FEATURES

- Output Voltage Translation Tracks V_{CC}
- Supports Mixed-Mode Signal Operation on All Data I/O Ports
 - 5-V Input Down to 3.3-V Output Level Shift With 3.3-V V_{CC}
 - 5-V/3.3-V Input Down to 2.5-V Output Level Shift With 2.5-V V_{CC}
- 5-V Tolerant I/Os With Device Powered Up or Powered Down
- Bidirectional Data Flow With Near-Zero Propagation Delay
- Low ON-State Resistance (r_{on}) Characteristics ($r_{on} = 5 \ \Omega \ \text{Typ}$)
- Low Input/Output Capacitance Minimizes Loading ($C_{i0(off)} = 5 \ \text{pF Typ}$)
- Data and Control Inputs Provide Undershoot Clamp Diodes
- Low Power Consumption ($I_{CC} = 20 \ \mu A \ \text{Max}$)
- V_{CC} Operating Range From 2.3 V to 3.6 V
- Data I/Os Support 0- to 5-V Signaling Levels (0.8 V, 1.2 V, 1.5 V, 1.8 V, 2.5 V, 3.3 V, 5 V)
- Control Inputs Can Be Driven by TTL or 5-V/3.3-V CMOS Outputs
- I_{off} Supports Partial-Power-Down Mode Operation
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Performance Tested Per JESD 22
 - 2000-V Human-Body Model (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)
- Supports Digital Applications: Level Translation, USB Interface, Memory Interleaving, Bus Isolation
- Ideal for Low-Power Portable Equipment

DESCRIPTION/ORDERING INFORMATION

The SN74CB3T3253 is a high-speed TTL-compatible FET multiplexer/demultiplexer with low ON-state resistance (r_{on}), allowing for minimal propagation delay. The device fully supports mixed-mode signal operation on all data I/O ports by providing voltage translation that tracks V_{CC}. The SN74CB3T3253 supports systems using 5-V TTL, 3.3-V LVTTL, and 2.5-V CMOS switching standards, as well as user-defined switching levels (see Figure 1).

The SN74CB3T3253 is organized as two 1-of-4 multiplexer/demultiplexers with separate output-enable (1OE, 2OE) inputs. The select (S0, S1) inputs control the data path of each multiplexer/demultiplexer. When OE is low, the associated multiplexer/demultiplexer is ON, and the A port is connected to the B port, allowing bidirectional data flow between ports. When OE is high, the associated multiplexer/demultiplexer is OFF, and a high-impedance state exists between the A and B ports.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} feature ensures that damaging current will not backflow through the device when it is powered down. The device has isolation during power off.

To ensure the high-impedance state during power up or power down, OE should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
NOTE A: If the input high voltage (\(V_{IH} \)) level is greater than or equal to \(V_{CC} - 1 \) V, and less than or equal to 5.5 V, then the output high voltage (\(V_{OH} \)) level will be equal to approximately the \(V_{CC} \) voltage level.

Figure 1. Typical DC Voltage-Translation Characteristics

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>(T_A)</th>
<th>PACKAGE(1)</th>
<th>ORDERABLE PART NUMBER</th>
<th>TOP-SIDE MARKING</th>
</tr>
</thead>
<tbody>
<tr>
<td>-40°C to 85°C</td>
<td>SOIC – D</td>
<td>Tube</td>
<td>SN74CB3T3253D</td>
</tr>
<tr>
<td></td>
<td>Tape and reel</td>
<td>SN74CB3T3253DR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SSOP (QSO) – DBQ</td>
<td>Tape and reel</td>
<td>SN74CB3T3253DBQR</td>
</tr>
<tr>
<td></td>
<td>TSSOP – PW</td>
<td>Tube</td>
<td>SN74CB3T3253PW</td>
</tr>
<tr>
<td></td>
<td>Tape and reel</td>
<td>SN74CB3T3253PWR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TVSOP – DGV</td>
<td>Tape and reel</td>
<td>SN74CB3T3253DGVR</td>
</tr>
</tbody>
</table>

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLE

EACH MULTIPLEXER/DEMULTIPLEXER

<table>
<thead>
<tr>
<th>INPUTS</th>
<th>INPUT/OUTPUT A</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>OE S1 S0</td>
<td>B1</td>
<td>A port = B1 port</td>
</tr>
<tr>
<td>L L L</td>
<td>B2</td>
<td>A port = B2 port</td>
</tr>
<tr>
<td>L L H</td>
<td>B3</td>
<td>A port = B3 port</td>
</tr>
<tr>
<td>L H L</td>
<td>B4</td>
<td>A port = B4 port</td>
</tr>
<tr>
<td>L H H</td>
<td>Z</td>
<td>Disconnect</td>
</tr>
<tr>
<td>H X X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SCDS148—OCTOBER 2003—REVISED JUNE 2005

www.ti.com
(1) Gate voltage (V_G) is approximately equal to $V_{CC} + V_T$ when the switch is ON and $V_I > V_{CC} + V_T$.

(2) EN is the internal enable signal applied to the switch.
Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CC} Supply voltage range $^{(2)}$</td>
<td>-0.5</td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td>V_{IN} Control input voltage range $^{(2)(3)}$</td>
<td>-0.5</td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td>I_{IO} Switch I/O voltage range $^{(2)(3)(4)}$</td>
<td>-0.5</td>
<td>7</td>
<td>mA</td>
</tr>
<tr>
<td>I_{IK} Control input clamp current</td>
<td>$V_{IN} < 0$</td>
<td>-50</td>
<td>mA</td>
</tr>
<tr>
<td>I_{IOK} I/O port clamp current</td>
<td>$V_{IO} < 0$</td>
<td>-50</td>
<td>mA</td>
</tr>
<tr>
<td>I_{IO} ON-state switch current $^{(5)}$</td>
<td>$±128$</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Continuous current through V_{CC} or GND</td>
<td>$±100$</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>θJA Package thermal impedance $^{(6)}$</td>
<td>D package</td>
<td>73</td>
<td>°C/W</td>
</tr>
<tr>
<td></td>
<td>DBQ package</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DGV package</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PW package</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>T_{stg} Storage temperature range</td>
<td>-65</td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

$^{(1)}$ Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

$^{(2)}$ All voltages are with respect to ground, unless otherwise specified.

$^{(3)}$ The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

$^{(4)}$ V_I and V_O are used to denote specific conditions for V_{IO}.

$^{(5)}$ I_I and I_O are used to denote specific conditions for I_{IO}.

$^{(6)}$ The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CC} Supply voltage</td>
<td>2.3</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>V_{IH} High-level control input voltage</td>
<td>$V_{CC} = 2.3$ V to 2.7 V</td>
<td>1.7</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>$V_{CC} = 2.7$ V to 3.6 V</td>
<td>2</td>
<td>5.5</td>
</tr>
<tr>
<td>V_{IL} Low-level control input voltage</td>
<td>$V_{CC} = 2.3$ V to 2.7 V</td>
<td>0</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>$V_{CC} = 2.7$ V to 3.6 V</td>
<td>0</td>
<td>0.8</td>
</tr>
<tr>
<td>V_{IO} Data input/output voltage</td>
<td>0</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>T_A Operating free-air temperature</td>
<td>-40</td>
<td>85</td>
<td>°C</td>
</tr>
</tbody>
</table>

$^{(1)}$ All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.
Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP (2)</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{IL})</td>
<td>(V_{CC} = 3 , V, , I_{I} = -18 , mA)</td>
<td></td>
<td>-1.2</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(V_{OH})</td>
<td>See Figure 3 and Figure 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{IN})</td>
<td>Control inputs (V_{CC} = 3.6 , V, , V_{IN} = 3.6 , V) to 5.5 V or GND</td>
<td></td>
<td>±10</td>
<td>±10</td>
<td>µA</td>
</tr>
<tr>
<td>(I_{I})</td>
<td>(V_{CC} = 3.6 , V, , V_{I} = 0) to 5.5 V, (V_{I} = 0), Switch OFF, (V_{IN} = V_{CC}) or GND</td>
<td>(V_{I} = V_{CC} - 0.7) V to 5.5 V</td>
<td>±20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{IO})</td>
<td>(V_{CC} = 3.6 , V, , V_{I} = 0), (V_{I} = 0), Switch OFF, (V_{IN} = V_{CC}) or GND</td>
<td></td>
<td>±5</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>(I_{OFF})</td>
<td>(V_{CC} = 0), (V_{O} = 0) to 5.5 V, (V_{I} = 0)</td>
<td></td>
<td>10</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>(I_{CC})</td>
<td>(V_{CC} = 3.6 , V, , I_{IO} = 0), Switch ON or OFF, (V_{IN} = V_{CC}) or GND</td>
<td>(V_{I} = V_{CC}) or GND</td>
<td>20</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>(\Delta I_{CC})</td>
<td>Control inputs (V_{CC} = 3) to 3.6 V. One input at (V_{CC}) = 0.6 V, Other inputs at (V_{CC}) or GND</td>
<td></td>
<td>300</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>(C_{in})</td>
<td>Control inputs (V_{CC} = 3.3 , V, , V_{IN} = V_{CC}) or GND</td>
<td></td>
<td>3</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>(C_{io(OFF)})</td>
<td>A port (V_{CC} = 3.3 , V, , V_{IO} = 5.5 , V, , 3.3 , V), or GND, Switch OFF, (V_{IN} = V_{CC}) or GND</td>
<td></td>
<td>12</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>(C_{io(OH)})</td>
<td>A port (V_{CC} = 3.3 , V, , V_{IO} = 5.5 , V, , 3.3 , V), or GND, Switch OFF, (V_{IN} = V_{CC}) or GND</td>
<td></td>
<td>5</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>(t_{on})</td>
<td>(V_{CC} = 2.3 , V), TYP at (V_{CC} = 2.5 , V, , V_{I} = 0)</td>
<td>(I_{O} = 24 , mA)</td>
<td>5</td>
<td>8</td>
<td>(\Omega)</td>
</tr>
<tr>
<td>(t_{off})</td>
<td>(V_{CC} = 3 , V, , V_{I} = 0)</td>
<td>(I_{O} = 64 , mA)</td>
<td>5</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>(t_{on})</td>
<td>(V_{CC} = 3 , V, , V_{I} = 0)</td>
<td>(I_{O} = 32 , mA)</td>
<td>5</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

(1) \(V_{IN} \) and \(I_{IN} \) refer to control inputs, \(V_{I} \), \(V_{O} \), \(I_{I} \), and \(I_{O} \) refer to data pins.
(2) All typical values are at \(V_{CC} = 3.3 \, V \) (unless otherwise noted), \(T_{A} = 25^\circ C \).
(3) For I/O ports, the parameter \(I_{IO} \) includes the input leakage current.
(4) This is the increase in supply current for each input that is at the specified TTL voltage level, rather than \(V_{CC} \) or GND.
(5) Measured by the voltage drop between A and B terminals at the indicated current through the switch. ON-state resistance is determined by the lower of the voltages of the two (A or B) terminals.

Switching Characteristics

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 2)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>FROM (INPUT)</th>
<th>TO (OUTPUT)</th>
<th>(V_{CC} = 2.5 , V \pm 0.2 , V)</th>
<th>(V_{CC} = 3.3 , V \pm 0.3 , V)</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{pd})</td>
<td>A or B</td>
<td>B or A</td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td>(t_{pd(s)})</td>
<td>S</td>
<td>A</td>
<td>1</td>
<td>10.5</td>
<td>1</td>
</tr>
<tr>
<td>(t_{en})</td>
<td>S</td>
<td>B</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>(t_{dis})</td>
<td>S</td>
<td>B</td>
<td>1</td>
<td>7.5</td>
<td>1</td>
</tr>
<tr>
<td>(t_{pd})</td>
<td>(\overline{O}E)</td>
<td>A or B</td>
<td>1</td>
<td>6.5</td>
<td>1</td>
</tr>
</tbody>
</table>

(1) The propagation delay is the calculated RC time constant of the typical ON-state resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance).
PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

- **Input Generator**
 - V_{G1}
 - $50 \, \Omega$
 - V_{G2}
 - $50 \, \Omega$

- **DUT**
 - V_{CC}
 - V_{IN}

- **Output Control**
 - (V_{IN})

- **Output Waveform 1**
 - $S1$ at $2 \times V_{CC}$

- **Output Waveform 2**
 - $S1$ at Open

- **Voltage Waveforms**
 - Propagation delay times ($t_{pd(s)}$)
 - Enable and disable times

NOTES:

A. C_L includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.

C. All input pulses are supplied by generators having the following characteristics: $PRR \leq 10 \, MHz$, $Z_O = 50 \, \Omega$, $t_r \leq 2.5 \, ns$, $t_f \leq 2.5 \, ns$.

D. The outputs are measured one at a time, with one transition per measurement.

E. t_{PLZ} and t_{PHZ} are the same as t_{dis}. t_{PZL} and t_{PZH} are the same as t_{en}.

F. t_{PLH} and t_{PHL} are the same as $t_{pd(s)}$. The t_{pd} propagation delay is the calculated RC time constant of the typical ON-state resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance).

G. All parameters and waveforms are not applicable to all devices.

Figure 2. Test Circuit and Voltage Waveforms
TYPICAL CHARACTERISTICS

OUTPUT VOLTAGE
vs
INPUT VOLTAGE

Figure 3. Data Output Voltage vs Data Input Voltage
SN74CB3T3253
DUAL 1-OF-4 FET MULTIPLEXER/DEMULTIPLEXER
2.5-V/3.3-V LOW-VOLTAGE BUS SWITCH WITH 5-V TOLERANT LEVEL SHIFTER

SCDS148—OCTOBER 2003—REVISED JUNE 2005

TYPICAL CHARACTERISTICS

OUTPUT VOLTAGE HIGH
vs
SUPPLY VOLTAGE

V_{CC} = 2.3 \text{ V to } 3.6 \text{ V}
V_I = 5.5 \text{ V}
T_A = 85^\circ \text{C}

100 \mu A
8 mA
16 mA
24 mA

OUTPUT VOLTAGE HIGH
vs
SUPPLY VOLTAGE

V_{CC} = 2.3 \text{ V to } 3.6 \text{ V}
V_I = 5.5 \text{ V}
T_A = 25^\circ \text{C}

100 \mu A
8 mA
16 mA
24 mA

OUTPUT VOLTAGE HIGH
vs
SUPPLY VOLTAGE

V_{CC} = 2.3 \text{ V to } 3.6 \text{ V}
V_I = 5.5 \text{ V}
T_A = -40^\circ \text{C}

100 \mu A
8 mA
16 mA
24 mA

Figure 4. \(V_{OH} \) Values
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN74CB3T3253D</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>16</td>
<td>40</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>CB3T3253</td>
<td></td>
</tr>
<tr>
<td>SN74CB3T3253DBQR</td>
<td>ACTIVE</td>
<td>SSOP</td>
<td>DBQ</td>
<td>16</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 85</td>
<td>KS253</td>
<td></td>
</tr>
<tr>
<td>SN74CB3T3253DGVR</td>
<td>ACTIVE</td>
<td>TVSOP</td>
<td>DGV</td>
<td>16</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>KS253</td>
<td></td>
</tr>
<tr>
<td>SN74CB3T3253DR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>16</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>CB3T3253</td>
<td></td>
</tr>
<tr>
<td>SN74CB3T3253PW</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>16</td>
<td>90</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>KS253</td>
<td></td>
</tr>
<tr>
<td>SN74CB3T3253PWR</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>16</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>KS253</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN74CB3T3253DBQR</td>
<td>SSOP</td>
<td>DBQ</td>
<td>16</td>
<td>2500</td>
<td>330.0</td>
<td>12.5</td>
<td>6.4</td>
<td>5.2</td>
<td>2.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>SN74CB3T3253DGVR</td>
<td>TVSOP</td>
<td>DGV</td>
<td>16</td>
<td>2000</td>
<td>330.0</td>
<td>12.4</td>
<td>6.8</td>
<td>4.0</td>
<td>1.6</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>SN74CB3T3253DR</td>
<td>SOIC</td>
<td>D</td>
<td>16</td>
<td>2500</td>
<td>330.0</td>
<td>16.4</td>
<td>6.5</td>
<td>10.3</td>
<td>2.1</td>
<td>8.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
<tr>
<td>SN74CB3T3253PWR</td>
<td>TSSOP</td>
<td>PW</td>
<td>16</td>
<td>2000</td>
<td>330.0</td>
<td>12.4</td>
<td>6.9</td>
<td>5.6</td>
<td>1.6</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>

All dimensions are nominal.
TAPE AND REEL BOX DIMENSIONS

All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN74CB3T3253DBQR</td>
<td>SSOP</td>
<td>DBQ</td>
<td>16</td>
<td>2500</td>
<td>340.5</td>
<td>338.1</td>
<td>20.6</td>
</tr>
<tr>
<td>SN74CB3T3253DGVR</td>
<td>TVSOP</td>
<td>DGV</td>
<td>16</td>
<td>2000</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
<tr>
<td>SN74CB3T3253DR</td>
<td>SOIC</td>
<td>D</td>
<td>16</td>
<td>2500</td>
<td>333.2</td>
<td>345.9</td>
<td>28.6</td>
</tr>
<tr>
<td>SN74CB3T3253PWR</td>
<td>TSSOP</td>
<td>PW</td>
<td>16</td>
<td>2000</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>
NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

⚠️ Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0.15) each side.
⚠️ Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0.43) each side.
E. Reference JEDEC MS-012 variation AC.
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-153.
NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.
MECHANICAL DATA

DGV (R-PDSO-G**)
24 PINS SHOWN

NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.15 per side.
D. Falls within JEDEC: 24/48 Pins – MO-153
14/16/20/56 Pins – MO-194
Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.
NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 inch, per side.
4. This dimension does not include interlead flash.
5. Reference JEDEC registration MO-137, variation AB.
NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated