE
- PIN-FOR-PIN COMPATIBLE WITH THE PGA2310

APPLICATIONS
- AUDIO AMPLIFIERS
- MIXING CONSOLES
- MULTI-TRACK RECORDERS
- BROADCAST STUDIO EQUIPMENT
- MUSICAL INSTRUMENTS
- EFFECTS PROCESSORS
- A/V RECEIVERS
- CAR AUDIO SYSTEMS

DESCRIPTION
The PGA2320 is a high-performance, stereo audio volume control designed for professional and high-end consumer audio systems. The ability to operate from ±15V analog power supplies enables the PGA2320 to process input signals with large voltage swings, thereby preserving the dynamic range available in the overall signal path. Using high performance operational amplifier stages internal to the PGA2320 yields low noise and distortion, while providing the capability to drive 600Ω loads directly without buffering. The three-wire serial control interface allows for connection to a wide variety of host controllers, in addition to support for daisy-chaining of multiple PGA2320 devices.
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range unless otherwise noted(1)

<table>
<thead>
<tr>
<th></th>
<th>PGA2320</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{A+})</td>
<td>+15.5</td>
<td>V</td>
</tr>
<tr>
<td>(V_{A-})</td>
<td>−15.5</td>
<td>V</td>
</tr>
<tr>
<td>(V_{D+})</td>
<td>+5.5</td>
<td>V</td>
</tr>
<tr>
<td>Analog input voltage</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 to (V_{A+}, V_{A-})</td>
<td>V</td>
</tr>
<tr>
<td>Digital input voltage</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>−0.3 to (V_{D+})</td>
<td>V</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>−40 to +85</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>−65 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>Junction temperature</td>
<td>+150</td>
<td>°C</td>
</tr>
<tr>
<td>Lead temperature (soldering, 10s)</td>
<td>+300</td>
<td>°C</td>
</tr>
<tr>
<td>Package temperature (IR, reflow, 10s)</td>
<td>+235</td>
<td>°C</td>
</tr>
</tbody>
</table>

(1) Stresses above those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

PACKAGE/ORDERING INFORMATION

For the most current package and ordering information, see the Package Option Addendum located at the end of this data sheet.
ELECTRICAL CHARACTERISTICS

At $T_A = +25^\circ C$, $V_{A+} = +15V$, $V_{A-} = −15V$, $V_{D+} = +5V$, $R_L = 100k\Omega$, $C_L = 20pF$, BW measure $= 20Hz$ to $20kHz$, unless otherwise noted.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>PGA2320</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIN</td>
<td>TYP</td>
</tr>
</tbody>
</table>

DC CHARACTERISTICS

- **Step Size**
 - $Gain Setting = 31.5dB$
 - 0.5 dB
- **Gain Error**
 - $Gain Setting = 31.5dB$
 - $±0.1$ dB
- **Gain Matching**
 - $±0.1$ dB
- **Input Resistance**
 - 12 kΩ
- **Input Capacitance**
 - 18 pF

AC CHARACTERISTICS

- **THD+N**
 - $V_IN = 10Vpp, f = 1kHz$
 - 0.0003 dB
- **Dynamic Range**
 - $V_IN = AGND, Gain = 0dB$
 - $(V_{A-}) + 0.86$ dB
 - 115 dB
- **Voltage Range, Input and Output**
 - $V_{IN} = AGND, Gain = 0dB$
 - $(V_{A+}) − 0.86$ dB
 - 120 dB
- **Output Noise**
 - $V_IN = AGND, Gain = 0dB$
 - 10.5 dB
 - $−126$ dB

OUTPUT BUFFER

- **Offset Voltage**
 - $V_IN = AGND, Gain = 0dB$
 - 1 mV
- **Load Capacitance Stability**
 - 1000 pF
- **Short-Circuit Current**
 - 75 mA
- **Unity-Gain Bandwidth, Small Signal**
 - 1 MHz

DIGITAL CHARACTERISTICS

- **High-Level Input Voltage, V_{IH}**
 - $+2.0$ V
- **Low-Level Input Voltage, V_{IL}**
 - $−0.3$ V
- **High-Level Output Voltage, V_{OH}**
 - $IO = 200\mu A$
 - $(V_{D+}) − 1.0$ V
 - 0.8 V
- **Low-Level Output Voltage, V_{OL}**
 - $IO = −2mA$
 - $(V_{D+}) − 1.0$ V
 - 0.4 V

SWITCHING CHARACTERISTICS

- **Serial Clock (SCLK) Frequency**
 - t_{SCLK}
 - 0 ns
 - 6.25 MHz
- **Serial Clock (SCLK) Pulse Width Low**
 - t_{PH}
 - 80 ns
- **Serial Clock (SCLK) Pulse Width High**
 - t_{PL}
 - 80 ns
- **MUTE Pulse Width Low**
 - t_{MI}
 - 2.0 ms
- **Input Timing**
 - **SDI Setup Time**
 - t_{SDS}
 - 20 ns
 - **SDI Hold Time**
 - t_{SDH}
 - 20 ns
 - **CS Falling to SCLK Rising**
 - t_{CSGR}
 - 90 ns
 - **SCLK Falling to CS Rising**
 - t_{CFCS}
 - 35 ns
- **Output Timing**
 - **CS Low to SDO Active**
 - t_{CSO}
 - 35 ns
 - **SCLK Falling to SDO Data Valid**
 - t_{CFDO}
 - 60 ns

POWER SUPPLY

- **Operating Voltage**
 - V_{A+}
 - $+4.5$ V
 - $+15$ V
 - $+15.5$ V
 - V_{A-}
 - $−4.5$ V
 - $−15$ V
 - $−15.5$ V
 - V_{D+}
 - $+4.5$ V
 - $+5$ V
 - $+5.5$ V
- **Quiescent Current**
 - I_{A+}
 - $V_{A+} = +15V$
 - 11 mA
 - 16 mA
 - $I_{A−}$
 - $V_{A−} = −15V$
 - 11 mA
 - 16 mA
 - I_{D+}
 - $V_{D+} = +5V$
 - 0.6 mA
 - 1.5 mA
PIN CONFIGURATION

Top View

ZCEN | 1 | 16 | VLN L
CS | 2 | 15 | AGNDL
SDI | 3 | 14 | VOUT L
V+ | 4 | 13 | VA
DGND | 5 | 12 | VA
SCLK | 6 | 11 | VOUT R
SDO | 7 | 10 | AGNDR
MUTE | 8 | 9 | VINR

PGA2320

PIN ASSIGNMENTS

<table>
<thead>
<tr>
<th>PIN</th>
<th>NAME</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ZCEN</td>
<td>Zero Crossing Enable Input (Active High)</td>
</tr>
<tr>
<td>2</td>
<td>CS</td>
<td>Chip-Select Input (Active Low)</td>
</tr>
<tr>
<td>3</td>
<td>SDI</td>
<td>Serial Data input</td>
</tr>
<tr>
<td>4</td>
<td>V+</td>
<td>Digital Power Supply, +5V</td>
</tr>
<tr>
<td>5</td>
<td>DGND</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>6</td>
<td>SCLK</td>
<td>Serial Clock Input</td>
</tr>
<tr>
<td>7</td>
<td>SDO</td>
<td>Serial Data Output</td>
</tr>
<tr>
<td>8</td>
<td>MUTE</td>
<td>Mute Control Input (Active Low)</td>
</tr>
<tr>
<td>9</td>
<td>VINR</td>
<td>Analog Input, Right Channel</td>
</tr>
<tr>
<td>10</td>
<td>AGNDR</td>
<td>Analog Ground, Right Channel</td>
</tr>
<tr>
<td>11</td>
<td>VOUTR</td>
<td>Analog Output, Right Channel</td>
</tr>
<tr>
<td>12</td>
<td>VA+</td>
<td>Analog Power Supply, +15V</td>
</tr>
<tr>
<td>13</td>
<td>V-</td>
<td>Analog Power Supply, -15V</td>
</tr>
<tr>
<td>14</td>
<td>VOUTL</td>
<td>Analog Output, Left Channel</td>
</tr>
<tr>
<td>15</td>
<td>AGNDL</td>
<td>Analog Ground, Left Channel</td>
</tr>
<tr>
<td>16</td>
<td>VINL</td>
<td>Analog Input, Left Channel</td>
</tr>
</tbody>
</table>
TYPICAL CHARACTERISTICS

At $T_A = +25^\circ C$, $V_{A+} = +15V$, $V_{A-} = -15V$, $V_{D+} = +5V$, $R_L = 100k\Omega$, $C_L = 20pF$, BW measure = 20Hz to 20kHz, unless otherwise noted.
TYPICAL CHARACTERISTICS (continued)

At $T_A = +25^\circ C$, $V_{A+} = +15V$, $V_{A-} = -15V$, $V_{D+} = +5V$, $R_L = 100k\Omega$, $C_L = 20pF$, BW measure = 20Hz to 20kHz, unless otherwise noted.

CROSSTALK OR CHANNEL SEPARATION
vs INPUT FREQUENCY
(Gain = 0dB, Amplitude = 8.5V$_{RMS}$)
GENERAL DESCRIPTION
The PGA2320 is a stereo audio volume control. It may be used in a wide array of professional and consumer audio equipment. The PGA2320 is fabricated in a mixed-signal BiCMOS process in order to take advantage of the superior analog characteristics that the process offers.

The heart of the PGA2320 is a resistor network, an analog switch array, and a high-performance bipolar op amp stage. The switches are used to select taps in the resistor network that, in turn, determine the gain of the amplifier stage. Switch selections are programmed using a serial control port. The serial port allows connection to a wide variety of host controllers. Figure 1 shows a functional block diagram of the PGA2320.

POWER-UP STATE
On power up, all internal flip-flops are reset. The gain byte value for both the left and right channels are set to 00 HEX, or mute condition. The gain will remain at this setting until the host controller programs new settings for each channel via the serial control port.

ANALOG INPUTS AND OUTPUTS
The PGA2320 includes two independent channels, referred to as the left and right channels. Each channel has a corresponding input and output pin. The input and output pins are unbalanced, or referenced to analog ground (either AGNDR or AGNDL). The inputs are named $V_{IN\,R}$ (pin 9) and $V_{IN\,L}$ (pin 16), while the outputs are named $V_{OUT\,R}$ (pin 11) and $V_{OUT\,L}$ (pin 14).

It is important to drive the PGA2320 with a low source impedance. If a source impedance of greater than 600Ω is used, the distortion performance of the PGA2320 will begin to degrade.

![Figure 1. PGA2320 Block Diagram](image-url)
SERIAL CONTROL PORT

The serial control port is utilized to program the gain settings for the PGA2320. The serial control port includes three input pins and one output pin. The inputs include CS (pin 2), SDI (pin 3), and SCLK (pin 6). The sole output pin is SDO (pin 7).

The CS pin functions as the chip select input. Data may be written to the PGA2320 only when CS is low. SDI is the serial data input pin. Control data is provided as a 16-bit word at the SDI pin, 8 bits each for the left and right channel gain settings. Data is formatted as MSB first, straight binary code. SCLK is the serial clock input. Data is clocked into SDI on the rising edge of SCLK.

SDO is the serial data output pin, and is used when daisy-chaining multiple PGA2320 devices. Daisy-chain operation is described in detail later in this section. SDO is a tristate output, and assumes a high impedance state when CS is high.

The protocol for the serial control port is shown in Figure 2. See Figure 3 for detailed timing specifications of the serial control port.

Gain Byte Format is MSB First, Straight Binary

- R0 is the Least Significant Bit of the Right Channel Gain Byte
- R7 is the Most Significant Bit of the Right Channel Gain Byte
- L0 is the Least Significant Bit of the Left Channel Gain Byte
- L7 is the Most Significant Bit of the Left Channel Gain Byte
- SDI is latched on the rising edge of SCLK
- SDO transitions on the falling edge of SCLK

Figure 2. Serial Interface Protocol
GAIN SETTINGS

The gain for each channel is set by its corresponding 8-bit code, either R[7:0] or L[7:0]; see Figure 2. The gain code data is straight binary format. If we let \(N \) equal the decimal equivalent of R[7:0] or L[7:0], then the following relationships exist for the gain settings:

For \(N = 0 \):

Mute Condition. The input multiplexer is connected to analog ground (AGNDR or AGNDL).

For \(N = 1 \) to 255:

Gain (dB) = 31.5 − [0.5 • (255 − N)]

This results in a gain range of +31.5dB (with \(N = 255 \)) to −95.5dB (with \(N = 1 \)).

Changes in gain setting may be made with or without zero crossing detection. The operation of the zero crossing detector and timeout circuitry is discussed later in this data sheet.

![Figure 3. Serial Interface Timing Requirements](image-url)
DAISY-CHAINING MULTIPLE PGA2320 DEVICES

In order to reduce the number of control signals required to support multiple PGA2320 devices on a printed circuit board, the serial control port supports daisy-chaining of multiple PGA2320 devices. Figure 4 shows the connection requirements for daisy-chain operation. This arrangement allows a three-wire serial interface to control many PGA2320 devices.

As shown in Figure 4, the SDO pin from device #1 is connected to the SDI input of device #2, and is repeated for additional devices. This configuration in turn forms a large shift register, in which gain data may be written for all PGA2320s connected to the serial bus. The length of the shift register is 16 x \(N \) bits, where \(N \) is equal to the number of PGA2320 devices included in the chain. The CS input must remain low for 16 x \(N \) SCLK periods, where \(N \) is the number of devices connected in the chain, in order to allow enough SCLK cycles to load all devices.

ZERO CROSSING DETECTION

The PGA2320 includes a zero crossing detection function that can provide for noise-free level transitions. The concept is to change gain settings on a zero crossing of the input signal, thus minimizing audible glitches. This function is enabled or disabled using the ZCEN input (pin 1). When ZCEN is low, zero crossing detection is disabled. When ZCEN is high, zero crossing detection will be enabled.

The zero crossing detection takes effect with a change in gain setting for a corresponding channel. The new gain setting will not be latched until either two zero crossings are detected, or a timeout period of 16ms has elapsed without detecting two zero crossings. In the case of a timeout, the new gain setting takes effect with no attempt to minimize audible artifacts.

Figure 4. Daisy-Chaining Multiple PGA2320 Devices
MUTE FUNCTION

The PGA2320 includes a mute function. This function may be activated by either the MUTE input (pin 8), or by setting the gain byte value for one or both channels to 00 Hex. The MUTE pin may be used to mute both channels, while the gain setting may be used to selectively mute the left and right channels. Muting is accomplished by switching the input multiplexer to analog ground (AGNR or AGNDL) with zero crossing enabled.

The MUTE pin is active low. When MUTE is low, each channel will be muted following the next zero crossing event or timeout that occurs on that channel. If MUTE becomes active while CS is also active, the mute will take effect once the CS pin goes high. When the MUTE pin is high, the PGA2320 operates normally, with the mute function disabled.

APPLICATIONS INFORMATION

This section includes additional information that is pertinent to designing the PGA2320 into an end application.

RECOMMENDED CONNECTION DIAGRAM

Figure 5 depicts the recommended connections for the PGA2320. Power-supply bypass capacitors should be placed as close to the PGA2320 package as physically possible.

Figure 5. Recommended Connection Diagram
PRINTED CIRCUIT BOARD LAYOUT GUIDELINES

It is recommended that the ground planes for the digital and analog sections of the printed circuit board (PCB) be separate from one another. The planes should be connected at a single point. Figure 6 shows the recommended PCB floor plan for the PGA2320.

The PGA2320 is mounted so that it straddles the split between the digital and analog ground planes. Pins 1 through 8 are oriented to the digital side of the board, while pins 9 through 16 are on the analog side of the board.

![Diagram](image)

Figure 6. Typical PCB Layout Floor Plan
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGA2320IDW</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>DW</td>
<td>16</td>
<td>40</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 85</td>
<td>PGA2320I</td>
<td></td>
</tr>
<tr>
<td>PGA2320IDWG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>DW</td>
<td>16</td>
<td>40</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 85</td>
<td>PGA2320I</td>
<td></td>
</tr>
<tr>
<td>PGA2320IDWR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>DW</td>
<td>16</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 85</td>
<td>PGA2320I</td>
<td></td>
</tr>
<tr>
<td>PGA2320IDWRG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>DW</td>
<td>16</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 85</td>
<td>PGA2320I</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:

- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) **RoHS**: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) **Lead/Ball Finish** - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

Device	**Package Type**	**Package Drawing**	**Pins**	**SPQ**	**Reel Diameter (mm)**	**Reel Width W1 (mm)**	**A0 (mm)**	**B0 (mm)**	**K0 (mm)**	**P1 (mm)**	**W (mm)**	**Pin1 Quadrant**
PGA2320IDWR | SOIC | DW | 16 | 2000 | 330.0 | 16.4 | 10.75 | 10.7 | 2.7 | 12.0 | 16.0 | Q1

All dimensions are nominal.

TAPE DIMENSIONS

- **A0**: Dimension designed to accommodate the component width
- **B0**: Dimension designed to accommodate the component length
- **K0**: Dimension designed to accommodate the component thickness
- **W**: Overall width of the carrier tape
- **P1**: Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

- **Pocket Quadrants**
- **Sprocket Holes**
- **User Direction of Feed**

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGA2320IDWR</td>
<td>SOIC</td>
<td>DW</td>
<td>16</td>
<td>2000</td>
<td>350.0</td>
<td>350.0</td>
<td>43.0</td>
</tr>
</tbody>
</table>

All dimensions are nominal
This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.
NOTES:

1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.
5. Reference JEDEC registration MS-013.
NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2020, Texas Instruments Incorporated