1 Features

- AEC-Q100 Qualified for automotive applications:
 - Device temperature grade 1: -40°C to +125°C, T_A
 - Device HBM ESD Classification Level 2
 - Device CDM ESD Classification Level C6
- Available in wettable flank QFN (WRKS) package
- Wide operating voltage range: 2 V to 6 V
- Schmitt-trigger inputs allow for slow or noisy input signals
- Low power consumption
 - Typical I_{CC} of 100 nA
 - Typical input leakage current of ±100 nA
- ±7.8-mA output drive at 6 V

2 Applications

- Enable or disable a digital signal
- Eliminate slow or noisy input signals
- Hold a signal during controller reset
- Debounce a switch

3 Description

This device contains eight independent inverting line drivers with 3-state outputs and Schmitt-trigger inputs. Each channel performs the Boolean function $Y = \overline{A}$ in positive logic. The channels are grouped in sets of four, with one \overline{OE} pin controlling each set. The outputs can be put into a hi-Z state by applying a high on the associated \overline{OE} pin.

Device Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN74HCS240PW-Q1</td>
<td>TSSOP (20)</td>
<td>6.50 mm × 4.40 mm</td>
</tr>
<tr>
<td>SN74HCS240WRKS-Q1</td>
<td>VQFN (20)</td>
<td>4.50 mm × 2.50 mm</td>
</tr>
</tbody>
</table>

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Benefits of Schmitt-Trigger Inputs

- Low Power Noise Rejection Supports Slow Inputs
- Supports Slow Inputs

Input Voltage

Supply Current

Output Voltage

Response Waveforms

Benefits of Schmitt-Trigger Inputs

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. ADVANCE INFORMATION for preproduction products; subject to change without notice.
Table of Contents

1 Features ... 1
2 Applications .. 1
3 Description ... 1
4 Revision History ... 2
5 Pin Configuration and Functions 3
6 Specifications .. 4
 6.1 Absolute Maximum Ratings 4
 6.2 ESD Ratings ... 4
 6.3 Recommended Operating Conditions 4
 6.4 Thermal Information .. 4
 6.5 Electrical Characteristics 5
 6.6 Switching Characteristics 5
 6.7 Operating Characteristics 5
 6.8 Typical Characteristics .. 6
7 Parameter Measurement Information 7
8 Detailed Description .. 8
 8.1 Overview .. 8
 8.2 Functional Block Diagram 8
 8.3 Feature Description .. 8
 8.4 Device Functional Modes 10
9 Application and Implementation 11
 9.1 Application Information 11
 9.2 Typical Application ... 11
10 Power Supply Recommendations 13
11 Layout ... 14
 11.1 Layout Guidelines ... 14
 11.2 Layout Example ... 14
12 Device and Documentation Support 15
 12.1 Documentation Support 15
 12.2 Receiving Notification of Documentation Updates 15
 12.3 Support Resources .. 15
 12.4 Trademarks ... 15
 12.5 Electrostatic Discharge Caution 15
 12.6 Glossary .. 15
13 Mechanical, Packaging, and Orderable Information 15
 13.1 Tape and Reel Information 16

4 Revision History

<table>
<thead>
<tr>
<th>DATE</th>
<th>REVISION</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>November 2021</td>
<td>*</td>
<td>Initial Release</td>
</tr>
</tbody>
</table>
5 Pin Configuration and Functions

Table 5-1. Pin Functions

<table>
<thead>
<tr>
<th>PIN</th>
<th>TYPE(1)</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1OE</td>
<td>I</td>
<td>Bank 1, output enable, active low</td>
</tr>
<tr>
<td>1A1</td>
<td>I</td>
<td>Bank 1, channel 1 input</td>
</tr>
<tr>
<td>2Y4</td>
<td>O</td>
<td>Bank 2, channel 4 output</td>
</tr>
<tr>
<td>1A2</td>
<td>I</td>
<td>Bank 1, channel 2 input</td>
</tr>
<tr>
<td>2Y3</td>
<td>O</td>
<td>Bank 2, channel 3 output</td>
</tr>
<tr>
<td>1A3</td>
<td>I</td>
<td>Bank 1, channel 3 input</td>
</tr>
<tr>
<td>2Y2</td>
<td>O</td>
<td>Bank 2, channel 2 output</td>
</tr>
<tr>
<td>1A4</td>
<td>I</td>
<td>Bank 1, channel 4 input</td>
</tr>
<tr>
<td>2Y1</td>
<td>O</td>
<td>Bank 2, channel 1 output</td>
</tr>
<tr>
<td>GND</td>
<td>—</td>
<td>Ground</td>
</tr>
<tr>
<td>2A1</td>
<td>I</td>
<td>Bank 2, channel 1 input</td>
</tr>
<tr>
<td>1Y4</td>
<td>O</td>
<td>Bank 1, channel 4 output</td>
</tr>
<tr>
<td>2A2</td>
<td>I</td>
<td>Bank 2, channel 2 input</td>
</tr>
<tr>
<td>1Y3</td>
<td>O</td>
<td>Bank 1, channel 3 output</td>
</tr>
<tr>
<td>2A3</td>
<td>I</td>
<td>Bank 2, channel 3 input</td>
</tr>
<tr>
<td>1Y2</td>
<td>O</td>
<td>Bank 1, channel 2 output</td>
</tr>
<tr>
<td>2A4</td>
<td>I</td>
<td>Bank 2, channel 4 input</td>
</tr>
<tr>
<td>1Y1</td>
<td>O</td>
<td>Bank 1, channel 1 output</td>
</tr>
<tr>
<td>2OE</td>
<td>I</td>
<td>Bank 2, output enable, active low</td>
</tr>
<tr>
<td>VCC</td>
<td>—</td>
<td>Positive supply</td>
</tr>
<tr>
<td>Thermal Pad(2)</td>
<td>—</td>
<td>The thermal pad can be connected to GND or left floating. Do not connect to any other signal or supply.</td>
</tr>
</tbody>
</table>

(1) Signal Types: I = Input, O = Output, I/O = Input or Output.

(2) WRKS package only.

Figure 5-1. PW Package 20-Pin TSSOP Top View

Figure 5-2. WRKS Package 20-Pin VQFN Top View
6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)\(^{(1)}\)

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{CC})</td>
<td>–0.5</td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td>(I_{IK})</td>
<td></td>
<td>±20</td>
<td>mA</td>
</tr>
<tr>
<td>(I_{OK})</td>
<td></td>
<td>±20</td>
<td>mA</td>
</tr>
<tr>
<td>(I_{O})</td>
<td></td>
<td>±35</td>
<td>mA</td>
</tr>
<tr>
<td>(I_{CC})</td>
<td></td>
<td>±70</td>
<td>mA</td>
</tr>
<tr>
<td>(T_{J})</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>(T_{stg})</td>
<td>–65</td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute maximum ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If briefly operating outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not sustain damage, but it may not be fully functional. Operating the device in this manner may affect device reliability, functionality, performance, and shorten the device lifetime.

(2) The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

(3) Assured by design.

6.2 ESD Ratings

<table>
<thead>
<tr>
<th></th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{(ESD)}) Electrostatic discharge</td>
<td>(±4000)</td>
<td>V</td>
</tr>
<tr>
<td>(V_{(ESD)}) Electrostatic discharge</td>
<td>(±1000)</td>
<td>V</td>
</tr>
</tbody>
</table>

(1) AEC Q100-002 indicate that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{CC})</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>V</td>
</tr>
<tr>
<td>(V_{I})</td>
<td>0</td>
<td></td>
<td>(V_{CC})</td>
<td>V</td>
</tr>
<tr>
<td>(V_{O})</td>
<td>0</td>
<td></td>
<td>(V_{CC})</td>
<td>V</td>
</tr>
<tr>
<td>(T_{A})</td>
<td>–40</td>
<td></td>
<td>125</td>
<td>°C</td>
</tr>
</tbody>
</table>

6.4 Thermal Information

<table>
<thead>
<tr>
<th>THERMAL METRIC(^{(1)})</th>
<th>SN74HCS240-Q1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WRKS (VQFN)</td>
</tr>
<tr>
<td></td>
<td>20 PINS</td>
</tr>
<tr>
<td>(R_{\theta JA})</td>
<td>83.2</td>
</tr>
<tr>
<td>(R_{\theta JC(top)})</td>
<td>82.6</td>
</tr>
<tr>
<td>(R_{\theta JB})</td>
<td>57.4</td>
</tr>
<tr>
<td>(\Psi_{JT})</td>
<td>14.5</td>
</tr>
<tr>
<td>(\Psi_{JB})</td>
<td>56.4</td>
</tr>
<tr>
<td>(R_{\theta JC(bot)})</td>
<td>40.0</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.
6.5 Electrical Characteristics
over operating free-air temperature range; typical values measured at $T_A = 25^\circ$C (unless otherwise noted).

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>V_{CC}</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{T+} Positive switching threshold</td>
<td>2 V</td>
<td>0.7</td>
<td>1.5</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.5 V</td>
<td>1.7</td>
<td>3.15</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 V</td>
<td>2.1</td>
<td>4.2</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{T-} Negative switching threshold</td>
<td>2 V</td>
<td>0.3</td>
<td>1</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.5 V</td>
<td>0.9</td>
<td>2.2</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 V</td>
<td>1.2</td>
<td>3</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔV_T Hysteresis (V_{T+} - V_{T-})</td>
<td>2 V</td>
<td>0.2</td>
<td>1</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.5 V</td>
<td>0.4</td>
<td>1.4</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 V</td>
<td>0.6</td>
<td>1.6</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OH} High-level output voltage</td>
<td>$V_I = V_{IH} \text{ or } V_{IL}$</td>
<td>$I_{OH} = -20 \mu A$</td>
<td>$V_{CC} - 0.1$</td>
<td>$V_{CC} - 0.002$</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_I = V_{IH}$ or V_{IL}</td>
<td>$I_{OH} = -6 \mu A$</td>
<td>4</td>
<td>4.3</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_I = V_{IH}$ or V_{IL}</td>
<td>$I_{OH} = -7.8 mA$</td>
<td>5.4</td>
<td>5.75</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{OL} Low-level output voltage</td>
<td>$V_I = V_{IH} \text{ or } V_{IL}$</td>
<td>$I_{OL} = 20 \mu A$</td>
<td>2 V to 6 V</td>
<td>0.002</td>
<td>0.1 V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_I = V_{IH}$ or V_{IL}</td>
<td>$I_{OL} = 6 \mu A$</td>
<td>4.5 V</td>
<td>0.18</td>
<td>0.3 V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_I = V_{IH}$ or V_{IL}</td>
<td>$I_{OL} = 7.8 mA$</td>
<td>6 V</td>
<td>0.22</td>
<td>0.33 V</td>
<td></td>
</tr>
<tr>
<td>I_I Input leakage current</td>
<td>$V_I = V_{CC} \text{ or } 0$</td>
<td>6 V</td>
<td>±100</td>
<td>±1000</td>
<td>nA</td>
<td></td>
</tr>
<tr>
<td>I_{OZ} Off-state (high-impedance state) output current</td>
<td>$V_O = V_{CC} \text{ or } 0$</td>
<td>6 V</td>
<td>±0.01</td>
<td>±2</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>I_{CC} Supply current</td>
<td>$V_I = V_{CC} \text{ or } 0, I_O = 0$</td>
<td>6 V</td>
<td>0.1</td>
<td>2</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>C_i Input capacitance</td>
<td>2 V to 6 V</td>
<td>5</td>
<td>pF</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.6 Switching Characteristics
over operating free-air temperature range; typical values measured at $T_A = 25^\circ$C (unless otherwise noted). See Parameter Measurement Information. $C_L = 50 \text{ pF}$.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>FROM (INPUT)</th>
<th>TO (OUTPUT)</th>
<th>V_{CC}</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{pd} Propagation delay</td>
<td>A</td>
<td>Y</td>
<td>2 V</td>
<td>13</td>
<td>45</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.5 V</td>
<td>7</td>
<td>18</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6 V</td>
<td>6</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{en} Enable time</td>
<td>OE</td>
<td>Y</td>
<td>2 V</td>
<td>15</td>
<td>44</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.5 V</td>
<td>7</td>
<td>22</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6 V</td>
<td>6</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{dis} Disable time</td>
<td>OE</td>
<td>Y</td>
<td>2 V</td>
<td>12</td>
<td>30</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.5 V</td>
<td>9</td>
<td>20</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6 V</td>
<td>8</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_t Transition-time</td>
<td>Any</td>
<td>2 V</td>
<td>9</td>
<td>16</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.5 V</td>
<td>5</td>
<td>9</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6 V</td>
<td>4</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.7 Operating Characteristics
over operating free-air temperature range; typical values measured at $T_A = 25^\circ$C (unless otherwise noted).

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{pd} Power dissipation capacitance per gate</td>
<td>No load</td>
<td>20</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
</tbody>
</table>

Copyright © 2021 Texas Instruments Incorporated

Submit Document Feedback
6.8 Typical Characteristics

$T_A = 25^\circ C$

Figure 6-1. Output Driver Resistance in LOW State

Figure 6-2. Output Driver Resistance in HIGH State

Figure 6-3. Supply Current Across Input Voltage, 2-, 2.5-, and 3.3-V Supply

Figure 6-4. Supply Current Across Input Voltage, 4.5-, 5-, and 6-V Supply
7 Parameter Measurement Information

Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR ≤ 1 MHz, \(Z_O = 50 \Omega \), \(t_d < 2.5 \text{ ns} \).

For clock inputs, \(f_{\text{max}} \) is measured when the input duty cycle is 50%.

The outputs are measured one at a time with one input transition per measurement.

(1) \(C_L \) includes probe and test-fixture capacitance.

Figure 7-1. Load Circuit for 3-State Outputs

Figure 7-2. Voltage Waveforms Propagation Delays

Figure 7-3. Voltage Waveforms Propagation Delays

Figure 7-4. Voltage Waveforms, Input and Output Transition Times
8 Detailed Description

8.1 Overview
The SN74HCS240-Q1 contains 8 individual high speed CMOS inverters with Schmitt-trigger inputs and 3-state outputs.

Each inverter performs the boolean logic function $xY_n = x\overline{A_n}$, with x being the bank number and n being the channel number.

Each output enable ($x\overline{OE}$) controls four inverters. When the $x\overline{OE}$ pin is in the low state, the outputs of all inverters in the bank x are enabled. When the $x\overline{OE}$ pin is in the high state, the outputs of all inverters in the bank x are disabled. All disabled output are placed into the high-impedance state.

To ensure the high-impedance state during power up or power down, both \overline{OE} pins should be tied to V_{CC} through a pull-up resistor; the minimum value of the resistor is determined by the current sinking capability of the driver and the leakage of the pin as defined in the Electrical Characteristics table.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Balanced CMOS 3-State Outputs
This device includes balanced CMOS 3-State outputs. The three states that these outputs can be in are driving high, driving low, and high impedance. The term balanced indicates that the device can sink and source similar currents. The drive capability of this device may create fast edges into light loads so routing and load conditions should be considered to prevent ringing. Additionally, the outputs of this device are capable of driving larger currents than the device can sustain without being damaged. It is important for the output power of the device to be limited to avoid damage due to overcurrent. The electrical and thermal limits defined in the Absolute Maximum Ratings must be followed at all times.

When placed into the high-impedance mode, the output will neither source nor sink current, with the exception of minor leakage current as defined in the Electrical Characteristics table. In the high-impedance state, the output voltage is not controlled by the device and is dependent on external factors. If no other drivers are connected to the node, then this is known as a floating node and the voltage is unknown. A pull-up or pull-down resistor can be connected to the output to provide a known voltage at the output while it is in the high-impedance state. The value of the resistor will depend on multiple factors, including parasitic capacitance and power consumption limitations. Typically, a 10 kΩ resistor can be used to meet these requirements.

Unused 3-state CMOS outputs should be left disconnected.
8.3.2 CMOS Schmitt-Trigger Inputs

This device includes inputs with the Schmitt-trigger architecture. These inputs are high impedance and are typically modeled as a resistor in parallel with the input capacitance given in the Electrical Characteristics table from the input to ground. The worst case resistance is calculated with the maximum input voltage, given in the Absolute Maximum Ratings table, and the maximum input leakage current, given in the Electrical Characteristics table, using Ohm’s law (R = V ÷ I).

The Schmitt-trigger input architecture provides hysteresis as defined by ΔV_T in the Electrical Characteristics table, which makes this device extremely tolerant to slow or noisy inputs. While the inputs can be driven much slower than standard CMOS inputs, it is still recommended to properly terminate unused inputs. Driving the inputs with slow transitioning signals will increase dynamic current consumption of the device. For additional information regarding Schmitt-trigger inputs, please see Understanding Schmitt Triggers.

8.3.3 Clamp Diode Structure

The inputs and outputs to this device have both positive and negative clamping diodes as depicted in Figure 8-2.

CAUTION

Voltages beyond the values specified in the Absolute Maximum Ratings table can cause damage to the device. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

Figure 8-2. Electrical Placement of Clamping Diodes for Each Input and Output
8.3.4 Wettable Flanks

This device includes wettable flanks for at least one package. See the Features section on the front page of the data sheet for which packages include this feature.

![Figure 8-3. Simplified Cutaway View of Wettable-Flank QFN Package and Standard QFN Package After Soldering](image)

Wettable flanks help improve side wetting after soldering which makes QFN packages easier to inspect with automatic optical inspection (AOI). A wettable flank can be dimpled or step-cut to provide additional surface area for solder adhesion which assists in reliably creating a side fillet as shown in Figure 8-3. Please see the mechanical drawing for additional details.

8.4 Device Functional Modes

Table 8-1 lists the functional modes of the SN74HCS240-Q1.

<table>
<thead>
<tr>
<th>INPUTS(1)</th>
<th>OUTPUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>OE</td>
<td>A</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>X</td>
</tr>
</tbody>
</table>

(1) H = High Voltage Level, L = Low Voltage Level, X = Do Not Care, Z = High-Impedance State
9 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

9.1 Application Information

The SN74HCS240-Q1 can be used to drive signals over relatively long traces or transmission lines. In order to reduce ringing caused by impedance mismatches between the driver, transmission line, and receiver, a series damping resistor placed in series with the transmitter's output can be used. The plot in the Application Curve section shows the received signal with three separate resistor values. Just a small amount of resistance can make a significant impact on signal integrity in this type of application.

9.2 Typical Application

![Figure 9-1. Typical Application Block Diagram](image)

9.2.1 Design Requirements

9.2.1.1 Power Considerations

Ensure the desired supply voltage is within the range specified in the Recommended Operating Conditions. The supply voltage sets the device's electrical characteristics as described in the Electrical Characteristics.

The positive voltage supply must be capable of sourcing current equal to the total current to be sourced by all outputs of the SN74HCS240-Q1 plus the maximum static supply current, I_{CC}, listed in Electrical Characteristics and any transient current required for switching. The logic device can only source as much current as is provided by the positive supply source. Be sure not to exceed the maximum total current through V_{CC} listed in the Absolute Maximum Ratings.

The ground must be capable of sinking current equal to the total current to be sunk by all outputs of the SN74HCS240-Q1 plus the maximum supply current, I_{CC}, listed in Electrical Characteristics, and any transient current required for switching. The logic device can only sink as much current as can be sunk into its ground connection. Be sure not to exceed the maximum total current through GND listed in the Absolute Maximum Ratings.

The SN74HCS240-Q1 can drive a load with a total capacitance less than or equal to 50 pF while still meeting all of the data sheet specifications. Larger capacitive loads can be applied; however, it is not recommended to exceed 50 pF.

The SN74HCS240-Q1 can drive a load with total resistance described by $R_L \geq \frac{V_O}{I_O}$, with the output voltage and current defined in the Electrical Characteristics table with V_{OH} and V_{OL}. When outputting in the high state, the output voltage in the equation is defined as the difference between the measured output voltage and the supply voltage at the V_{CC} pin.
Total power consumption can be calculated using the information provided in CMOS Power Consumption and Cpd Calculation.

Thermal increase can be calculated using the information provided in Thermal Characteristics of Standard Linear and Logic (SLL) Packages and Devices.

CAUTION

The maximum junction temperature, $T_J^{(\text{max})}$ listed in the *Absolute Maximum Ratings*, is an additional limitation to prevent damage to the device. Do not violate any values listed in the *Absolute Maximum Ratings*. These limits are provided to prevent damage to the device.

9.2.1.2 Input Considerations

Input signals must cross $V_{\text{t}^-^{(\text{min})}}$ to be considered a logic LOW, and $V_{\text{t}^+^{(\text{max})}}$ to be considered a logic HIGH. Do not exceed the maximum input voltage range found in the *Absolute Maximum Ratings*.

Unused inputs must be terminated to either V_{CC} or ground. These can be directly terminated if the input is completely unused, or they can be connected with a pull-up or pull-down resistor if the input is to be used sometimes, but not always. A pull-up resistor is used for a default state of HIGH, and a pull-down resistor is used for a default state of LOW. The resistor size is limited by drive current of the controller, leakage current into the SN74HCS240-Q1, as specified in the *Electrical Characteristics*, and the desired input transition rate. A 10-kΩ resistor value is often used due to these factors.

The SN74HCS240-Q1 has no input signal transition rate requirements because it has Schmitt-trigger inputs.

Another benefit to having Schmitt-trigger inputs is the ability to reject noise. Noise with a large enough amplitude can still cause issues. To know how much noise is too much, please refer to the $\Delta V_{\text{T}^{(\text{min})}}$ in the *Electrical Characteristics*. This hysteresis value will provide the peak-to-peak limit.

Unlike what happens with standard CMOS inputs, Schmitt-trigger inputs can be held at any valid value without causing huge increases in power consumption. The typical additional current caused by holding an input at a value other than V_{CC} or ground is plotted in the *Typical Characteristics*.

Refer to the *Feature Description* section for additional information regarding the inputs for this device.

9.2.1.3 Output Considerations

The positive supply voltage is used to produce the output HIGH voltage. Drawing current from the output will decrease the output voltage as specified by the V_{OH} specification in the *Electrical Characteristics*. The ground voltage is used to produce the output LOW voltage. Sinking current into the output will increase the output voltage as specified by the V_{OL} specification in the *Electrical Characteristics*.

Push-pull outputs that could be in opposite states, even for a very short time period, should never be connected directly together. This can cause excessive current and damage to the device.

Two channels within the same device with the same input signals can be connected in parallel for additional output drive strength.

Unused outputs can be left floating. Do not connect outputs directly to V_{CC} or ground.

Refer to *Feature Description* section for additional information regarding the outputs for this device.
9.2.2 Detailed Design Procedure

1. Add a decoupling capacitor from V_{CC} to GND. The capacitor needs to be placed physically close to the device and electrically close to both the V_{CC} and GND pins. An example layout is shown in the Layout section.

2. Ensure the capacitive load at the output is ≤ 50 pF. This is not a hard limit, however it will ensure optimal performance. This can be accomplished by providing short, appropriately sized traces from the SN74HCS240-Q1 to one or more of the receiving devices.

3. Ensure the resistive load at the output is larger than $(V_{CC} / I_{O(max)})$ Ω. This will ensure that the maximum output current from the Absolute Maximum Ratings is not violated. Most CMOS inputs have a resistive load measured in MΩ; much larger than the minimum calculated above.

4. Thermal issues are rarely a concern for logic gates; the power consumption and thermal increase, however, can be calculated using the steps provided in the application report, CMOS Power Consumption and Cpd Calculation.

9.2.3 Application Curve

![Figure 9-2. Simulated Signal Integrity at the Receiver with Different Damping Resistor (R_d) Values](image)

10 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in the Recommended Operating Conditions. Each V_{CC} terminal should have a good bypass capacitor to prevent power disturbance. A 0.1-μF capacitor is recommended for this device. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. The 0.1-μF and 1-μF capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power terminal as possible for best results, as shown in the following layout example.
11 Layout

11.1 Layout Guidelines

When using multiple-input and multiple-channel logic devices inputs must not ever be left floating. In many cases, functions or parts of functions of digital logic devices are unused; for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such unused input pins must not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. All unused inputs of digital logic devices must be connected to a logic high or logic low voltage, as defined by the input voltage specifications, to prevent them from floating. The logic level that must be applied to any particular unused input depends on the function of the device. Generally, the inputs are tied to GND or V_{CC}, whichever makes more sense for the logic function or is more convenient.

11.2 Layout Example

![Diagram of Example Layout for the SN74HCS240-Q1 in the WRKS Package](image)

Figure 11-1. Example Layout for the SN74HCS240-Q1 in the WRKS Package
12 Device and Documentation Support

TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below.

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation, see the following:

- Texas Instruments, HCMOS Design Considerations application report
- Texas Instruments, CMOS Power Consumption and C_{pd} Calculation application report
- Texas Instruments, Designing With Logic application report

12.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on Subscribe to updates to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.3 Support Resources

TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

12.4 Trademarks

TI E2E™ is a trademark of Texas Instruments. All trademarks are the property of their respective owners.

12.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.6 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
13.1 Tape and Reel Information

REEL DIMENSIONS

- **Reel Diameter**
- **Reel Width (W1)**

TAPE DIMENSIONS

- **K0** Dimension designed to accommodate the component thickness
- **B0** Dimension designed to accommodate the component length
- **A0** Dimension designed to accommodate the component width
- **W** Overall width of the carrier tape
- **P1** Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN74HCS240WRKS-Q1</td>
<td>VQFN</td>
<td>RKS</td>
<td>20</td>
<td>3000</td>
<td>180.0</td>
<td>12.4</td>
<td>2.8</td>
<td>4.8</td>
<td>1.2</td>
<td>4.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>SN74HCS240PW-Q1</td>
<td>TSSOP</td>
<td>PW</td>
<td>20</td>
<td>2000</td>
<td>330.0</td>
<td>16.4</td>
<td>6.95</td>
<td>7.00</td>
<td>1.40</td>
<td>8.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>
TAPE AND REEL BOX DIMENSIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN74HCS240WRKS-Q1</td>
<td>VQFN</td>
<td>RKS</td>
<td>20</td>
<td>3000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>SN74HCS240PW-Q1</td>
<td>TSSOP</td>
<td>PW</td>
<td>20</td>
<td>2000</td>
<td>367.0</td>
<td>449.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-153.
NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.
NOTES:
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.
EXAMPLE BOARD LAYOUT

RKS0020B VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

5. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown.
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
Packaging Information

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pcs</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead finish/Ball material</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSN74HCS240QPWRQ1</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>20</td>
<td>2000</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>-40 to 125</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) **RoHS**: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
- **RoHS Exempt**: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
- **Green**: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

Other Qualified Versions of SN74HCS240-Q1
• Catalog: SN74HCS240

NOTE: Qualified Version Definitions:

• Catalog - TI's standard catalog product
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-153.
NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.

TI’s products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated