• D-C Triggered from Active-High or Active-Low Gated Logic Inputs
• Retriggerable for Very Long Output Pulses, Up to 100% Duty Cycle
• Overriding Clear Terminates Output Pulse
• ‘122 and ‘LS122 Have Internal Timing Resistors

Description

These d-c triggered multivibrators feature output pulse-duration control by three methods. The basic pulse time is programmed by selection of external resistance and capacitance values (see typical application data). The ‘122 and ‘LS122 have internal timing resistors that allow the circuits to be used with only an external capacitor, if so desired. Once triggered, the basic pulse duration may be extended by retriggering the gated low-level-active (A) or high-level-active (B) inputs, or be reduced by use of the overriding clear. Figure 1 illustrates pulse control by retriggering and early clear.

The ‘LS122 and ‘LS123 are provided enough Schmitt hysteresis to ensure jitter-free triggering from the B input with transition rates as slow as 0.1 millivolt per nanosecond.

The R_{int} in nominally 10 kΩ for ‘122 and ‘LS122.

Notes:

1. An external timing capacitor may be connected between C_{ext} and $R_{ext/C_{ext}}$ (positive).
2. To use the internal timing resistor of ‘122 or ‘LS122, connect R_{int} to V_{CC}.
3. For improved pulse duration accuracy and repeatability, connect an external resistor between $R_{ext/C_{ext}}$ and V_{CC} with R_{int} open-circuited.
4. To obtain variable pulse durations, connect an external variable resistance between R_{int} or $R_{ext/C_{ext}}$ and V_{CC}.
SN54122, SN54123, SN54130, SN54LS122, SN54LS123, SN74122, SN74123, SN74130, SN74LS122, SN74LS123
RETRIGGERABLE MONOSTABLE MULTIVIBRATORS
SDL5043 – DECEMBER 1983 – REVISED MARCH 1988

description (continued)

NOTE: Retrigger pulses starting before 0.22 Cext (in picofrads) nanoseconds after the initial trigger pulse will be ignored and the output duration will remain unchanged.

FIGURE 1—TYPICAL INPUT/OUTPUT PULSES

See explanation of function tables on page
† These lines of the functional tables assume that the indicated steady-state conditions at the A and B inputs have been set up long enough to complete any pulse started before the set up.
SN54122, SN54123, SN54130, SN54LS122, SN54LS123, SN74122, SN74123, SN74130, SN74LS122, SN74LS123
RETRIGGERABLE MONOSTABLE MULTIVIBRATORS

logic diagram (positive logic)

'122, 'LS122

A1 (1)
A2 (2)
B1 (3)
B2 (4)
CLR (5)

(13) R_{ext/C_{ext}}
(9) R_{int}
(11) C_{ext}
(8) Q
(6) \overline{Q}

R_{int} is nominally 10 kΩ for '122 and 'LS122

logic symbol†

'122, 'LS122

A1 (1)
A2 (2)
B1 (3)
B2 (4)
CLR (5)

(1) >1 &
(8) Q
(6) \overline{Q}
(9) R_{int}
(11) C_{ext}
(13) R_{ext/C_{ext}}

logic diagram (positive logic) (each multivibrator)

'123, '130, 'LS123

A
B
CLR

(13) R_{ext/C_{ext}}
(14) C_{ext}
(11) \overline{Q}
(6) Q

logic symbol†

'123, '130, 'LS123

1A (1)
1B (2)
1CLR (3)
1C_{ext} (14)
1R_{ext/C_{ext}} (15)
2A (9)
2B (10)
2CLR (11)
2C_{ext} (6)
2R_{ext/C_{ext}} (7)

(13) 1Q
(4) 1\overline{Q}
(5) 2Q
(12) 2\overline{Q}

Pin numbers shown are for D, J, N, and W packages.

†These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
schematics of inputs and outputs

'122, '123, '130 CIRCUITS

EQUIVALENT OF EACH INPUT

\[R_{eq} \]

- Clear inputs: \(R_{eq} = 2 \, k\Omega \) NOM
- Other inputs: \(R_{eq} = 4 \, k\Omega \) NOM

TYPICAL OF ALL OUTPUTS

- 100 \(\Omega \) NOM

'LS122, 'LS123 CIRCUITS

EQUIVALENT OF EACH INPUT

\[17 \, k\Omega \text{ NOM} \]

TYPICAL OF ALL OUTPUTS

- 120 \(\Omega \) NOM

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

- Supply voltage, \(V_{CC} \) (see Note 1) .. 7 V
- Input voltage: '122, '123, '130 ... 5.5 V
- 'LS122, 'LS123 ... 7 V
- Operating free-air temperature range: SN54' \(-55^\circ\text{C} \text{ to } 125^\circ\text{C}\)
- SN74' ... \(0^\circ\text{C} \text{ to } 70^\circ\text{C}\)
- Storage temperature range .. \(-65^\circ\text{C} \text{ to } 150^\circ\text{C}\)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SN54′</th>
<th>SN74′</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage, V_{CC}</td>
<td>MIN 4.5</td>
<td>NOM 5</td>
<td>MAX 5.5</td>
</tr>
<tr>
<td>High-level output current, I_{OH}</td>
<td>4.75</td>
<td>5</td>
<td>5.25</td>
</tr>
<tr>
<td>Low-level output current, I_{OL}</td>
<td>–800</td>
<td></td>
<td>–800</td>
</tr>
<tr>
<td>Pulse duration, t_p</td>
<td>18</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>External timing resistance, R_{EXT}</td>
<td>40</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>External capacitance, C_{EXT}</td>
<td>No restriction</td>
<td></td>
<td>No restriction</td>
</tr>
<tr>
<td>Wiring capacitance at R_{EXT}/C_{EXT} terminal</td>
<td>50</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Operating free-air temperature, T_A</td>
<td>–55</td>
<td>125</td>
<td>0</td>
</tr>
</tbody>
</table>

electrical characteristics over recommended free-air operating temperature range

TEST CONDITIONS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS†</th>
<th>'122</th>
<th>'123, '130</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IH} High-level input voltage</td>
<td>$V_{CC} = MIN, I_{I} = -12, mA$</td>
<td>0.8</td>
<td>0.8 V</td>
</tr>
<tr>
<td>V_{IL} Low-level input voltage</td>
<td>$V_{CC} = MIN, I_{I} = -15, mA$</td>
<td>0.4</td>
<td>0.4 V</td>
</tr>
<tr>
<td>V_{IK} Input clamp voltage</td>
<td>$V_{CC} = MIN, I_{I} = -1.5, mA$</td>
<td>1</td>
<td>1 mA</td>
</tr>
<tr>
<td>V_{OH} High-level output voltage</td>
<td>$V_{CC} = MAX, V_{I} = 5.5, V$</td>
<td>40</td>
<td>40 μA</td>
</tr>
<tr>
<td>V_{OL} Low-level output voltage</td>
<td>$V_{CC} = MAX, V_{I} = 2.4, V$</td>
<td>80</td>
<td>80 μA</td>
</tr>
<tr>
<td>I_{I} Input current at maximum input voltage</td>
<td>$V_{CC} = MAX, V_{I} = 1.6, mA$</td>
<td>–1.6</td>
<td>–1.6 mA</td>
</tr>
<tr>
<td>I_{IH} High-level input current</td>
<td>$V_{CC} = MAX, V_{I} = 1, mA$</td>
<td>40</td>
<td>40 mA</td>
</tr>
<tr>
<td>I_{IL} Low-level input current</td>
<td>$V_{CC} = MAX, V_{I} = 0.4, V$</td>
<td>80</td>
<td>80 μA</td>
</tr>
<tr>
<td>I_{OS} Short-circuit output current§</td>
<td>$V_{CC} = MAX, V_{I} = 1, mA$</td>
<td>–1.6</td>
<td>–1.6 mA</td>
</tr>
<tr>
<td>I_{CC} Supply current (quiescent or triggered)</td>
<td>$V_{CC} = MAX, V_{I} = 5, V$</td>
<td>1</td>
<td>1 mA</td>
</tr>
</tbody>
</table>

† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
‡ All typical values are at $V_{CC} = 5\, V$, $T_A = 25^\circ C$.
§ Not more than one output should be shorted at a time.

NOTES:
5. Ground C_{EXT} to measure V_{OH} at Q, V_{OL} at Q, or I_{OS} at Q. C_{EXT} is open to measure V_{OH} at Q, V_{OL} at Q, or I_{OS} at Q.
6. Quiescent I_{CC} is measured (after clearing) with $4.5\, V$ applied to all clear and A inputs, B inputs grounded, all outputs open and $R_{EXT} = 25\, k\Omega$. R_{INT} of '122 is open.
7. I_{CC} is measured in the triggered state with $2.4\, V$ applied to all clear and B inputs, A inputs grounded, all outputs open, $C_{EXT} = 0.02\, μF$, and $R_{EXT} = 25\, k\Omega$. R_{INT} of '122 is open.

switching characteristics, $V_{CC} = 5\, V$, $T_A = 25^\circ C$, see note 8

<table>
<thead>
<tr>
<th>PARAMETER†</th>
<th>FROM (INPUT)</th>
<th>TO (OUTPUT)</th>
<th>TEST CONDITIONS</th>
<th>'122, '130</th>
<th>'130</th>
<th>'123</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{PLH}</td>
<td>A</td>
<td>Q</td>
<td>$C_{EXT} = 0$, $C_{L} = 15, pF$, $R_{EXT} = 5, k\Omega$, $R_{INT} = 25, k\Omega$</td>
<td>22</td>
<td>22</td>
<td>19</td>
<td>22</td>
</tr>
<tr>
<td>t_{PHL}</td>
<td>A</td>
<td>Q</td>
<td>$C_{EXT} = 0$, $C_{L} = 15, pF$, $R_{EXT} = 5, k\Omega$, $R_{INT} = 25, k\Omega$</td>
<td>19</td>
<td>19</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>t_{PLH}</td>
<td>A or B</td>
<td>Q</td>
<td>$C_{EXT} = 1000, pF$, $C_{L} = 15, pF$, $R_{EXT} = 10, k\Omega$, $R_{INT} = 25, k\Omega$</td>
<td>3.08</td>
<td>3.42</td>
<td>3.76</td>
<td>2.76</td>
</tr>
<tr>
<td>t_{PHL}</td>
<td>A or B</td>
<td>Q</td>
<td>$C_{EXT} = 1000, pF$, $C_{L} = 15, pF$, $R_{EXT} = 10, k\Omega$, $R_{INT} = 25, k\Omega$</td>
<td>3.08</td>
<td>3.42</td>
<td>3.76</td>
<td>2.76</td>
</tr>
</tbody>
</table>

† t_{PLH} = propagation delay time, low-to-high-level output
‡ t_{PHL} = propagation delay time, high-to-low-level output
§ t_{WQ} = duration of pulse at output Q.

NOTE 8: Load circuits and voltage waveforms are shown in Section 1.
Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SN54LS'</th>
<th>SN74LS'</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage, (V_{CC})</td>
<td>4.5</td>
<td>5</td>
<td>5.5</td>
</tr>
<tr>
<td>High-level output current, (I_{OH})</td>
<td>-400</td>
<td>5</td>
<td>5.25</td>
</tr>
<tr>
<td>Low-level output current, (I_{OL})</td>
<td>4</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Pulse duration, (t_{PW})</td>
<td>40</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>External timing resistance, (R_{EXT})</td>
<td>5</td>
<td>180</td>
<td>5</td>
</tr>
<tr>
<td>External capacitance, (C_{EXT})</td>
<td>No restriction</td>
<td>No restriction</td>
<td></td>
</tr>
<tr>
<td>Wiring capacitance at (R_{EXT}/C_{EXT}) terminal</td>
<td>50</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Operating free-air temperature, (T_{A})</td>
<td>-55</td>
<td>125</td>
<td>0</td>
</tr>
</tbody>
</table>

Electrical Characteristics Over Recommended Operating Free-Air Temperature Range

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SN54LS'</th>
<th>SN74LS'</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{IH}) High-level input voltage</td>
<td>2.5</td>
<td>3.5</td>
<td>2.7</td>
</tr>
<tr>
<td>(V_{IL}) Low-level input voltage</td>
<td>0.25</td>
<td>0.4</td>
<td>0.25</td>
</tr>
<tr>
<td>(I_{L}) Input current at maximum input voltage</td>
<td>0.8</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>(I_{IH}) High-level input current</td>
<td>20</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>(I_{OL}) Low-level input current</td>
<td>0.4</td>
<td></td>
<td>0.4</td>
</tr>
<tr>
<td>(I_{QS}) Short-circuit output current</td>
<td>-20</td>
<td>-100</td>
<td>-20</td>
</tr>
<tr>
<td>(I_{CC}) Supply current (quiescent or triggered)</td>
<td>6</td>
<td>11</td>
<td>6</td>
</tr>
</tbody>
</table>

†For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
‡All typical values are at \(V_{CC} = 5\, V\) and \(T_{A} = 25\, ^{\circ}C\).
§Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.

NOTES:
1. To measure \(V_{OH}\) at \(Q\), \(V_{OL}\) at \(A\), or \(I_{QS}\) at \(Q\), ground \(R_{EXT}/C_{EXT}\), apply 2 V to \(B\) and clear, and pulse \(A\) from 2 V to 0 V.
2. All with outputs open and 4.5 V applied to all data and clear inputs. \(I_{CC}\) is measured after a momentary ground, then 4.5 V, is applied to \(A\) or \(B\) inputs.

Switching Characteristics, \(V_{CC} = 5\, V\), \(T_{A} = 25^\circ C\) (see note 8)

<table>
<thead>
<tr>
<th>Parameter†</th>
<th>FROM (INPUT)</th>
<th>TO (OUTPUT)</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{PLH})</td>
<td>A</td>
<td>Q</td>
<td>(C_{EXT} = 0), (C_{L} = 15, pF), (R_{L} = 2, k\Omega)</td>
<td>23</td>
<td>33</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(t_{PHL})</td>
<td>A</td>
<td>Q</td>
<td>(C_{EXT} = 0), (C_{L} = 15, pF), (R_{L} = 2, k\Omega)</td>
<td>32</td>
<td>45</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(t_{PHL})</td>
<td>B</td>
<td>Q</td>
<td>(C_{EXT} = 0), (C_{L} = 15, pF), (R_{L} = 2, k\Omega)</td>
<td>34</td>
<td>45</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(t_{PLH})</td>
<td>Clear</td>
<td>Q</td>
<td>(C_{EXT} = 1000, pF), (R_{EXT} = 10, k\Omega), (R_{L} = 2, k\Omega)</td>
<td>20</td>
<td>27</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(t_{WQ})</td>
<td>A or B</td>
<td>Q</td>
<td>(C_{EXT} = 0), (C_{L} = 15, pF), (R_{L} = 2, k\Omega)</td>
<td>116</td>
<td>200</td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

†\(t_{PLH}\) = propagation delay time, low-to-high-level output
\(t_{PHL}\) = propagation delay time, high-to-low-level output
\(t_{WQ}\) = duration of pulse at output Q.

NOTE 8: Load circuits and voltage waveforms are shown in Section 1.
TYPICAL APPLICATION DATA FOR '122, '123, '130

For pulse durations when \(C_{\text{ext}} \leq 1000 \) pF, see Figure 4.

The output pulse duration is primarily a function of the external capacitor and resistor. For \(C_{\text{ext}} > 1000 \) pF, the output pulse duration \((t_w) \) is defined as:

\[
t_w = K \cdot R_T \cdot C_{\text{ext}} \left(1 + \frac{0.7}{R_T} \right)
\]

where

- \(K \) is 0.32 for '122, 0.28 for '123 and '130
- \(R_T \) is in kΩ (internal or external timing resistance.)
- \(C_{\text{ext}} \) is in pF
- \(t_w \) is in ns

To prevent reverse voltage across \(C_{\text{ext}} \), it is recommended that the method shown in Figure 2 be employed when using electrolytic capacitors and in applications utilizing the clear function. In all applications using the diode, the pulse duration is:

\[
t_w = K_D \cdot R_T \cdot C_{\text{ext}} \left(1 + \frac{0.7}{R_T} \right)
\]

\(K_D \) is 0.28 for '122, 0.25 for '123 and '130

![Timing component connections](image)

Applications requiring more precise pulse durations (up to 28 seconds) and not requiring the clear feature can best be satisfied with the '121.

\[\text{Diagram of timing component connections with equations and instructions.}\]

\(^{\dagger}\)These values of resistance exceed the maximum recommended for use over the full temperature range of the SN54 circuits.
TYPICAL APPLICATION DATA FOR 'LS122, 'LS123

The basic output pulse duration is essentially determined by the values of external capacitance and timing resistance. For pulse durations when $C_{ext} \leq 1000 \, \text{pF}$, use Figure 6, or use Figure 7 where the pulse duration may be defined as:

$$t_W = K \cdot R_T \cdot C_{ext}$$

When $C_{ext} \geq 1 \, \mu\text{F}$, the output pulse width is defined as:

$$t_W = 0.33 \cdot R_T \cdot C_{ext}$$

For the above two equations, as applicable:

- K is multiplier factor, see Figure 7
- R_T is in kΩ (internal or external timing resistance)
- C_{ext} is in pF
- t_W is in ns

For maximum noise immunity, system ground should be applied to the C_{ext} node, even though the C_{ext} node is already tied to the ground lead internally. Due to the timing scheme used by the 'LS122 and 'LS123, a switching diode is not required to prevent reverse biasing when using electrolytic capacitors.

'LS122, 'LS123
TYPICAL OUTPUT PULSE DURATION
VS
EXTERNAL TIMING CAPACITANCE

$VCC = 5 \, \text{V}$
$TA = 25^\circ\text{C}$

$R_T = 260\, \text{kohms}$
$R_T = 160\, \text{kohms}$
$R_T = 80\, \text{kohms}$
$R_T = 40\, \text{kohms}$
$R_T = 20\, \text{kohms}$
$R_T = 10\, \text{kohms}$
$R_T = 5\, \text{kohms}$

†This value of resistance exceeds the maximum recommended for use over the full temperature range of the SN54LS circuits.

FIGURE 6
TYPICAL APPLICATION DATA FOR 'LS122, 'LS123†

MULTIPLIER FACTOR VS EXTERNAL CAPACITOR

\[
\begin{align*}
\text{C}_{\text{ext}} & \text{ – External Capacitor Value – } \mu\text{F} \\
\text{K} & \text{ – Multiplier Factor – }
\end{align*}
\]

(K IS INDEPENDENT OF R)

FIGURE 7

VARIATION IN OUTPUT PULSE DURATION VS SUPPLY VOLTAGE

\[
\begin{align*}
\Delta t_{\text{w(out)}} & \text{ – Variation in Output Pulse Duration} \\
\text{C}_{\text{ext}} & = 60 \mu\text{F} \\
\text{R}_{\text{ext}} & = 10 \text{ K ohms} \\
T_A & = 25^\circ\text{C}
\end{align*}
\]

\[t_{\text{w(out)}} \approx 370 \text{ ns at } V_{\text{CC}} = 5 \text{ V}\]

FIGURE 9

DISTRIBUTION OF UNITS VS OUTPUT PULSE DURATION

\[
\begin{align*}
V_{\text{CC}} & = 5 \text{ V} \\
T_A & = 25^\circ\text{C}
\end{align*}
\]

MEDIAN - 20% — 'LS122

+ 20% — 'LS122

See Note 14

- 8% — 'LS122/

'LS123

FIGURE 8

VARIATION IN OUTPUT PULSE DURATION VS FREE-AIR TEMPERATURE

\[
\begin{align*}
\Delta t_{\text{w(out)}} & \text{ – Variation in Output Pulse Duration} \\
V_{\text{CC}} & = 5 \text{ V} \\
\text{C}_{\text{ext}} & = 60 \mu\text{F} \\
\text{R}_T & = 10 \text{ K ohms}
\end{align*}
\]

\[t_{\text{w(out)}} \approx 370 \text{ ns at } T_A = 25^\circ\text{C}\]

'LS122/

'LS123

See Note 14

FIGURE 10

NOTE 14: For the 'LS122, the internal timing resistor, R_{\text{int}}, was used. For the 'LS122/123, an external timing resistor was used for R_T.

†Data for temperatures below 0°C and above 70°C and for supply voltages below 4.75 V and above 5.25 V are applicable for SN54LS122 and SN54LS123 only.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead finish/ Ball material</th>
<th>MSL Peak Temp (°C)</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>5962-7603901VEA</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>J</td>
<td>16</td>
<td>1</td>
<td>Non-RoHS & Green</td>
<td>SNPB</td>
<td>N / A for Pkg Type</td>
<td>-55 to 125</td>
<td></td>
<td>5962-7603901VEA SNV54LS123J</td>
</tr>
<tr>
<td>5962-7603901VFA</td>
<td>ACTIVE</td>
<td>CFP</td>
<td>W</td>
<td>16</td>
<td>1</td>
<td>Non-RoHS & Green</td>
<td>SNPB</td>
<td>N / A for Pkg Type</td>
<td>-55 to 125</td>
<td></td>
<td>5962-7603901VFA SNV54LS123W</td>
</tr>
<tr>
<td>7603901EA</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>J</td>
<td>16</td>
<td>1</td>
<td>Non-RoHS & Green</td>
<td>SNPB</td>
<td>N / A for Pkg Type</td>
<td>-55 to 125</td>
<td></td>
<td>7603901EA SNJ54LS123J</td>
</tr>
<tr>
<td>7603901FA</td>
<td>ACTIVE</td>
<td>CFP</td>
<td>W</td>
<td>16</td>
<td>1</td>
<td>Non-RoHS & Green</td>
<td>SNPB</td>
<td>N / A for Pkg Type</td>
<td>-55 to 125</td>
<td></td>
<td>7603901FA SNJ54LS123W</td>
</tr>
<tr>
<td>JM38510/01203BEA</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>J</td>
<td>16</td>
<td>1</td>
<td>Non-RoHS & Green</td>
<td>SNPB</td>
<td>N / A for Pkg Type</td>
<td>-55 to 125</td>
<td></td>
<td>JM38510/01203BEA</td>
</tr>
<tr>
<td>JM38510/31401B2A</td>
<td>ACTIVE</td>
<td>LCCC</td>
<td>FK</td>
<td>20</td>
<td>1</td>
<td>Non-RoHS & Green</td>
<td>POST-PLATE</td>
<td>N / A for Pkg Type</td>
<td>-55 to 125</td>
<td></td>
<td>JM38510/31401B2A</td>
</tr>
<tr>
<td>JM38510/31401BEA</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>J</td>
<td>16</td>
<td>1</td>
<td>Non-RoHS & Green</td>
<td>SNPB</td>
<td>N / A for Pkg Type</td>
<td>-55 to 125</td>
<td></td>
<td>JM38510/31401BEA</td>
</tr>
<tr>
<td>JM38510/31401BFA</td>
<td>ACTIVE</td>
<td>CFP</td>
<td>W</td>
<td>16</td>
<td>1</td>
<td>Non-RoHS & Green</td>
<td>SNPB</td>
<td>N / A for Pkg Type</td>
<td>-55 to 125</td>
<td></td>
<td>JM38510/31401BFA</td>
</tr>
<tr>
<td>M38510/01203BEA</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>J</td>
<td>16</td>
<td>1</td>
<td>Non-RoHS & Green</td>
<td>SNPB</td>
<td>N / A for Pkg Type</td>
<td>-55 to 125</td>
<td></td>
<td>M38510/01203BEA</td>
</tr>
<tr>
<td>M38510/31401B2A</td>
<td>ACTIVE</td>
<td>LCCC</td>
<td>FK</td>
<td>20</td>
<td>1</td>
<td>Non-RoHS & Green</td>
<td>POST-PLATE</td>
<td>N / A for Pkg Type</td>
<td>-55 to 125</td>
<td></td>
<td>M38510/31401B2A</td>
</tr>
<tr>
<td>M38510/31401BEA</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>J</td>
<td>16</td>
<td>1</td>
<td>Non-RoHS & Green</td>
<td>SNPB</td>
<td>N / A for Pkg Type</td>
<td>-55 to 125</td>
<td></td>
<td>M38510/31401BEA</td>
</tr>
<tr>
<td>M38510/31401BFA</td>
<td>ACTIVE</td>
<td>CFP</td>
<td>W</td>
<td>16</td>
<td>1</td>
<td>Non-RoHS & Green</td>
<td>SNPB</td>
<td>N / A for Pkg Type</td>
<td>-55 to 125</td>
<td></td>
<td>M38510/31401BFA</td>
</tr>
<tr>
<td>SN54123J</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>J</td>
<td>16</td>
<td>1</td>
<td>Non-RoHS & Green</td>
<td>SNPB</td>
<td>N / A for Pkg Type</td>
<td>-55 to 125</td>
<td></td>
<td>SN54123J</td>
</tr>
<tr>
<td>SN54LS123J</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>J</td>
<td>16</td>
<td>1</td>
<td>Non-RoHS & Green</td>
<td>SNPB</td>
<td>N / A for Pkg Type</td>
<td>-55 to 125</td>
<td></td>
<td>SN54LS123J</td>
</tr>
<tr>
<td>SN74123N</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>16</td>
<td>25</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>N / A for Pkg Type</td>
<td>0 to 70</td>
<td></td>
<td>SN74123N</td>
</tr>
<tr>
<td>SN74LS122D</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td></td>
<td>LS122</td>
</tr>
<tr>
<td>Orderable Device</td>
<td>Status (1)</td>
<td>Package Type</td>
<td>Package Drawing</td>
<td>Pins</td>
<td>Package Qty</td>
<td>Eco Plan (2)</td>
<td>Lead finish/ Ball material (6)</td>
<td>MSL Peak Temp (3)</td>
<td>Op Temp (°C)</td>
<td>Device Marking (4/5)</td>
<td>Samples</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
<td>--------------</td>
<td>----------------</td>
<td>------</td>
<td>-------------</td>
<td>--------------</td>
<td>---------------------------------</td>
<td>------------------</td>
<td>-------------</td>
<td>----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>SN74LS122DR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>LS122</td>
<td>Samples</td>
</tr>
<tr>
<td>SN74LS122DRE4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>LS122</td>
<td>Samples</td>
</tr>
<tr>
<td>SN74LS122N</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>14</td>
<td>25</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>N / A for Pkg Type</td>
<td>0 to 70</td>
<td>SN74LS122N</td>
<td>Samples</td>
</tr>
<tr>
<td>SN74LS122NE4</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>14</td>
<td>25</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>N / A for Pkg Type</td>
<td>0 to 70</td>
<td>SN74LS122N</td>
<td>Samples</td>
</tr>
<tr>
<td>SN74LS122NSR</td>
<td>ACTIVE</td>
<td>SO</td>
<td>NS</td>
<td>14</td>
<td>2000</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>74LS122</td>
<td>Samples</td>
</tr>
<tr>
<td>SN74LS123D</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>16</td>
<td>40</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>LS123</td>
<td>Samples</td>
</tr>
<tr>
<td>SN74LS123DBR</td>
<td>ACTIVE</td>
<td>SSOP</td>
<td>DB</td>
<td>16</td>
<td>2000</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>LS123</td>
<td>Samples</td>
</tr>
<tr>
<td>SN74LS123DE4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>16</td>
<td>40</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>LS123</td>
<td>Samples</td>
</tr>
<tr>
<td>SN74LS123DG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>16</td>
<td>40</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>LS123</td>
<td>Samples</td>
</tr>
<tr>
<td>SN74LS123DR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>16</td>
<td>2500</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>LS123</td>
<td>Samples</td>
</tr>
<tr>
<td>SN74LS123DRE4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>16</td>
<td>2500</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>LS123</td>
<td>Samples</td>
</tr>
<tr>
<td>SN74LS123DRG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>16</td>
<td>2500</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>LS123</td>
<td>Samples</td>
</tr>
<tr>
<td>SN74LS123N</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>16</td>
<td>25</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>N / A for Pkg Type</td>
<td>0 to 70</td>
<td>SN74LS123N</td>
<td>Samples</td>
</tr>
<tr>
<td>SN74LS123NE4</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>16</td>
<td>25</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>N / A for Pkg Type</td>
<td>0 to 70</td>
<td>SN74LS123N</td>
<td>Samples</td>
</tr>
<tr>
<td>SN74LS123NSR</td>
<td>ACTIVE</td>
<td>SO</td>
<td>NS</td>
<td>16</td>
<td>2000</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>74LS123</td>
<td>Samples</td>
</tr>
<tr>
<td>SN74LS123NSRG4</td>
<td>ACTIVE</td>
<td>SO</td>
<td>NS</td>
<td>16</td>
<td>2000</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>74LS123</td>
<td>Samples</td>
</tr>
<tr>
<td>SNJ54123J</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>J</td>
<td>16</td>
<td>1</td>
<td>Non-RoHS & Green</td>
<td>SNPB</td>
<td>N / A for Pkg Type</td>
<td>-55 to 125</td>
<td>SNJ54123J</td>
<td>Samples</td>
</tr>
<tr>
<td>SNJ54123W</td>
<td>ACTIVE</td>
<td>CFP</td>
<td>W</td>
<td>16</td>
<td>1</td>
<td>Non-RoHS & Green</td>
<td>SNPB</td>
<td>N / A for Pkg Type</td>
<td>-55 to 125</td>
<td>SNJ54123W</td>
<td>Samples</td>
</tr>
<tr>
<td>SNJ54LS123FK</td>
<td>ACTIVE</td>
<td>LCCC</td>
<td>FK</td>
<td>20</td>
<td>1</td>
<td>Non-RoHS & Green</td>
<td>POST-PLATE</td>
<td>N / A for Pkg Type</td>
<td>-55 to 125</td>
<td>SNJ54LS123FK</td>
<td>Samples</td>
</tr>
<tr>
<td>SNJ54LS123J</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>J</td>
<td>16</td>
<td>1</td>
<td>Non-RoHS & Green</td>
<td>SNPB</td>
<td>N / A for Pkg Type</td>
<td>-55 to 125</td>
<td>7603901EA SNJ54LS123J</td>
<td>Samples</td>
</tr>
<tr>
<td>Orderable Device</td>
<td>Status (1)</td>
<td>Package Type</td>
<td>Package Drawing</td>
<td>PINS</td>
<td>Package Qty</td>
<td>Lead finish/ Ball material</td>
<td>MSL Peak Temp (3)</td>
<td>Op Temp (°C)</td>
<td>Device Marking (4/5)</td>
<td>Samples</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>------------</td>
<td>--------------</td>
<td>----------------</td>
<td>------</td>
<td>-------------</td>
<td>--------------------------</td>
<td>------------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>SNJ54LS123W</td>
<td>ACTIVE</td>
<td>CFP</td>
<td>W</td>
<td>16</td>
<td>1</td>
<td>Non-RoHS & Green</td>
<td>SNPB</td>
<td>-55 to 125</td>
<td>7603901FA SNJ54LS123W</td>
<td>Samples</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) **RoHS**: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
- **RoHS Exempt**: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
- **Green**: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN54123, SN54LS123, SN54LS123-SP, SN74123, SN74LS123 :
Catalog: SN74123, SN74LS123, SN54LS123

Military: SN54123, SN54LS123

Space: SN54LS123-SP

NOTE: Qualified Version Definitions:

- Catalog - TI's standard catalog product
- Military - QML certified for Military and Defense Applications
- Space - Radiation tolerant, ceramic packaging and qualified for use in Space-based application
TAPE AND REEL INFORMATION

TAPE DIMENSIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin 1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN74LS122DR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>330.0</td>
<td>16.4</td>
<td>6.5</td>
<td>9.0</td>
<td>2.1</td>
<td>8.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
<tr>
<td>SN74LS122NSR</td>
<td>SO</td>
<td>NS</td>
<td>14</td>
<td>2000</td>
<td>330.0</td>
<td>16.4</td>
<td>8.2</td>
<td>10.5</td>
<td>2.5</td>
<td>12.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
<tr>
<td>SN74LS123DR</td>
<td>SOIC</td>
<td>D</td>
<td>16</td>
<td>2500</td>
<td>330.0</td>
<td>16.4</td>
<td>6.5</td>
<td>10.3</td>
<td>2.1</td>
<td>8.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
<tr>
<td>SN74LS123NSR</td>
<td>SO</td>
<td>NS</td>
<td>16</td>
<td>2000</td>
<td>330.0</td>
<td>16.4</td>
<td>8.2</td>
<td>10.5</td>
<td>2.5</td>
<td>12.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>

All dimensions are nominal.

Notes:
- *Dimension designed to accommodate the component width*
- *Dimension designed to accommodate the component length*
- *Dimension designed to accommodate the component thickness*
- *Overall width of the carrier tape*
- *Pitch between successive cavity centers*

Pack Materials-Page 1
<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN74LS122DR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>853.0</td>
<td>449.0</td>
<td>35.0</td>
</tr>
<tr>
<td>SN74LS122NSR</td>
<td>SO</td>
<td>NS</td>
<td>14</td>
<td>2000</td>
<td>853.0</td>
<td>449.0</td>
<td>35.0</td>
</tr>
<tr>
<td>SN74LS123DR</td>
<td>SOIC</td>
<td>D</td>
<td>16</td>
<td>2500</td>
<td>333.2</td>
<td>345.9</td>
<td>28.6</td>
</tr>
<tr>
<td>SN74LS123NSR</td>
<td>SO</td>
<td>NS</td>
<td>16</td>
<td>2000</td>
<td>853.0</td>
<td>449.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>

All dimensions are nominal
N (R–PDIP–T**)

PLASTIC DUAL–IN–LINE PACKAGE

16 PINS SHOWN

<table>
<thead>
<tr>
<th>PINS</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A MAX</td>
<td>0.775 (19.69)</td>
<td>0.775 (19.69)</td>
<td>0.920 (23.37)</td>
<td>1.060 (26.92)</td>
</tr>
<tr>
<td>A MIN</td>
<td>0.745 (18.92)</td>
<td>0.745 (18.92)</td>
<td>0.850 (21.59)</td>
<td>0.940 (23.88)</td>
</tr>
<tr>
<td>MS–001 VARIATION</td>
<td>AA</td>
<td>BB</td>
<td>AC</td>
<td>AD</td>
</tr>
</tbody>
</table>

NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS–001, except 18 and 20 pin minimum body length (Dim A).
D. The 20 pin end lead shoulder width is a vendor option, either half or full width.
NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only.
E. Falls within MIL STD 1835 GDFP2-F16
J (R—GDIP—T**)
14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE

<table>
<thead>
<tr>
<th>PINS **</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.300 (7,62)</td>
<td>0.300 (7,62)</td>
<td>0.300 (7,62)</td>
<td>0.300 (7,62)</td>
</tr>
<tr>
<td></td>
<td>BSC</td>
<td>BSC</td>
<td>BSC</td>
<td>BSC</td>
</tr>
<tr>
<td>B MAX</td>
<td>0.785 (19.94)</td>
<td>0.840 (21.34)</td>
<td>0.960 (24.38)</td>
<td>1.060 (26.92)</td>
</tr>
<tr>
<td>B MIN</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>C MAX</td>
<td>0.300 (7,62)</td>
<td>0.300 (7,62)</td>
<td>0.310 (7,87)</td>
<td>0.300 (7,62)</td>
</tr>
<tr>
<td>C MIN</td>
<td>0.245 (6,22)</td>
<td>0.245 (6,22)</td>
<td>0.220 (5,59)</td>
<td>0.245 (6,22)</td>
</tr>
</tbody>
</table>

NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package is hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.
NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0.15) each side.
D. Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0.43) each side.
E. Reference JEDEC MS-012 variation AB.

Texas Instruments
www.ti.com
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
NOTES:

A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0.15.
D. Falls within JEDEC MO-150
NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a metal lid.
D. Falls within JEDEC MS-004
NOTES:

A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

⚠️ Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0.15) each side.

⚠️ Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0.43) each side.

E. Reference JEDEC MS-012 variation AC.
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

14-PINS SHOWN

NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.15.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI’s Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2021, Texas Instruments Incorporated