

SN74AHC595

SCLS373M - MAY 1996 - REVISED APRIL 2024

SN74AHC595 8-Bit Shift Registers With 3-State Output Registers

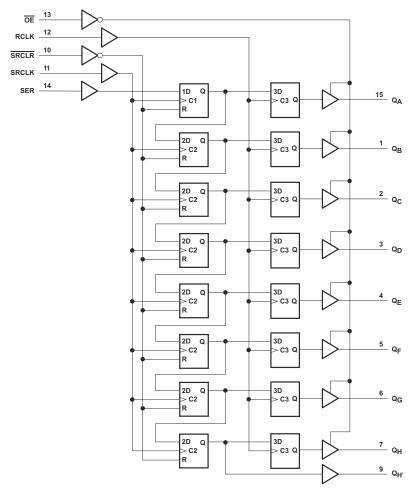
1 Features

- Operating range: 2V to 5.5V V_{CC}
- 8-bit serial-in, parallel-out shift
- Latch-up performance exceeds 100mA per JESD 78, class II
- ESD protection exceeds JESD 22
 - 2000V human-body model (A114-A)
 - 1000V charged-device model (C101)

2 Applications

- **Network Switches**
- Power Infrastructures
- LED Displays
- Servers

3 Description

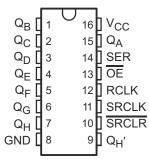

The SN74AHC595 device contains an 8-bit serial-in, parallel-out shift register that feeds an 8-bit D-type storage register. The storage register has parallel 3state outputs. Separate clocks are provided for both the shift and storage registers. The shift register has a direct overriding clear (SRCLR) input, a serial (SER) input, and a serial output for cascading. When the output-enable (OE) input is high, all outputs except QH' are in the high-impedance state.

Package Information

PART NUMBER	PACKAGE ⁽¹⁾	PACKAGE SIZE(2)	BODY SIZE(3)
	BQB (WQFN, 16)	3.5mm × 2.5mm	3.5mm × 2.5mm
	N (PDIP, 16)	19.31mm × 9.4mm	19.31mm × 6.35mm
SN74AHC595	D (SOIC, 16)	9.90 mm × 6mm	9.90mm × 3.90mm
	DB (SSOP, 16)	6.20mm × 7.8mm	6.20mm × 5.30mm
	PW (TSSOP, 16)	5.00mm × 6.4mm	5.00 mm × 4.40 mm

- For more information, see Section 11.
- The package size (length × width) is a nominal value and includes pins, where applicable.
- The body size (length x width) is a nominal value and does not include pins.

Logic Diagram (Positive Logic)


Table of Contents

1 Features1	7.2 Functional Block Di
2 Applications1	7.3 Feature Description
3 Description	7.4 Device Functional N
4 Pin Configuration and Functions4	8 Application and Imple
5 Specifications5	8.1 Application Information
5.1 Absolute Maximum Ratings5	8.2 Typical Application.
5.2 ESD Ratings5	8.3 Power Supply Reco
5.3 Recommended Operating Conditions5	8.4 Layout
5.4 Thermal Information6	9 Device and Document
5.5 Electrical Characteristics6	9.1 Documentation Sup
5.6 Timing Requirements: V _{CC} = 3.3 V ± 0.3 V7	9.2 Receiving Notification
5.7 Timing Requirements: V _{CC} = 5 V ± 0.5 V8	9.3 Support Resources
5.8 Switching Characteristics: V _{CC} = 3.3 V ± 0.3 V8	9.4 Trademarks
5.9 Switching Characteristics: V _{CC} = 5 V ± 0.5 V10	9.5 Electrostatic Discha
5.10 Operating Characteristics11	9.6 Glossary
5.11 Typical Characteristics12	10 Revision History
6 Parameter Measurement Information13	11 Mechanical, Packagir
7 Detailed Description14	Information
7.1 Overview14	

7.∠ Functional Block Diagram	14
7.3 Feature Description	15
7.4 Device Functional Modes	15
8 Application and Implementation	16
8.1 Application Information	
8.2 Typical Application	
8.3 Power Supply Recommendations	18
8.4 Layout	18
9 Device and Documentation Support	
9.1 Documentation Support	19
9.2 Receiving Notification of Documentation Updates.	19
9.3 Support Resources	19
9.4 Trademarks	
9.5 Electrostatic Discharge Caution	
9.6 Glossary	19
10 Revision History	19
11 Mechanical, Packaging, and Orderable	
Information	20

4 Pin Configuration and Functions

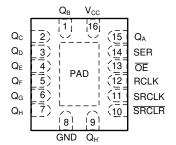


Figure 4-1. D, DB, N, PW Packages 16-Pin SOIC, SSOP, PDIP, TSSOP (Top View)

Figure 4-2. BQB Package, 16-Pin WQFN (Top View)

Table 4-1. Pin Functions

	PIN	I/O	DESCRIPTION
NAME	NO.	1/0	DESCRIPTION
GND	8	_	Ground Pin
ŌĒ	13	I	Output Enable
Q _A	15	0	Q _A Output
Q _B	1	0	Q _B Output
Q _C	2	0	Q _C Output
Q _D	3	0	Q _D Output
Q _E	4	0	Q _E Output
Q _F	5	0	Q _F Output
Q_G	6	0	Q _G Output
Q _H	7	0	Q _H Output
Q _H '	9	0	Q _H ' Output
RCLK	12	I	RCLK Input
SER	14	I	SER Input
SRCLK	11	I	SRCLK Input
SRCLR	10	I	SRCLR Input
V _{CC}	16	_	Power Pin

Submit Document Feedback

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

			MIN	MAX	UNIT
V _{CC}	Supply voltage		-0.5	7	V
VI	Input voltage ⁽²⁾	-0.5	7	V	
Vo	Output voltage ⁽²⁾	-0.5	V _{CC} + 0.5	V	
I _{IK}	Input clamp current	(V _I < 0)		-20	mA
I _{OK}	Output clamp current	$(V_O < 0 \text{ or } V_O > V_{CC})$		±20	mA
Io	Continuous output current	$(V_O = 0 \text{ to } V_{CC})$		±25	mA
	Continuous current through V _{CC} or GND			±75	mA
T _J	Junction temperature			150	°C
T _{stg}	Storage temperature		-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

5.2 ESD Ratings

			VALUE	UNIT
, Electrostatic	Electrostatic	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	\/
V _(ESD)	discharge	Charged device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

5.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)

			MIN	NOM MAX	UNIT
V _{CC}	Supply voltage		2	5.5	V
		V _{CC} = 2 V	1.5		
V _{IH}	High-level input voltage	V _{CC} = 3 V	2.1		V
		V _{CC} = 5.5 V	3.85		
		V _{CC} = 2 V		0.5	
V _{IL}	Low-level Input voltage	V _{CC} = 3 V		0.9	V
		V _{CC} = 5.5 V		1.65	
VI	Input voltage		0	5.5	V
Vo	Output voltage		0	V _{CC}	V
		V _{CC} = 2 V		-50	μA
I _{OH}	High-level output current	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		-4	mA
		V _{CC} = 5 V ± 0.5 V		-8	IIIA
		V _{CC} = 2 V		50	μΑ
I _{OL}	Low-level output current	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		4	mA
		V _{CC} = 5 V ± 0.5 V		8	IIIA
Δt/Δν	Input transition rise or fall rate	V _{CC} = 3.3 V ± 0.3 V		100	ns/V
ΔυΔν	Input transition rise or fall rate	$V_{CC} = 5 V \pm 0.5 V$		20	115/V
T _A	Operating free-air temperature		-40	125	°C

All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, SCBA004.

⁽²⁾ The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

5.4 Thermal Information

				SN74AHC595			
	THERMAL METRIC(1)	BQB (WQFN)	D (SOIC)	DB (SSOP)	N (PDIP)	PW (TSSOP)	UNIT
		16 PINS	16 PINS	16 PINS	16 PINS	16 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	91.8	73	97.8	47.8	135.9	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	87.7	_	48.1	35.1	70.3	°C/W
R _{0JB}	Junction-to-board thermal resistance	61.6	_	48.5	27.8	81.3	°C/W
Ψлт	Junction-to-top characterization parameter	11.9	_	10.0	20.1	22.5	°C/W
ΨЈВ	Junction-to-board characterization parameter	61.4	_	47.9	27.7	80.8	°C/W
R _{θJC(bot)}	Junction-to-case (bottom) thermal resistance	39.4	_	_	_	_	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

5.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted) (1)

PARAMETER		TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
		T _A = 25°C		1.9	2		
	I _{OH} = -50 μA	T _A = -40°C to 85°C	2 V	1.9			
		T _A = -40°C to 125°C Recommended		1.9	,		
		T _A = 25°C		2.9	3		
	I _{OH} = -50 μA	T _A = -40°C to 85°C	3 V	2.9	,		
		T _A = -40°C to 125°C Recommended		2.9	,		
		T _A = 25°C		4.4	4.5		
V _{OH}	I _{OH} = -50 μA	T _A = -40°C to 85°C	4.5 V	4.4	,		V
		T _A = -40°C to 125°C Recommended		4.4	,		
		T _A = 25°C		2.58	,		
	I _{OH} = -4 mA	T _A = -40°C to 85°C	3 V	2.48	,		
		T _A = -40°C to 125°C Recommended		2.48	,		
		T _A = 25°C		3.94	,		
	I _{OH} = -8 mA	T _A = -40°C to 85°C	4.5 V	3.8	,		
		T _A = -40°C to 125°C Recommended		3.8	,		
	I _{OL} = 50 μA	T _A = 25°C			,	0.1	
		T _A = -40°C to 85°C	2 V		,	0.1	
		T _A = -40°C to 125°C Recommended			,	0.1	
		T _A = 25°C			,	0.1	
	I _{OL} = 50 μA	T _A = -40°C to 85°C	3 V		,	0.1	
		T _A = -40°C to 125°C Recommended			,	0.1	
		T _A = 25°C				0.1	
V _{OL}	I _{OL} = 50 μA	T _A = -40°C to 85°C	4.5 V			0.1	V
		T _A = -40°C to 125°C Recommended				0.1	
		T _A = 25°C				0.36	
	I _{OL} = 4 mA	T _A = -40°C to 85°C	3 V			0.44	
		T _A = -40°C to 125°C Recommended				0.44	
		T _A = 25°C				0.36	
	I _{OL} = 8 mA	T _A = -40°C to 85°C	4.5 V			0.44	
		T _A = -40°C to 125°C Recommended				0.44	

Copyright © 2024 Texas Instruments Incorporated
Product Folder Links: SN74AHC595

www.ti.com

over operating free-air temperature range (unless otherwise noted) (1)

PARAMETER		TEST CONDITIONS			MIN	TYP	MAX	UNIT
		T _A = 25°C					±0.1	
I _I	V _I = 5.5 V or GND	$T_A = -40^{\circ}C \text{ to } 8$	35°C	0 V to 5.5 V			±1	μΑ
		$T_A = -40^{\circ}C \text{ to } 1$	25°C Recommended				±1	
			T _A = 25°C				±0.25	
I _{OZ}	$V_{I} = V_{CC}$ or GND, $V_{O} = V_{CC}$ or GND, $\overline{OE} = V_{IH}$ or V_{IL} ,	$Q_A = V_{CC}$ or GND, $Q_A = Q_H$	$T_A = -40^{\circ}C \text{ to } 85^{\circ}C$	5.5 V			±2.5	μA
102			T _A = -40°C to 125°C Recommended				±2.5	, Pr
			T _A = 25°C				4	μА
I _{CC}	V ₁ = V _{CC} or GND	$V_1 = V_{CC}$ or GND, $I_0 = 0$	$T_A = -40^{\circ}C \text{ to } 85^{\circ}C$	5.5 V			40	
	VI = VCC OF CIVE,		T _A = -40°C to 125°C Recommended				40	
C_i $V_I = V_{CC}$ or GN	V = V or CND	T _A = 25°C		5 V		3	10	
	VI - VCC OF GIVD	T _A = -40°C TO 85°C		3 V			10	pF
Co	$V_O = V_{CC}$ or GND,	T _A = 25°C		5 V		5.5		pF

⁽¹⁾ On products compliant to MIL-PRF-38535, this parameter is not production tested at $V_{CC} = 0 \text{ V}$.

5.6 Timing Requirements: $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$

over recommended operating free-air temperature range (unless otherwise noted)

				MIN	MAX	UNIT
			T _A = 25°C	5		
		SRCLK high or low	T _A = -40°C to 85°C	5		
			T _A = –40°C to 125°C Recommended	6		
			T _A = 25°C	5		
w	Pulse duration	RCLK high or low	T _A = -40°C to 85°C	5		ns
			T _A = –40°C to 125°C Recommended	6		
			T _A = 25°C	5		
		SRCLR low	T _A = -40°C to 85°C	5		
			T _A = –40°C to 125°C Recommended	6.5		
		SER before SRCLK↑ SRCLK↑ before RCLK↑(1)	T _A = 25°C	3.5		
			T _A = -40°C to 85°C	3.5		
			T _A = –40°C to 125°C Recommended	4.5		
			T _A = 25°C	8		
			T _A = -40°C to 85°C	8.5		
	Cat up time		T _A = –40°C to 125°C Recommended	9.5		
t _{su}	Set-up time		T _A = 25°C	8		ns
		SRCLR low before RCLK↑	T _A = -40°C to 85°C	9		
			T _A = –40°C to 125°C Recommended	10		
			T _A = 25°C	3		
		SRCLR high (inactive) before SRCLK↑	T _A = -40°C to 85°C	3		
		5.102.11	T _A = –40°C to 125°C Recommended	4		
			T _A = 25°C	1.5		
h	Hold time	SER after SRCLK↑	$T_A = -40$ °C to 85°C	1.5		ns
			T _A = –40°C to 125°C Recommended	2.5		

This set-up time allows the storage register to receive stable data from the shift register. The clocks can be tied together, in which case the shift register is one clock pulse ahead of the storage register.

5.7 Timing Requirements: $V_{CC} = 5 V \pm 0.5 V$

				MIN	NOM	MAX	UNIT
			T _A = 25°C	5			
		SRCLK high or low	T _A = -40°C to 85°C	5			
			T _A = -40°C to 125°C Recommended	6			
			T _A = 25°C	5			
t_{W}	Pulse duration	RCLK high or low	T _A = -40°C to 85°C	5			ns
			T _A = -40°C to 125°C Recommended	6			
			T _A = 25°C	5			
		SRCLR low	T _A = -40°C to 85°C	5			
			T _A = -40°C to 125°C Recommended	6.2			
		SER before SRCLK↑	T _A = 25°C	3			
			T _A = -40°C to 85°C	3			
			T _A = -40°C to 125°C Recommended	4			
		SRCLK↑ before RCLK↑ ⁽¹⁾	T _A = 25°C	5			
			T _A = -40°C to 85°C	5			
	Set un time		T _A = -40°C to 125°C Recommended	6			no
t _{su}	Set-up time		T _A = 25°C	5			ns
		SRCLR low before RCLK↑	T _A = -40°C to 85°C	5			
			T _A = -40°C to 125°C Recommended	6			
			T _A = 25°C	2.5			
		SRCLR high (inactive) before SRCLK↑	T _A = -40°C to 85°C	2.5			
			T _A = -40°C to 125°C Recommended	3.5			
			T _A = 25°C	2			
t _h	Hold time	SER after SRCLK↑	T _A = -40°C to 85°C	2			ns
			T _A = –40°C to 125°C Recommended	3			

⁽¹⁾ This set-up time allows the storage register to receive stable data from the shift register. The clocks can be tied together, in which case the shift register is one clock pulse ahead of the storage register.

5.8 Switching Characteristics: V_{CC} = 3.3 V ± 0.3 V

over operating free-air temperature range (unless otherwise noted)

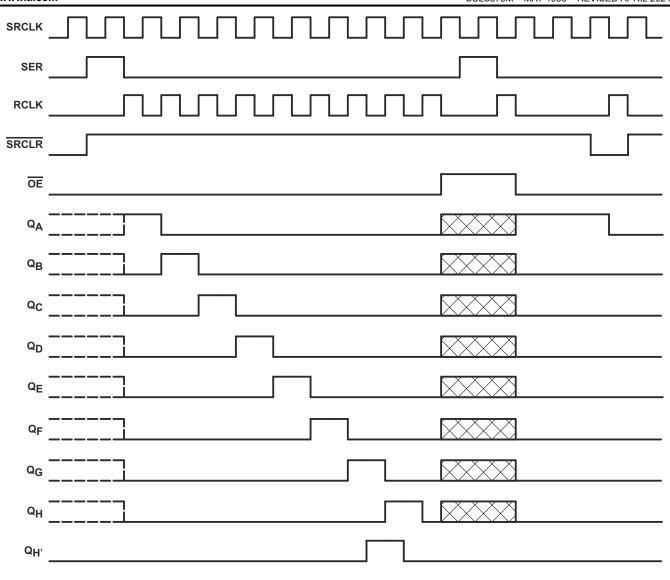
PARAMETER	FROM (INPUT)	TO (OUTPUT)	LOAD CAPACITANCE	TEST CONDITIONS	MIN	TYP	MAX	UNIT
				T _A = 25°C	80 ⁽¹⁾	120 ⁽¹⁾		
			C _L = 15 pF	T _A = -40°C to 85°C	70			
£				T _A = -40°C to 125°C Recommended	60			MHz
f _{max}				T _A = 25°C	55	105		IVITZ
			$C_L = 50 pF$	T _A = -40°C to 85°C	50			
				T _A = -40°C to 125°C Recommended	40			
				T _A = 25°C		6 ⁽¹⁾	11.9 ⁽¹⁾	
t _{PLH}	RCLK	Q _A – Q _H	C _L = 15 pF	T _A = -40°C to 85°C	1		11.9 ⁽¹⁾ 13.5 14.9 11.9 ⁽¹⁾ 13.5 14.9 13 ⁽¹⁾ 15 16.4 13 ⁽¹⁾ 15	ns
				T _A = -40°C to 125°C Recommended	1		14.9	
				T _A = 25°C		6 ⁽¹⁾	11.9 ⁽¹⁾	
t _{PHL}	RCLK	Q _A – Q _H	C _L = 15 pF	T _A = -40°C to 85°C	1		13.5	ns
				T _A = -40°C to 125°C Recommended	1		14.9	
				T _A = 25°C		6.6 ⁽¹⁾	13 ⁽¹⁾	
t _{PLH}	SRCLK	Q _H	C _L = 15 pF	T _A = -40°C to 85°C	1		15	ns
				T _A = -40°C to 125°C Recommended	1		16.4	
				T _A = 25°C		6.6 ⁽¹⁾	13 ⁽¹⁾	
t _{PHL}	SRCLK	Q _H	C _L = 15 pF	T _A = -40°C to 85°C	1		15	ns
				T _A = -40°C to 125°C Recommended	1		16.4	

Product Folder Links: SN74AHC595

over operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	LOAD CAPACITANCE	TEST CONDITIONS	MIN	TYP	MAX	UNIT
				T _A = 25°C		6.2 ⁽¹⁾	12.8 ⁽¹⁾	
t _{PHL}	SRCLR	Q _{H'}	C _L = 15 pF	$T_A = -40$ °C to 85°C	1		13.7	ns
				T _A = -40°C to 125°C Recommended	1		15	
				T _A = 25°C		6 ⁽¹⁾	11.5 ⁽¹⁾	
t _{PZH}	ŌĒ	$Q_A - Q_H$	C _L = 15 pF	T _A = -40°C to 85°C	1		13.5	ns
				T _A = -40°C to 125°C Recommended	1		14.9	
				T _A = 25°C		7.8 ⁽¹⁾	11.5 ⁽¹⁾	
t _{PZL}	ŌĒ	$Q_A - Q_H$	C _L = 15 pF	T _A = -40°C to 85°C	1		13.5	ns
				T _A = -40°C to 125°C Recommended	1		14.9	
				T _A = 25°C		7.9	15.4	
t _{PLH}	RCLK	$Q_A - Q_H$	C _L = 50 pF	T _A = -40°C to 85°C	1		17	ns
				T _A = -40°C to 125°C Recommended	1		18.6	
t _{PHL}				T _A = 25°C		7.9	15.4	
	RCLK	$Q_A - Q_H$	C _L = 50 pF	T _A = -40°C to 85°C	1		17	ns
				T _A = -40°C to 125°C Recommended	1		18.6	
				T _A = 25°C		9.2	16.5	
t _{PLH}	SRCLK	Q _{H'}	C _L = 50 pF	T _A = -40°C to 85°C	1		18.5	ns
				T _A = -40°C to 125°C Recommended	1		20	
				T _A = 25°C		9.2	16.5	
t _{PHL}	SRCLK	Q _{H'}	C _L = 50 pF	T _A = -40°C to 85°C	1		18.5	ns
				T _A = -40°C to 125°C Recommended	1		20	ns
				T _A = 25°C		9	16.3	
t _{PHL}	SRCLR	Q _{H'}	C _L = 50 pF	T _A = -40°C to 85°C	1		17.2	ns
				T _A = -40°C to 125°C Recommended	1		18.7	
				T _A = 25°C		7.8	15	
t _{PZH}	ŌĒ	$Q_A - Q_H$	C _L = 50 pF	T _A = -40°C to 85°C	1		17	ns
				T _A = -40°C to 125°C Recommended	1		18.6	
				T _A = 25°C		9.6	15	
t _{PZL}	ŌĒ	$Q_A - Q_H$	C _L = 50 pF	T _A = -40°C to 85°C	1		17	ns
				T _A = -40°C to 125°C Recommended	1		18.6	
				T _A = 25°C		8.1	15.7	
t _{PHZ}	ŌĒ	$Q_A - Q_H$	C _L = 50 pF	T _A = -40°C to 85°C	1		16.2	ns
				T _A = -40°C to 125°C Recommended	1		17.4	
				T _A = 25°C		9.3	15.7	
t _{PLZ}	ŌĒ	$Q_A - Q_H$	C _L = 50 pF	T _A = -40°C to 85°C	1		16.2	ns
				T _A = -40°C to 125°C Recommended	1		17.4	

⁽¹⁾ On products compliant to MIL-PRF-38535, this parameter is not production tested.


5.9 Switching Characteristics: $V_{CC} = 5 V \pm 0.5 V$

over operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	LOAD CAPACITANCE	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
			0 - 45 - 5	T _A = 25°C	135(1)	170 ⁽¹⁾			
			C _L = 15 pF	T _A = -40°C to 85°C	115			MI I-	
f _{max}			0 50 5	T _A = 25°C	95	140		MHz	
			C _L = 50 pF	T _A = -40°C to 85°C	85				
	DOLL(2 2	0 45 5	T _A = 25°C		4.3(1)	7.4 ⁽¹⁾		
t _{PLH}	RCLK	$Q_A - Q_H$	C _L = 15 pF	$T_A = -40$ °C to 85°C	1		8.5	ns	
	DOLL	0 0	0 45 5	T _A = 25°C		4.3(1)	7.4 ⁽¹⁾		
t _{PHL}	RCLK	$Q_A - Q_H$	C _L = 15 pF	T _A = -40°C to 85°C	1		8.5	ns	
	00011		0 45 5	T _A = 25°C		4.5 ⁽¹⁾	8.2 ⁽¹⁾		
t _{PLH}	SRCLK	Q _H '	C _L = 15 pF	$T_A = -40$ °C to 85°C	1		9.4	ns	
		_		T _A = 25°C		4.5(1)	8.2 ⁽¹⁾		
t _{PHL}	SRCLK	Q _{H'}	C _L = 15 pF	T _A = -40°C to 85°C	1		9.4	ns	
		_		T _A = 25°C		4.5(1)	8(1)		
t _{PHL}	SRCLR	Q _{H'}	C _L = 15 pF	T _A = -40°C to 85°C	1		9.1	ns	
				T _A = 25°C		4.3(1)	8.6 ⁽¹⁾		
t _{PZH}	ŌĒ	$Q_A - Q_H$	C _L = 15 pF	T _A = -40°C to 85°C	1		10	ns	
				T _A = 25°C		5.4 ⁽¹⁾	8.6 ⁽¹⁾		
t _{PZL}	ŌE Q _A – Q _H	$Q_A - Q_H$	C _L = 15 pF	$T_A = -40$ °C to 85°C	1		10	ns	
,	2011		0 50 5	T _A = 25°C		5.6	9.4		
t _{PLH}	RCLK	$Q_A - Q_H$	C _L = 50 pF	$T_A = -40$ °C to 85°C	1		10.5	ns	
,	2011		0 50 5	T _A = 25°C		5.6	9.4		
t _{PHL}	RCLK	$Q_A - Q_H$	C _L = 50 pF	$T_A = -40$ °C to 85°C	1		10.5	ns	
,	00011		0 50 5	T _A = 25°C		6.4	10.2		
t _{PLH}	SRCLK	Q _{H'}	C _L = 50 pF	T _A = -40°C to 85°C	1		11.4	ns	
	000114		0 50 5	T _A = 25°C		6.4	10.2		
t _{PHL}	SRCLK	Q _{H'}	C _L = 50 pF	T _A = -40°C to 85°C	1		11.4	ns	
	20010		0 50 5	T _A = 25°C		6.4	10		
t _{PHL}	SRCLR	Q _{H'}	C _L = 50 pF	T _A = -40°C to 85°C	1		11.1	ns	
	O.F.	0 0	0 50 5	T _A = 25°C		5.7	10.6		
t _{PZH}	ŌĒ	$Q_A - Q_H$	C _L = 50 pF	T _A = -40°C to 85°C	1		12	ns	
	05		0 50 5	T _A = 25°C		6.8	10.6		
t _{PZL}	ŌĒ	$Q_A - Q_H$	C _L = 50 pF	T _A = -40°C to 85°C	1		12	ns	
	~=		0	T _A = 25°C		3.5	10.3		
t _{PHZ}	ŌĒ	$Q_A - Q_H$	C _L = 50 pF	T _A = -40°C to 85°C	1		11	ns	
	0.5		0 50 5	T _A = 25°C		3.4	10.3		
t _{PLZ}	ŌĒ	$Q_A - Q_H$	C _L = 50 pF	T _A = -40°C to 85°C	1		ns	ns	

⁽¹⁾ On products compliant to MIL-PRF-38535, this parameter is not production tested.

Product Folder Links: SN74AHC595

NOTE: implies that the output is in 3-State mode.

Figure 5-1. Timing Diagram

5.10 Operating Characteristics

 $V_{CC} = 5 \text{ V}, T_{A} = 25^{\circ}\text{C}$

	PARAMETER	TEST CONDITIONS	TYP	UNIT
C_{pc}	Power dissipation capacitance	No load, f = 1 MHz	25.2	pF

5.11 Typical Characteristics

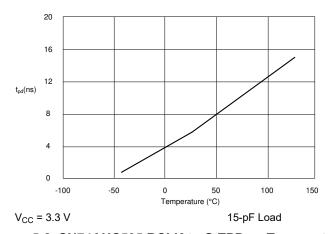
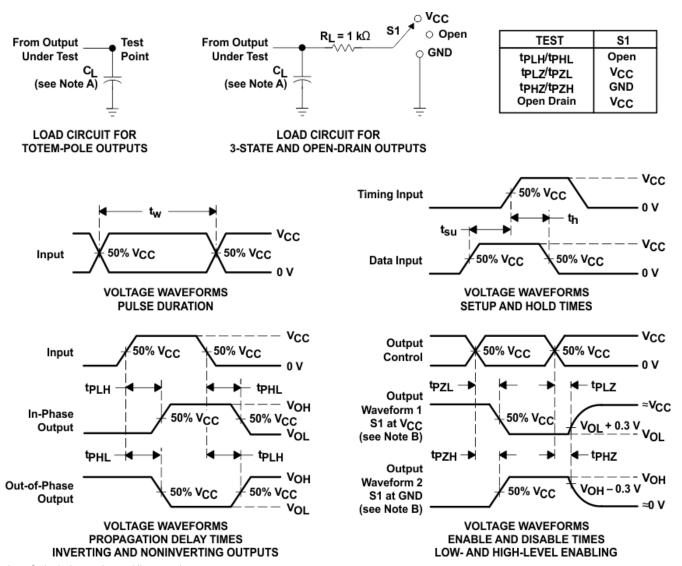



Figure 5-2. SN74AHC595 RCLK to Q TPD vs Temperature

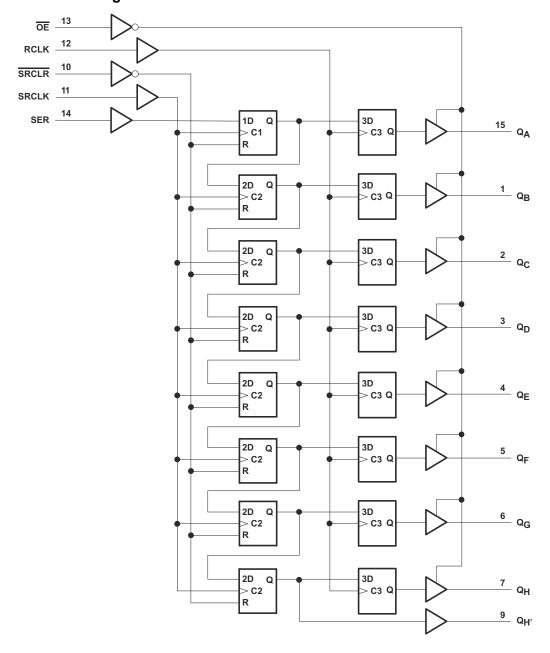
6 Parameter Measurement Information

- C_L includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_{Ω} = 50 Ω , $t_r \leq$ 3 ns, $t_f \leq$ 3 ns.
- D. The outputs are measured one at a time with one input transition per measurement.
- E. All parameters and waveforms are not applicable to all devices.

Figure 6-1. Load Circuit and Voltage Waveforms

Copyright © 2024 Texas Instruments Incorporated

Submit Document Feedback


7 Detailed Description

7.1 Overview

The SN74AHC595 device is part of the AHC family of logic devices intended for CMOS applications. The SN74HC595 device is an 8-bit shift register that feeds an 8-bit D-type storage register.

Both the shift-register clock (SRCLK) and storage-register clock (RCLK) are positive-edge triggered. If both clocks are connected together, the shift register is always one clock pulse ahead of the storage register.

7.2 Functional Block Diagram

Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

7.3 Feature Description

The SN74AHC595 device is an 8-bit serial-in, parallel-out shift registers that have a wide operating voltage range from 2 V to 5.5 V and a low current consumption of $40-\mu A$ (max) I_{CC} .

7.4 Device Functional Modes

Table 7-1. Function Table

INPUTS					FUNCTION
SER	SRCLK	SRCLR	RCLK	ŌĒ	FUNCTION
Х	Х	X	X	Н	Outputs Q _A -Q _H are disabled.
Х	Х	X	Х	L	Outputs Q _A -Q _H are enabled.
Х	Х	L	X	Х	Shift register is cleared.
L	1	Н	×	х	First stage of the shift register goes low. Other stages store the data of previous stage, respectively.
Н	1	Н	×	Х	First stage of the shift register goes high. Other stages store the data of previous stage, respectively.
Х	Х	Х	1	Х	Shift-register data is stored into the storage register.

8 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

8.1 Application Information

The SN74AHC595 device is a low-drive CMOS device that can be used for a multitude of bus-interface type applications where output ringing is a concern. The low drive and slow edge rates minimize overshoot and undershoot on the outputs. Figure 8-1 shows an application where eight LEDs are used to visualize the data bits contained within the shift register.

8.2 Typical Application

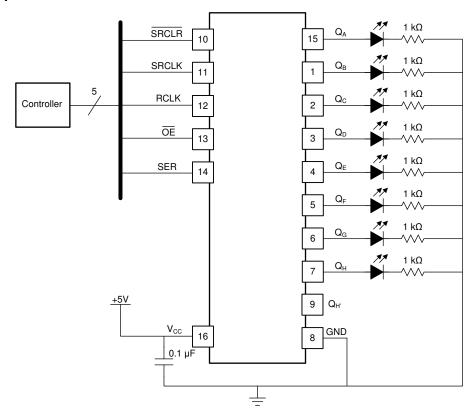


Figure 8-1. Shift Register Display of 8 bits

8.2.1 Design Requirements

This device uses CMOS technology and has balanced output drive. Care must be taken to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads, so routing and load conditions must be considered to prevent ringing.

8.2.2 Detailed Design Procedure

- Recommended input conditions:
 - Specified high and low levels. See (V_{IH} and V_{IL}) in the Recommended Operating Conditions table.
 - Specified high and low levels. See (VIH and VIL) in the Recommended Operating Conditions table.

Product Folder Links: SN74AHC595

Inputs are overvoltage tolerant allowing them to go as high as 6.0 V at any valid V_{CC}

Copyright © 2024 Texas Instruments Incorporated

- Recommend output conditions:
 - Load currents must not exceed 25 mA per output and 75 mA total for the part
 - Outputs must not be pulled above V_{CC}

8.2.3 Application Curve

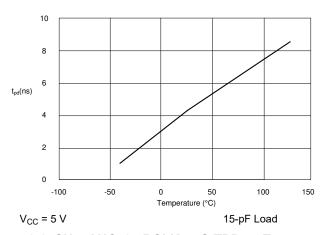


Figure 8-2. SN74AHC595 RCLK to Q TPD vs Temperature

8.3 Power Supply Recommendations

The power supply can be any voltage between the MIN and MAX supply-voltage rating located in the *Recommended Operating Conditions* table.

Each V_{CC} pin must have a good bypass capacitor to prevent power disturbance. For devices with a single supply, 0.1- μ f capacitor is recommended; if there are multiple V_{CC} pins, then a 0.01- μ f or a 0.022- μ f capacitor is recommended for each power pin. It is acceptable to parallel multiple bypass capacitors to reject different frequencies of noise. A 0.1- μ f and a 1- μ f capacitor are commonly used in parallel. The bypass capacitor must be installed as close to the power pin as possible for best results.

8.4 Layout

8.4.1 Layout Guidelines

When using multiple-bit logic devices, inputs must never float.

In many cases, functions or parts of functions of digital logic devices are unused, for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such input pins must **not** be left unconnected because the undefined voltages at the outside connections results in undefined operational states. Figure 8-3 specifies the rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that must be applied to any particular unused input depends on the function of the device. Generally, these unused inputs will be tied to GND or $V_{\rm CC}$, whichever makes more sense or is more convenient. It is generally acceptable to float outputs, unless the part is a transceiver. If the transceiver has an output-enable pin, it will disable the output section of the part when asserted. This will not disable the input section of the I/Os, so they cannot float when disabled.

8.4.2 Layout Example

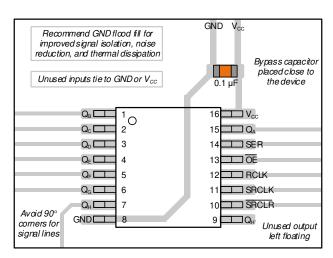


Figure 8-3. Example Layout for the SN74AHC595

Submit Document Feedback

9 Device and Documentation Support

9.1 Documentation Support

9.1.1 Related Documentation

For related documentation, wee the following:

Implications of Slow or Floating CMOS Inputs, SCBA004

9.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

9.3 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

9.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

9.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

9.6 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

10 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Copyright © 2024 Texas Instruments Incorporated

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

www.ti.com 9-Apr-2024

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
SN74AHC595D	OBSOLETE	SOIC	D	16		TBD	Call TI	Call TI	-40 to 125	AHC595	
SN74AHC595DBR	ACTIVE	SSOP	DB	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HA595	Samples
SN74AHC595DR	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	AHC595	Samples
SN74AHC595N	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-40 to 125	SN74AHC595N	Samples
SN74AHC595PW	OBSOLETE	TSSOP	PW	16		TBD	Call TI	Call TI	-40 to 125	HA595	
SN74AHC595PW-P	LIFEBUY	TSSOP	PW	16	90	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HA595	
SN74AHC595PWR	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	HA595	Samples
SN74AHC595PWRG4	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HA595	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

PACKAGE OPTION ADDENDUM

www.ti.com 9-Apr-2024

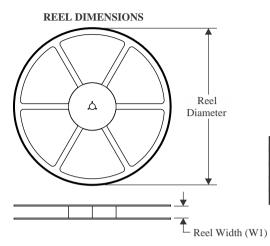
(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

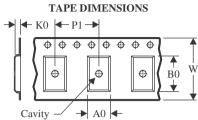
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN74AHC595:

Automotive: SN74AHC595-Q1


NOTE: Qualified Version Definitions:

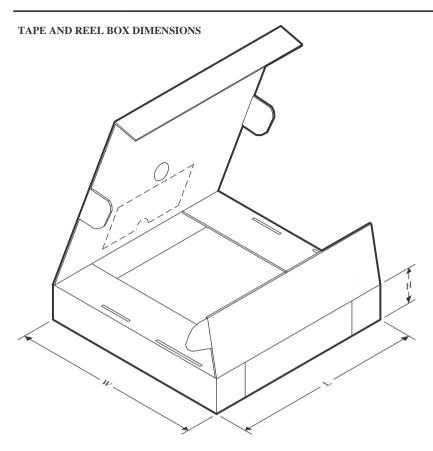

Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

PACKAGE MATERIALS INFORMATION

www.ti.com 9-Apr-2024

TAPE AND REEL INFORMATION

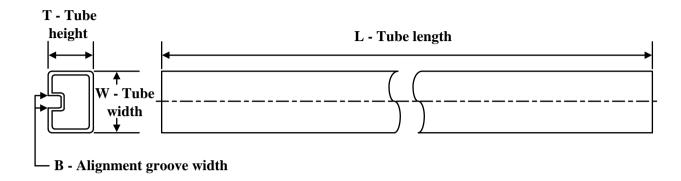
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AHC595DBR	SSOP	DB	16	2000	330.0	16.4	8.35	6.6	2.4	12.0	16.0	Q1
SN74AHC595DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74AHC595PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74AHC595PWRG4	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

www.ti.com 9-Apr-2024


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74AHC595DBR	SSOP	DB	16	2000	356.0	356.0	35.0
SN74AHC595DR	SOIC	D	16	2500	340.5	336.1	32.0
SN74AHC595PWR	TSSOP	PW	16	2000	356.0	356.0	35.0
SN74AHC595PWRG4	TSSOP	PW	16	2000	367.0	367.0	35.0

PACKAGE MATERIALS INFORMATION

www.ti.com 9-Apr-2024

TUBE

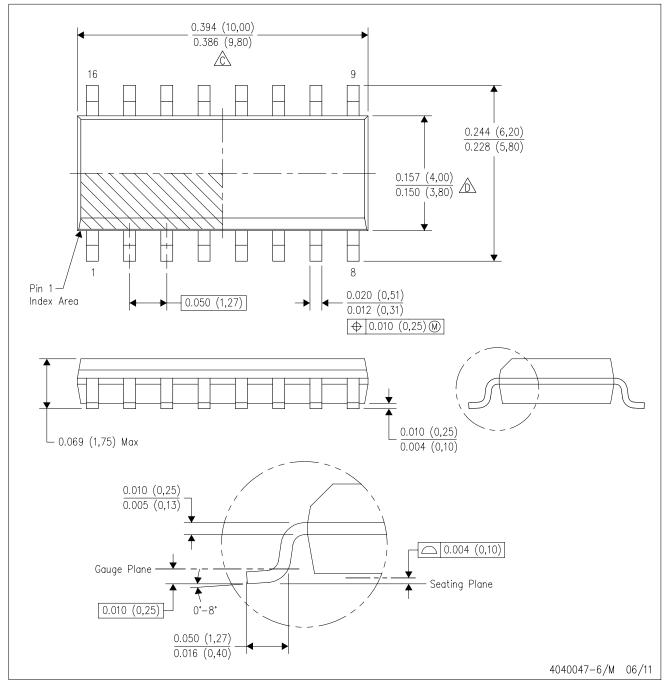
*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
SN74AHC595N	N	PDIP	16	25	506	13.97	11230	4.32
SN74AHC595N	N	PDIP	16	25	506	13.97	11230	4.32
SN74AHC595PW-P	PW	TSSOP	16	90	530	10.2	3600	3.5

N (R-PDIP-T**)

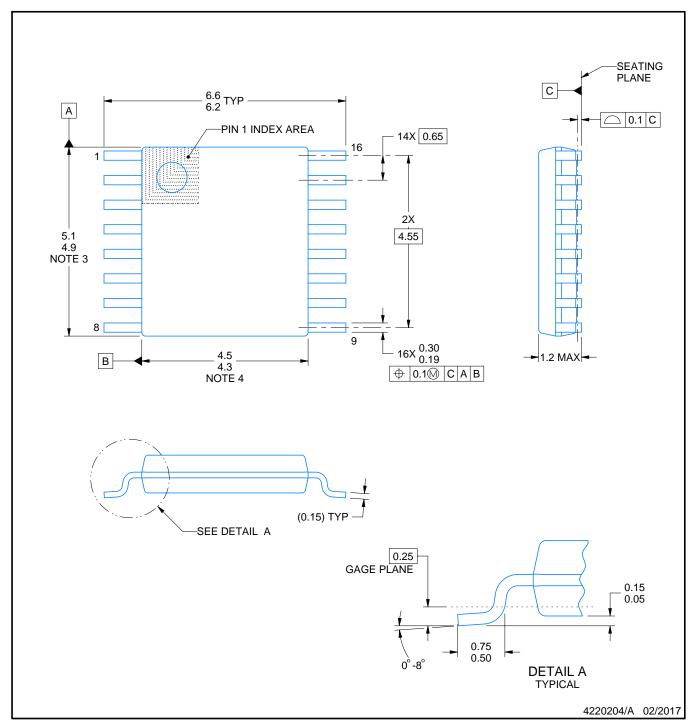
PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

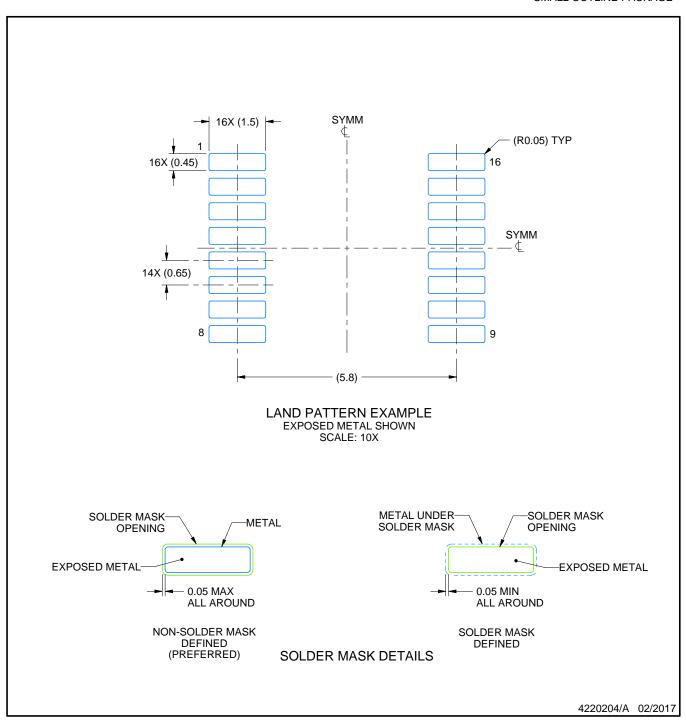


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDS0-G16)


PLASTIC SMALL OUTLINE

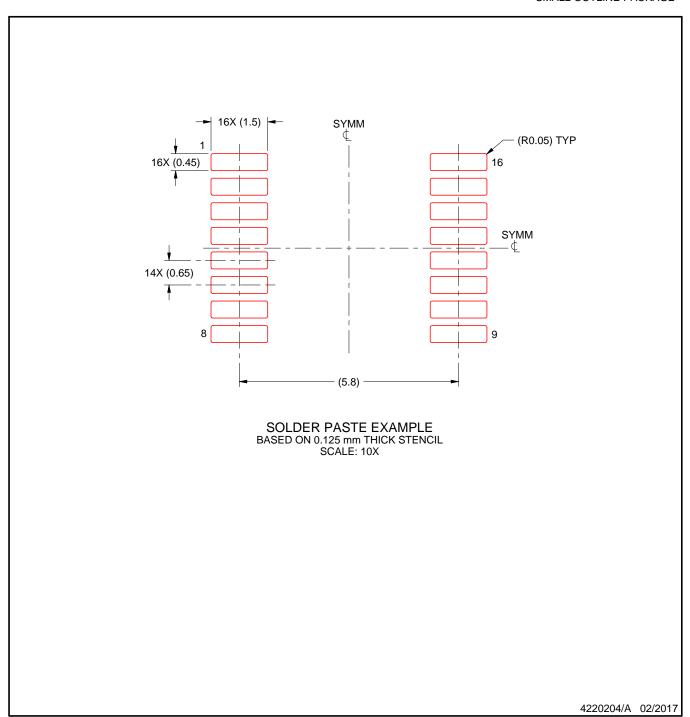
- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.



- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

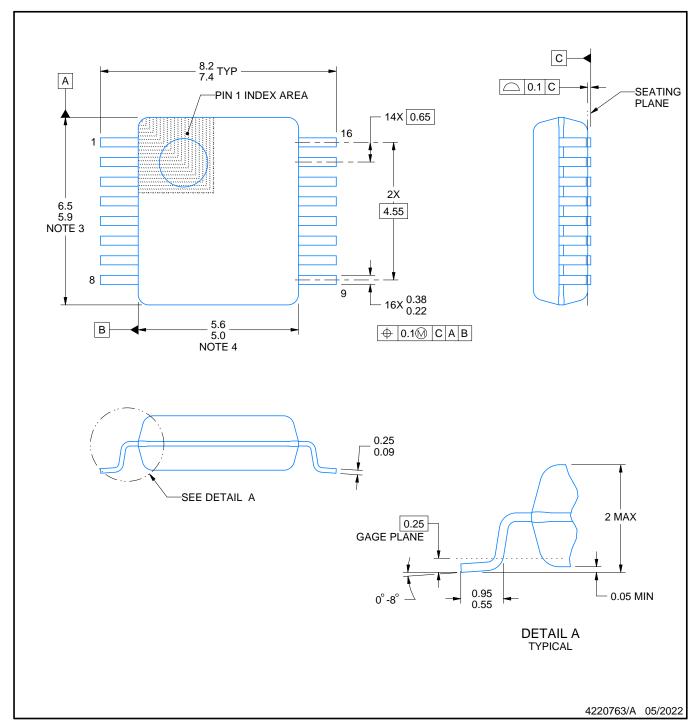
 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



NOTES: (continued)

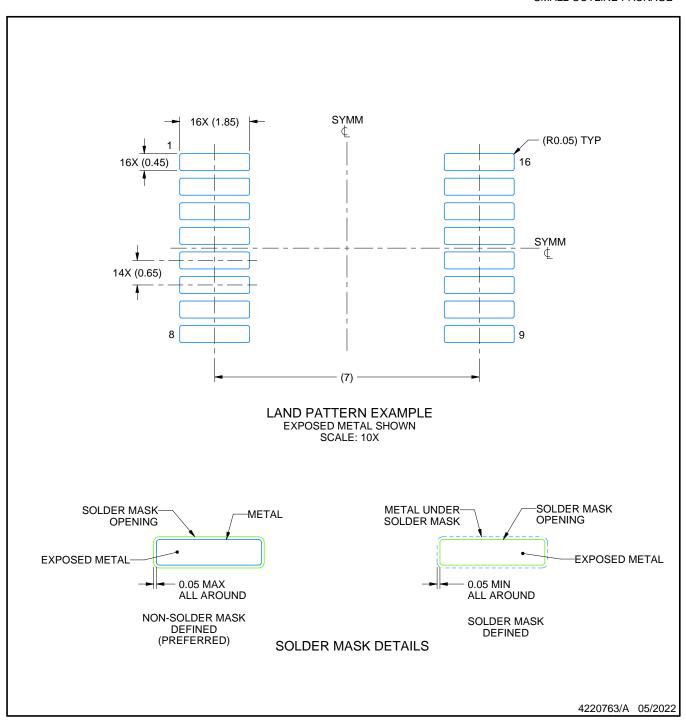
6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



NOTES: (continued)

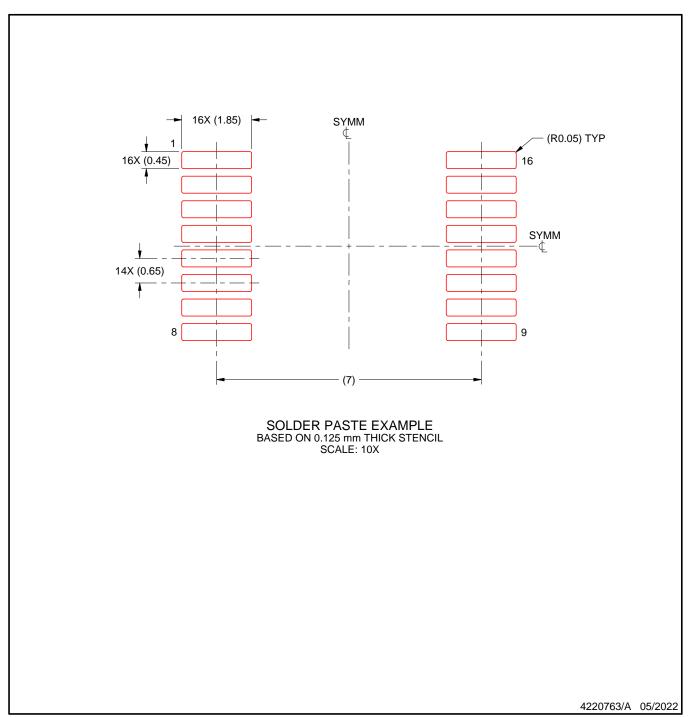
- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.



- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
 4. Reference JEDEC registration MO-150.



NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NOTES: (continued)

- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated