1 Features

- Member of the Texas Instruments Widebus™ Family
- Maximum \(t_{pd} \) of 5.8 ns at 3.3 V
- ±24-mA Output Drive at 3.3 V
- Control Inputs \(V_{IH}/V_{IL} \) Levels Are Referenced to \(V_{CCA} \) Voltage
- Latch-Up Performance Exceeds 250 mA Per JESD 17

2 Applications

- Electronic Points of Sale
- Printers and Other peripherals
- Motor Drives
- Wireless and Telecom Infrastructures
- Wearable Health and Fitness Devices

3 Description

This 16-bit (dual-octal) noninverting bus transceiver contains two separate supply rails. B port has \(V_{CCB} \), which is set to operate at 3.3 V and 5 V. A port has \(V_{CCA} \), which is set to operate at 2.5 V and 3.3 V. This allows for translation from a 2.5-V to a 3.3-V environment, and vice versa, or from a 3.3-V to a 5-V environment, and vice versa.

The SN74ALVC164245 is designed for asynchronous communication between data buses. The control circuitry (1DIR, 2DIR, 1OE, and 2OE) is powered by \(V_{CCA} \).

To ensure the high-impedance state during power up or power down, the output-enable (OE) input should be tied to \(V_{CC} \) through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The logic levels of the direction-control (DIR) input and the output-enable (OE) input activate either the B-port outputs or the A-port outputs or place both output ports into the high-impedance mode. The device transmits data from the A bus to the B bus when the B-port outputs are activated, and from the B bus to the A bus when the A-port outputs are activated. The input circuitry on both A and B ports always is active and must have a logic HIGH or LOW level applied to prevent excess \(I_{CC} \) and \(I_{CCZ} \).

Device Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN74ALVC164245</td>
<td>TSSOP (48)</td>
<td>12.50 mm × 6.10 mm</td>
</tr>
<tr>
<td></td>
<td>SSOP (48)</td>
<td>15.88 mm × 7.49 mm</td>
</tr>
<tr>
<td></td>
<td>BGA MICROSTAR JUNIOR (56)</td>
<td>7.00 mm × 4.50 mm</td>
</tr>
<tr>
<td></td>
<td>BGA MICROSTAR JUNIOR (54)</td>
<td>8.00 mm × 5.50 mm</td>
</tr>
</tbody>
</table>

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Logic Diagram (Positive Logic)
Table of Contents

1 Features .. 1

2 Applications .. 1

3 Description .. 1

4 Revision History .. 2

5 Pin Configuration and Functions 3

6 Specifications ... 7

7 Parameter Measurement Information 12

8 Detailed Description .. 16

9 Application and Implementation 17

10 Power Supply Recommendations 19

11 Layout ... 19

12 Device and Documentation Support 20

13 Mechanical, Packaging, and Orderable Information 20

4 Revision History

<table>
<thead>
<tr>
<th>Changes from Revision P (November 2005) to Revision Q</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section</td>
<td>1</td>
</tr>
<tr>
<td>• Deleted Ordering Information table; see POA at the end of the data sheet</td>
<td>1</td>
</tr>
<tr>
<td>• Changed values in the Thermal Information table to align with JEDEC standards</td>
<td>8</td>
</tr>
</tbody>
</table>
5 Pin Configuration and Functions

DGG and DL Packages

48-Pin TSSOP and BGA MICROSTAR JUINIOR

Top View

<table>
<thead>
<tr>
<th>PIN</th>
<th>NAME</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1DIR</td>
<td>—</td>
<td>Direction Pin 1</td>
</tr>
<tr>
<td>2</td>
<td>1B1</td>
<td>I/O</td>
<td>1B1 input or output</td>
</tr>
<tr>
<td>3</td>
<td>1B2</td>
<td>I/O</td>
<td>1B2 input or output</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>—</td>
<td>Ground pin</td>
</tr>
<tr>
<td>5</td>
<td>1B3</td>
<td>I/O</td>
<td>1B3 input or output</td>
</tr>
<tr>
<td>6</td>
<td>1B4</td>
<td>I/O</td>
<td>1B4 input or output</td>
</tr>
<tr>
<td>7</td>
<td>V_{CCB} (3.3 V, 5 V)</td>
<td>—</td>
<td>Power pin</td>
</tr>
<tr>
<td>8</td>
<td>1B5</td>
<td>I/O</td>
<td>1B5 input or output</td>
</tr>
<tr>
<td>9</td>
<td>1B6</td>
<td>I/O</td>
<td>1B6 input or output</td>
</tr>
<tr>
<td>10</td>
<td>GND</td>
<td>—</td>
<td>Ground pin</td>
</tr>
<tr>
<td>11</td>
<td>1B7</td>
<td>I/O</td>
<td>1B7 input or output</td>
</tr>
<tr>
<td>12</td>
<td>1B8</td>
<td>I/O</td>
<td>1B8 input or output</td>
</tr>
<tr>
<td>13</td>
<td>2B1</td>
<td>I/O</td>
<td>2B1 input or output</td>
</tr>
<tr>
<td>14</td>
<td>2B2</td>
<td>I/O</td>
<td>2B2 input or output</td>
</tr>
<tr>
<td>15</td>
<td>GND</td>
<td>—</td>
<td>Ground pin</td>
</tr>
<tr>
<td>16</td>
<td>2B3</td>
<td>I/O</td>
<td>2B3 input or output</td>
</tr>
</tbody>
</table>
Pin Functions (continued)

<table>
<thead>
<tr>
<th>NO.</th>
<th>PIN</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>2B4</td>
<td>I/O</td>
<td>2B4 input or output</td>
</tr>
<tr>
<td>18</td>
<td>V<sub>CCB</sub> (3.3 V, 5 V)</td>
<td>—</td>
<td>Power pin</td>
</tr>
<tr>
<td>19</td>
<td>2B5</td>
<td>I/O</td>
<td>2B5 input or output</td>
</tr>
<tr>
<td>20</td>
<td>2B6</td>
<td>I/O</td>
<td>2B6 input or output</td>
</tr>
<tr>
<td>21</td>
<td>GND</td>
<td>—</td>
<td>Ground pin</td>
</tr>
<tr>
<td>22</td>
<td>2B7</td>
<td>I/O</td>
<td>2B7 input or output</td>
</tr>
<tr>
<td>23</td>
<td>2B8</td>
<td>I/O</td>
<td>2B8 input or output</td>
</tr>
<tr>
<td>24</td>
<td>2DIR</td>
<td>—</td>
<td>Direction pin 2</td>
</tr>
<tr>
<td>25</td>
<td>2OE</td>
<td>I</td>
<td>Output Enable 2</td>
</tr>
<tr>
<td>26</td>
<td>2A8</td>
<td>I/O</td>
<td>2A8 input or output</td>
</tr>
<tr>
<td>27</td>
<td>2A7</td>
<td>I/O</td>
<td>2A7 input or output</td>
</tr>
<tr>
<td>28</td>
<td>GND</td>
<td>—</td>
<td>Ground pin</td>
</tr>
<tr>
<td>29</td>
<td>2A6</td>
<td>I/O</td>
<td>2A6 input or output</td>
</tr>
<tr>
<td>30</td>
<td>2A5</td>
<td>I/O</td>
<td>2A5 input or output</td>
</tr>
<tr>
<td>31</td>
<td>V<sub>CCA</sub> (2.5 V, 3.3 V)</td>
<td>—</td>
<td>Power pin</td>
</tr>
<tr>
<td>32</td>
<td>2A4</td>
<td>I/O</td>
<td>2A4 input or output</td>
</tr>
<tr>
<td>33</td>
<td>2A3</td>
<td>I/O</td>
<td>2A3 input or output</td>
</tr>
<tr>
<td>34</td>
<td>GND</td>
<td>—</td>
<td>Ground pin</td>
</tr>
<tr>
<td>35</td>
<td>2A2</td>
<td>I/O</td>
<td>2A2 input or output</td>
</tr>
<tr>
<td>36</td>
<td>2A1</td>
<td>I/O</td>
<td>2A1 input or output</td>
</tr>
<tr>
<td>37</td>
<td>1A8</td>
<td>I/O</td>
<td>1A8 input or output</td>
</tr>
<tr>
<td>38</td>
<td>1A7</td>
<td>I/O</td>
<td>1A7 input or output</td>
</tr>
<tr>
<td>39</td>
<td>GND</td>
<td>—</td>
<td>Ground pin</td>
</tr>
<tr>
<td>40</td>
<td>1A6</td>
<td>I/O</td>
<td>1A6 input or output</td>
</tr>
<tr>
<td>41</td>
<td>1A5</td>
<td>I/O</td>
<td>1A5 input or output</td>
</tr>
<tr>
<td>42</td>
<td>V<sub>CCA</sub> (2.5 V, 3.3 V)</td>
<td>—</td>
<td>Power pin</td>
</tr>
<tr>
<td>43</td>
<td>1A4</td>
<td>I/O</td>
<td>1A4 input or output</td>
</tr>
<tr>
<td>44</td>
<td>1A3</td>
<td>I/O</td>
<td>1A3 input or output</td>
</tr>
<tr>
<td>45</td>
<td>GND</td>
<td>—</td>
<td>Ground pin</td>
</tr>
<tr>
<td>46</td>
<td>1A2</td>
<td>I/O</td>
<td>1A2 input or output</td>
</tr>
<tr>
<td>47</td>
<td>1A1</td>
<td>I/O</td>
<td>1A1 input or output</td>
</tr>
<tr>
<td>48</td>
<td>1OE</td>
<td>I</td>
<td>Output Enable 1</td>
</tr>
</tbody>
</table>
Table 1. Pin Assignments
(56-Ball GQL or ZQL Package)

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1DIR</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>B</td>
<td>1B2</td>
<td>1B1</td>
<td>GND</td>
<td>GND</td>
<td>1A1</td>
</tr>
<tr>
<td>C</td>
<td>1B4</td>
<td>1B3</td>
<td>V_{CCB}</td>
<td>V_{CCA}</td>
<td>1A3</td>
</tr>
<tr>
<td>D</td>
<td>1B6</td>
<td>1B5</td>
<td>GND</td>
<td>GND</td>
<td>1A5</td>
</tr>
<tr>
<td>E</td>
<td>1B8</td>
<td>1B7</td>
<td>—</td>
<td>—</td>
<td>1A7</td>
</tr>
<tr>
<td>F</td>
<td>2B1</td>
<td>2B2</td>
<td>—</td>
<td>—</td>
<td>2A2</td>
</tr>
<tr>
<td>G</td>
<td>2B3</td>
<td>2B4</td>
<td>GND</td>
<td>GND</td>
<td>2A4</td>
</tr>
<tr>
<td>H</td>
<td>2B5</td>
<td>2B6</td>
<td>V_{CCB}</td>
<td>V_{CCA}</td>
<td>2A6</td>
</tr>
<tr>
<td>J</td>
<td>2B7</td>
<td>2B8</td>
<td>GND</td>
<td>GND</td>
<td>2A8</td>
</tr>
<tr>
<td>K</td>
<td>2DIR</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
</tbody>
</table>

(1) NC – No internal connection
Table 2. Pin Assignments(1) (54-Ball GRD or ZRD Package)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1B1</td>
<td>NC</td>
<td>1DIR</td>
<td>1OE</td>
<td>NC</td>
<td>1A1</td>
</tr>
<tr>
<td>B</td>
<td>1B3</td>
<td>1B2</td>
<td>NC</td>
<td>NC</td>
<td>1A2</td>
<td>1A3</td>
</tr>
<tr>
<td>C</td>
<td>1B5</td>
<td>1B4</td>
<td>V_{CCB}</td>
<td>V_{CCA}</td>
<td>1A4</td>
<td>1A5</td>
</tr>
<tr>
<td>D</td>
<td>1B7</td>
<td>1B6</td>
<td>GND</td>
<td>GND</td>
<td>1A6</td>
<td>1A7</td>
</tr>
<tr>
<td>E</td>
<td>2B1</td>
<td>1B8</td>
<td>GND</td>
<td>GND</td>
<td>1A8</td>
<td>2A1</td>
</tr>
<tr>
<td>F</td>
<td>2B3</td>
<td>2B2</td>
<td>GND</td>
<td>GND</td>
<td>2A2</td>
<td>2A3</td>
</tr>
<tr>
<td>G</td>
<td>2B5</td>
<td>2B4</td>
<td>V_{CCB}</td>
<td>V_{CCA}</td>
<td>2A4</td>
<td>2A5</td>
</tr>
<tr>
<td>H</td>
<td>2B7</td>
<td>2B6</td>
<td>NC</td>
<td>NC</td>
<td>2A6</td>
<td>2A7</td>
</tr>
<tr>
<td>J</td>
<td>2B8</td>
<td>NC</td>
<td>2DIR</td>
<td>2OE</td>
<td>NC</td>
<td>2A8</td>
</tr>
</tbody>
</table>

(1) NC – No internal connection
6 Specifications

6.1 Absolute Maximum Ratings
over operating free-air temperature range for V_{CCB} at 5 V and V_{CCA} at 3.3 V (unless otherwise noted)\(^{(1)}\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CC} Supply voltage</td>
<td>V_{CCB}</td>
<td>V_{CCA}</td>
<td></td>
</tr>
<tr>
<td>V_{I} Input voltage</td>
<td>Except I/O ports(^{(2)})</td>
<td>V_{CCA} + 0.5</td>
<td>V</td>
</tr>
<tr>
<td>I_{IK} Input clamp current</td>
<td>$V_{I} < 0$</td>
<td>–50</td>
<td>mA</td>
</tr>
<tr>
<td>I_{OK} Output clamp current</td>
<td>$V_{O} < 0$</td>
<td>–50</td>
<td>mA</td>
</tr>
<tr>
<td>I_{O} Continuous output current</td>
<td>T_{stg} Storage temperature</td>
<td>±100</td>
<td>mA</td>
</tr>
</tbody>
</table>

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) This value is limited to 6 V maximum.

(3) This value is limited to 4.6 V maximum.

6.2 ESD Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{(ESD)}$ Electrostatic discharge</td>
<td>Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(^{(3)})</td>
<td>±2000</td>
</tr>
<tr>
<td></td>
<td>Charged-device model (CDM), per JEDEC specification JESD22-C101(^{(2)})</td>
<td>±1000</td>
</tr>
</tbody>
</table>

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions: V_{CCB} at 3.3 V
for V_{CCB} at 3.3 V and 5 V\(^{(1)}\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CCB} Supply voltage</td>
<td>3</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>V_{IH} High-level input voltage</td>
<td>2</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{IL} Low-level input voltage</td>
<td>$V_{CCB} = 3$ V to 3.6 V</td>
<td>0.7</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>$V_{CCB} = 4.5$ V to 5.5 V</td>
<td>0.8</td>
<td>V</td>
</tr>
<tr>
<td>V_{IB} Input voltage</td>
<td>0</td>
<td>V_{CCB} V</td>
<td></td>
</tr>
<tr>
<td>V_{OB} Output voltage</td>
<td>0</td>
<td>V_{CCB} V</td>
<td></td>
</tr>
<tr>
<td>I_{OH} High-level output current</td>
<td>–24</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>I_{OL} Low-level output current</td>
<td>24</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>$\Delta V/\Delta t$ Input transition rise or fall rate</td>
<td>10</td>
<td>ns/V</td>
<td></td>
</tr>
<tr>
<td>T_{A} Operating free-air temperature</td>
<td>–40</td>
<td>85</td>
<td>°C</td>
</tr>
</tbody>
</table>

(1) All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. see the TI application report, Implications of Slow or Floating CMOS Inputs (SCBA004).
6.4 Recommended Operating Conditions: \(V_{CCA} \) at 2.5 V

for \(V_{CCA} \) at 2.5 V and 3.3 V\(^{(1)}\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{CCA}) Supply voltage</td>
<td>2.3</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>(V_{IH}) High-level input voltage</td>
<td>(V_{CCA} = 2.3) V to 2.7 V</td>
<td>1.7</td>
<td>V</td>
</tr>
<tr>
<td>(V_{IL}) Low-level input voltage</td>
<td>(V_{CCA} = 2.3) V to 2.7 V</td>
<td>0.7</td>
<td>V</td>
</tr>
<tr>
<td>(V_{IA}) Input voltage</td>
<td>0</td>
<td>(V_{CCA})</td>
<td>V</td>
</tr>
<tr>
<td>(V_{OA}) Output voltage</td>
<td>0</td>
<td>(V_{CCA})</td>
<td>V</td>
</tr>
<tr>
<td>(I_{OH}) High-level output current</td>
<td>(V_{CCA} = 2.3) V</td>
<td>–18</td>
<td>mA</td>
</tr>
<tr>
<td>(I_{OL}) Low-level output current</td>
<td>(V_{CCA} = 2.3) V</td>
<td>18</td>
<td>mA</td>
</tr>
<tr>
<td>(\Delta t/\Delta v) Input transition rise or fall rate</td>
<td></td>
<td>10</td>
<td>ns/V</td>
</tr>
<tr>
<td>(T_A) Operating free-air temperature</td>
<td>–40</td>
<td>85</td>
<td>°C</td>
</tr>
</tbody>
</table>

\(^{(1)}\) All unused inputs of the device must be held at \(V_{CC} \) or GND to ensure proper device operation. See the TI application report, *Implications of Slow or Floating CMOS Inputs*, (SCBA004).

6.5 Thermal Information

<table>
<thead>
<tr>
<th>THERMAL METRIC(^{(1)})</th>
<th>SN74ALVC164245</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DGG (TSSOP)</td>
</tr>
<tr>
<td>Junction-to-ambient thermal resistance</td>
<td>60.7</td>
</tr>
<tr>
<td>Junction-to-case (top) thermal resistance</td>
<td>14.3</td>
</tr>
<tr>
<td>Junction-to-board thermal resistance</td>
<td>27.7</td>
</tr>
<tr>
<td>Junction-to-top characterization parameter</td>
<td>0.5</td>
</tr>
<tr>
<td>Junction-to-board characterization parameter</td>
<td>27.6</td>
</tr>
</tbody>
</table>

\(^{(1)}\) For more information about traditional and new thermal metrics, see the *Semiconductor and IC Package Thermal Metrics* application report.
6.6 Electrical Characteristics: $V_{CCA} = 2.7\,\text{V} \text{ to } 3.6\,\text{V}$

over recommended operating free-air temperature range for $V_{CCA} = 2.7\,\text{V} \text{ to } 3.6\,\text{V}$ and $V_{CCB} = 4.5\,\text{V} \text{ to } 5.5\,\text{V}$ (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>V_{CCA}</th>
<th>V_{CCB}</th>
<th>MIN</th>
<th>TYP $^{(1)}$</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OH}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B to A</td>
<td>$I_{OH} = -100,\mu\text{A}$</td>
<td>2.7 V to 3.6 V</td>
<td>V_{CC} – 0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$I_{OH} = -12,\text{mA}$</td>
<td>2.7 V</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$I_{OH} = -24,\text{mA}$</td>
<td>3 V</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A to B</td>
<td>$I_{OH} = -100,\mu\text{A}$</td>
<td>4.5 V</td>
<td>4.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$I_{OH} = -24,\text{mA}$</td>
<td>5.5 V</td>
<td>5.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OL}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B to A</td>
<td>$I_{OL} = 100,\mu\text{A}$</td>
<td>2.7 V to 3.6 V</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$I_{OL} = 12,\text{mA}$</td>
<td>2.7 V</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$I_{OL} = 24,\text{mA}$</td>
<td>3 V</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A to B</td>
<td>$I_{OL} = 100,\mu\text{A}$</td>
<td>4.5 V to 5.5 V</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$I_{OL} = 24,\text{mA}$</td>
<td>4.5 V to 5.5 V</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{i}</td>
<td>Control inputs</td>
<td>$V_{i} = V_{CCA}/V_{CCB}$ or GND</td>
<td>3.6 V</td>
<td>5.5 V</td>
<td>±5</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>$I_{OZ}^{(2)}$</td>
<td>A or B port</td>
<td>$V_{O} = V_{CCA}/V_{CCB}$ or GND</td>
<td>3.6 V</td>
<td>5.5 V</td>
<td>±10</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>I_{CC}</td>
<td>Control inputs</td>
<td>$V_{i} = V_{CCA}/V_{CCB}$ or GND, $I_{O} = 0$</td>
<td>3.6 V</td>
<td>5.5 V</td>
<td>40</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>$\Delta I_{CC}^{(3)}$</td>
<td>A or B port</td>
<td>$V_{O} = V_{CCA}/V_{CCB}$ or GND</td>
<td>3 V to 3.6 V</td>
<td>4.5 V to 5.5 V</td>
<td>750</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>C_{i}</td>
<td>Control inputs</td>
<td>$V_{i} = V_{CCA}/V_{CCB}$ or GND</td>
<td>3.3 V</td>
<td>5 V</td>
<td>6.5</td>
<td>pF</td>
<td></td>
</tr>
<tr>
<td>C_{io}</td>
<td>A or B port</td>
<td>$V_{O} = V_{CCA}/V_{CCB}$ or GND</td>
<td>3.3 V</td>
<td>3.3 V</td>
<td>8.5</td>
<td>pF</td>
<td></td>
</tr>
</tbody>
</table>

(1) Typical values are measured at $V_{CCA} = 3.3\,\text{V}$ and $V_{CCB} = 5\,\text{V}$, $T_{A} = 25^\circ\text{C}$.
(2) For I/O ports, the parameter I_{OZ} includes the input leakage current.
(3) This is the supply current increase for each input that is at one of the specified TTL voltage levels, rather than at 0 or the associated V_{CC}.
6.7 Electrical Characteristics: $V_{CCA} = 2.3$ V to 2.7 V

over recommended operating free-air temperature range for $V_{CCA} = 2.3$ V to 2.7 V and $V_{CCB} = 3$ V to 3.6 V (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>V_{CCA}</th>
<th>V_{CCB}</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OH}</td>
<td>B to A</td>
<td>-100 µA</td>
<td>2.3 V to 3 V</td>
<td>VCCA - 0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-8 mA</td>
<td>2.3 V to 3 V</td>
<td>1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-12 mA</td>
<td>2.3 V to 3 V</td>
<td>1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A to B</td>
<td>-100 µA</td>
<td>2.3 V to 2.7 V</td>
<td>VCCB - 0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-18 mA</td>
<td>2.3 V to 2.7 V</td>
<td>2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OL}</td>
<td>B to A</td>
<td>100 µA</td>
<td>2.3 V to 2.7 V</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12 mA</td>
<td>2.3 V to 2.7 V</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A to B</td>
<td>100 µA</td>
<td>2.3 V to 2.7 V</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>18 mA</td>
<td>2.3 V to 2.7 V</td>
<td>0.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{I}</td>
<td>Control inputs</td>
<td>$V_i = V_{CCA}/V_{CCB}$ or GND</td>
<td>2.3 V to 2.7 V</td>
<td>3 V to 3.6 V</td>
<td>±5 µA</td>
<td></td>
</tr>
<tr>
<td>I_{OZ}</td>
<td>A or B port</td>
<td>$V_O = V_{CCA}/V_{CCB}$ or GND</td>
<td>2.3 V to 2.7 V</td>
<td>3 V to 3.6 V</td>
<td>±10 µA</td>
<td></td>
</tr>
<tr>
<td>I_{CC}</td>
<td></td>
<td>$V_i = V_{CCA}/V_{CCB}$ or GND, $I_O = 0$</td>
<td>2.3 V to 2.7 V</td>
<td>3 V to 3.6 V</td>
<td>20 µA</td>
<td></td>
</tr>
<tr>
<td>I_{CC}</td>
<td>One input at $V_{CCA}/V_{CCB} = 0.6$ V,</td>
<td>2.3 V to 2.7 V</td>
<td>3 V to 3.6 V</td>
<td>750 µA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other inputs at V_{CCA}/V_{CCB} or GND</td>
<td>2.3 V to 2.7 V</td>
<td>3 V to 3.6 V</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) For I/O ports, the parameter I_{OZ} includes the input leakage current.

(2) This is the increase in supply current for each input that is at one of the specified TTL voltage levels, rather than at 0 or the associated V_{CC}.

6.8 Switching Characteristics

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 2 through Figure 5)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>FROM (INPUT)</th>
<th>TO (OUTPUT)</th>
<th>$V_{CCB} = 3.3$ V ± 0.3 V</th>
<th>$V_{CCB} = 5$ V ± 0.5 V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>$V_{CCA} = 2.5$ V ± 0.2 V</td>
<td>$V_{CCA} = 2.7$ V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$V_{CCA} = 3.3$ V ± 0.3 V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MIN</td>
<td>MAX</td>
</tr>
<tr>
<td>t_{pd}</td>
<td>A</td>
<td>B</td>
<td>7.6</td>
<td>5.9</td>
</tr>
<tr>
<td>t_{en}</td>
<td>A</td>
<td>B</td>
<td>7.6</td>
<td>6.7</td>
</tr>
<tr>
<td>t_{dis}</td>
<td>OE</td>
<td>B</td>
<td>11.5</td>
<td>9.3</td>
</tr>
<tr>
<td>t_{en}</td>
<td>OE</td>
<td>B</td>
<td>10.5</td>
<td>9.2</td>
</tr>
<tr>
<td>t_{dis}</td>
<td>OE</td>
<td>A</td>
<td>12.3</td>
<td>10.2</td>
</tr>
<tr>
<td>t_{dis}</td>
<td>OE</td>
<td>A</td>
<td>9.3</td>
<td>9</td>
</tr>
</tbody>
</table>

6.9 Operating Characteristics

$T_A = 25°C$

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>$V_{CCB} = 3.3$ V</th>
<th>$V_{CCB} = 5$ V</th>
<th>$V_{CCA} = 2.5$ V</th>
<th>$V_{CCA} = 3.3$ V</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{pd}</td>
<td>Power dissipation capacitance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Outputs enabled (B)</td>
<td>$C_L = 50$ pF, $f = 10$ MHz</td>
<td>55</td>
<td>56</td>
<td>pF</td>
</tr>
<tr>
<td></td>
<td>Outputs disabled (B)</td>
<td></td>
<td>27</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Outputs enabled (A)</td>
<td>$C_L = 50$ pF, $f = 10$ MHz</td>
<td>118</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Outputs disabled (A)</td>
<td></td>
<td>58</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>
6.10 Typical Characteristics

![Graph showing typical characteristics of V_H vs I_H with a linear relationship between voltage and current values.](image)

Figure 1. V_{OH} vs I_{OH}
7 Parameter Measurement Information

7.1 \(V_{CCA} = 2.5 \, V \pm 0.2 \, V \) to \(V_{CCB} = 3.3 \, V \pm 0.3 \, V \)

Figure 2. Load Circuit and Voltage Waveforms
7.2 $V_{CCB} = 3.3 \, V \pm 0.3 \, V$ to $V_{CCA} = 2.5 \, V \pm 0.2 \, V$

LOAD CIRCUIT

<table>
<thead>
<tr>
<th>TEST</th>
<th>S1</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{pd}</td>
<td>Open</td>
</tr>
<tr>
<td>t_{PLZ}/t_{PZL}</td>
<td>$2 \times V_{CCA}$</td>
</tr>
<tr>
<td>t_{PHZ}/t_{PZH}</td>
<td>GND</td>
</tr>
</tbody>
</table>

VOLTAGE WAVEFORMS

- **PROPAGATION DELAY TIMES**
 - Input: 1.5 V
 - Output: $V_{CCA}/2$
- **ENABLE AND DISABLE TIMES**
 - Output Waveform 1: $S1$ at $2 \times V_{CCA}$ (see Note B)
 - Output Waveform 2: $S1$ at GND (see Note B)

NOTES:
- A. C_L includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: $PRR \leq 10$ MHz, $Z_O = 50 \, \Omega$, $t_r \leq 2$ ns, $t_f \leq 2$ ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis}.
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PLH} and t_{PHL} are the same as t_{pd}.

Figure 3. Load Circuit and Voltage Waveforms
7.3 \(V_{CCA} = 3.3 \, V \pm 0.3 \, V \) to \(V_{CCB} = 5 \, V \pm 0.5 \, V \)

NOTES:

A. \(C_L \) includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
 Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: \(PRR \leq 10 \, MHz, Z_O = 50 \, \Omega, t_r \leq 2.5 \, ns, t_f \leq 2.5 \, ns \).
D. The outputs are measured one at a time, with one transition per measurement.
E. \(t_{PLZ} \) and \(t_{PHZ} \) are the same as \(t_{dis} \).
F. \(t_{PZL} \) and \(t_{PZH} \) are the same as \(t_{en} \).
G. \(t_{PLH} \) and \(t_{PHL} \) are the same as \(t_{pd} \).

Figure 4. Load Circuit and Voltage Waveforms
7.4 \(V_{CCB} = 5 \, V \pm 0.5 \, V \) to \(V_{CCA} = 2.7 \, V \) and \(3.3 \, V \pm 0.3 \, V \)

From Output
Under Test
\[
C_L = 50 \, \text{pF} \\
(\text{see Note A})
\]

LOAD CIRCUIT

<table>
<thead>
<tr>
<th>TEST</th>
<th>S1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{pd})</td>
<td>Open</td>
</tr>
<tr>
<td>(t_{PLZ}/t_{PZL})</td>
<td>(V_{CCA} = 6 , V)</td>
</tr>
<tr>
<td>(t_{PHZ}/t_{PZH})</td>
<td>GND</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1.5 , V)</td>
<td>(1.5 , V)</td>
</tr>
<tr>
<td>(1.5 , V)</td>
<td>(1.5 , V)</td>
</tr>
<tr>
<td>(3 , V)</td>
<td>(0 , V)</td>
</tr>
</tbody>
</table>

\(t_{PLH} \) and \(t_{PHL} \) are the same as \(t_{pd} \).

\(t_{PZL} \) and \(t_{PZH} \) are the same as \(t_{dis} \).

\(t_{PLH} \) and \(t_{PHL} \) are the same as \(t_{en} \).

NOTES:
A. \(C_L \) includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
C. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
D. All input pulses are supplied by generators having the following characteristics: \(PRR \leq 10 \, \text{MHz}, Z_O = 50 \, \Omega, t_r \leq 2.5 \, \text{ns}, t_f \leq 2.5 \, \text{ns} \).
E. The outputs are measured one at a time, with one transition per measurement.
F. \(t_{PLZ} \) and \(t_{PZH} \) are the same as \(t_{en} \).
G. \(t_{PZL} \) and \(t_{PZH} \) are the same as \(t_{dis} \).

\[\text{Figure 5. Load Circuit and Voltage Waveforms} \]
8 Detailed Description

8.1 Overview

The SN74ALVC16245 device is designed for asynchronous communication between data buses. The control-function implementation minimizes external timing requirements.

This device can be used as two 8-bit transceivers or one 16-bit transceiver. It allows data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (OE) input can be used to disable the device so that the buses are effectively isolated. To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of this device as a translator in a mixed 3.3-V and 5-V system environment.

8.2 Functional Block Diagram

![Functional Block Diagram](image)

Figure 6. Logic Diagram (Positive Logic)

8.3 Feature Description

The SN74ALVC164245 can output 24 mA drive at 3.3V VCC. This device allows down voltage translations and accepts input voltages to VCC + 0.5V. This device is useful for high-speed applications because of the low tpd.

8.4 Device Functional Modes

Table 3 lists the functions of the device.

| Table 3. Function Table⁽¹⁾ (Each 8-Bit Section) |
|-------------------------------|------------------|------------------|------------------|
| **CONTROL INPUTS** | **OUTPUT CIRCUITS** | **OPERATION** |
| OE | DIR | A PORT | B PORT |
| L | L | Enabled | Hi-Z | B data to A bus |
| L | H | Hi-Z | Enabled | A data to B bus |
| H | X | Hi-Z | Hi-Z | Isolation |

⁽¹⁾ Input circuits of the data I/Os always are active.
9 Application and Implementation

NOTE
Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The SN74ALVC16245 device is a 16-bit bidirectional transceiver. This device can be used as two 8-bit transceivers or one 16-bit transceiver. It allows data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (OE) input can be used to disable the device so that the buses are effectively isolated. This allows it to be used in multi-power systems and for down translation as well.

9.2 Typical Application

![Typical Application Schematic](image)

9.2.1 Design Requirements
This device uses CMOS technology and has balanced output drive. Take care to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive also creates fast edges into light loads; therefore, routing and load conditions must be considered to prevent ringing.

9.2.2 Detailed Design Procedure

1. Recommended Input Conditions
 - Rise time and fall time specs: See \(\Delta t/\Delta V\) in Recommended Operating Conditions: \(V_{CCB}\) at 3.3 V.
 - Specified high and low levels: See \(V_{IH}\) and \(V_{IL}\) in Recommended Operating Conditions: \(V_{CCB}\) at 3.3 V.

2. Recommend Output Conditions
 - Load currents should not exceed 50 mA per output and 100 mA total for the part.
 - Outputs should not be pulled above \(V_{CC}\).
Typical Application (continued)

9.2.3 Application Curve

Figure 8. $V_{OH} \text{ vs } I_{OH}$
10 Power Supply Recommendations

TI level-translation devices offer an opportunity for successful mixed-voltage signal design. A proper power-up sequence must always be followed to avoid excessive supply current, bus contention, oscillations, or other anomalies caused by improperly biased device pins. Take these precautions to guard against such power-up problems:

1. Connect ground before any supply voltage is applied.
2. Power up the control side of the device (\(V_{CCA} \) for all four of these devices).
3. Tie OE to \(V_{CCA} \) with a pullup resistor so that it ramps with \(V_{CCA} \).
4. Depending on the direction of the data path, DIR can be high or low. If DIR high is needed (A data to B bus), ramp it with \(V_{CCA} \). Otherwise, keep DIR low.

For more information, see the TI application report, *Texas Instruments Voltage-Level-Translation Devices* (SCEA021).

11 Layout

11.1 Layout Guidelines

When using multiple bit logic devices, inputs should not float. In many cases, functions or parts of functions of digital logic devices are unused. Some examples are when only two inputs of a triple-input AND gate are used, or when only 3 of the 4-buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states.

Specified in the Figure 9 are rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or \(V_{CC} \), whichever makes more sense or is more convenient. It is acceptable to float outputs unless the part is a transceiver. If the transceiver has an output enable pin, it will disable the outputs section of the part when asserted. This will not disable the input section of the I/Os so they also cannot float when disabled.

11.2 Layout Example

![Figure 9. Layout Diagram](image-url)
12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation
For related documentation see the following:

• Texas Instruments Voltage-Level-Translation Devices (SCEA021)
• Implications of Slow or Floating CMOS Inputs (SCBA004)

12.2 Receiving Notification of Documentation Updates
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.3 Community Resource
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.4 Trademarks
Widebus, E2E are trademarks of Texas Instruments.
All other trademarks are the property of their respective owners.

12.5 Electrostatic Discharge Caution
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.6 Glossary
SLYZ022 — TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information
The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>74ALVC164245DGGRE4</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>DGG</td>
<td>48</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>ALVC164245</td>
<td></td>
</tr>
<tr>
<td>74ALVC164245DGGRG4</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>DGG</td>
<td>48</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>ALVC164245</td>
<td></td>
</tr>
<tr>
<td>74ALVC164245DGGTE4</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>DGG</td>
<td>48</td>
<td>250</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>ALVC164245</td>
<td></td>
</tr>
<tr>
<td>74ALVC164245DGGGT4</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>DGG</td>
<td>48</td>
<td>250</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>ALVC164245</td>
<td></td>
</tr>
<tr>
<td>74ALVC164245DLG4</td>
<td>ACTIVE</td>
<td>SSOP</td>
<td>DL</td>
<td>48</td>
<td>25</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>ALVC164245</td>
<td></td>
</tr>
<tr>
<td>74ALVC164245DLRG4</td>
<td>ACTIVE</td>
<td>SSOP</td>
<td>DL</td>
<td>48</td>
<td>1000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>ALVC164245</td>
<td></td>
</tr>
<tr>
<td>74ALVC164245ZQLR</td>
<td>LIFEBUY</td>
<td>BGA MICROSTAR JUNIOR</td>
<td>ZQL</td>
<td>56</td>
<td>1000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>SNAGCU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>VC4245</td>
<td></td>
</tr>
<tr>
<td>74ALVC164245ZDRR</td>
<td>LIFEBUY</td>
<td>BGA MICROSTAR JUNIOR</td>
<td>ZRD</td>
<td>54</td>
<td>1000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>SNAGCU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>VC4245</td>
<td></td>
</tr>
<tr>
<td>SN74ALVC164245DGG</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>DGG</td>
<td>48</td>
<td>40</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>ALVC164245</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SN74ALVC164245DGGR</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>DGG</td>
<td>48</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>ALVC164245</td>
<td></td>
</tr>
<tr>
<td>SN74ALVC164245DGGT</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>DGG</td>
<td>48</td>
<td>250</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>ALVC164245</td>
<td></td>
</tr>
<tr>
<td>SN74ALVC164245DL</td>
<td>ACTIVE</td>
<td>SSOP</td>
<td>DL</td>
<td>48</td>
<td>25</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>ALVC164245</td>
<td></td>
</tr>
<tr>
<td>SN74ALVC164245DLR</td>
<td>ACTIVE</td>
<td>SSOP</td>
<td>DL</td>
<td>48</td>
<td>1000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>ALVC164245</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBsolete: TI has discontinued the production of the device.
(2) **RoHS:** TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) **Lead/Ball Finish** - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN74ALVC164245:

- Enhanced Product: SN74ALVC164245-EP

NOTE: Qualified Version Definitions:

- Enhanced Product - Supports Defense, Aerospace and Medical Applications
TAPE AND REEL INFORMATION

TAPE DIMENSIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>74ALVC164245ZQLR</td>
<td>BGA MICROSTAR JUNIOR</td>
<td>ZQL</td>
<td>56</td>
<td>1000</td>
<td>330.0</td>
<td>16.4</td>
<td>4.8</td>
<td>7.3</td>
<td>1.5</td>
<td>8.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
<tr>
<td>74ALVC164245ZRD</td>
<td>BGA MICROSTAR JUNIOR</td>
<td>ZRD</td>
<td>54</td>
<td>1000</td>
<td>330.0</td>
<td>16.4</td>
<td>5.8</td>
<td>8.3</td>
<td>1.55</td>
<td>8.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
<tr>
<td>SN74ALVC164245DGGR</td>
<td>TSSOP</td>
<td>DGG</td>
<td>48</td>
<td>2000</td>
<td>330.0</td>
<td>24.4</td>
<td>8.6</td>
<td>13.0</td>
<td>1.8</td>
<td>12.0</td>
<td>24.0</td>
<td>Q1</td>
</tr>
<tr>
<td>SN74ALVC164245DLR</td>
<td>SSOP</td>
<td>DL</td>
<td>48</td>
<td>1000</td>
<td>330.0</td>
<td>32.4</td>
<td>11.35</td>
<td>16.2</td>
<td>3.1</td>
<td>16.0</td>
<td>32.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>

All dimensions are nominal.

NOTES:

- A0 Dimension designed to accommodate the component width
- B0 Dimension designed to accommodate the component length
- K0 Dimension designed to accommodate the component thickness
- W Overall width of the carrier tape
- P1 Pitch between successive cavity centers

Pack Materials-Page 1
Tape and Reel Box Dimensions

All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>74ALVC164245ZQLR</td>
<td>BGA MICROSTAR JUNIOR</td>
<td>ZQL</td>
<td>56</td>
<td>1000</td>
<td>350.0</td>
<td>350.0</td>
<td>43.0</td>
</tr>
<tr>
<td>74ALVC164245ZRDR</td>
<td>BGA MICROSTAR JUNIOR</td>
<td>ZRD</td>
<td>54</td>
<td>1000</td>
<td>350.0</td>
<td>350.0</td>
<td>43.0</td>
</tr>
<tr>
<td>SN74ALVC164245DGGR</td>
<td>TSSOP</td>
<td>DGG</td>
<td>48</td>
<td>2000</td>
<td>367.0</td>
<td>367.0</td>
<td>45.0</td>
</tr>
<tr>
<td>SN74ALVC164245DLR</td>
<td>SSOP</td>
<td>DL</td>
<td>48</td>
<td>1000</td>
<td>367.0</td>
<td>367.0</td>
<td>55.0</td>
</tr>
</tbody>
</table>
DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold protrusion not to exceed 0,15.
D. Falls within JEDEC MO-153
NOTES:
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. No metal in this area, indicates orientation.
NOTES: (continued)

4. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For information, see Texas Instruments literature number SPRAA99 (www.ti.com/lit/spraa99).
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.
ZRD (R-PBGA-N54) PLASTIC BALL GRID ARRAY

NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Falls within JEDEC MO-203 variation DD.
D. This package is lead-free. Refer to the 54 GRD package (drawing 4204759) for tin-lead (SnPb).

4204760/B 06/04
NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0.15).
D. Falls within JEDEC MO-118

PowerPAD is a trademark of Texas Instruments.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2020, Texas Instruments Incorporated