• Separate Supply Voltage Pins for Isolation of Frequency Control Inputs and Oscillators from Output Circuitry

• Highly Stable Operation over Specified Temperature and/or Supply Voltage Ranges

<table>
<thead>
<tr>
<th>DEVICE TYPE</th>
<th>SIMILAR TO</th>
<th>NUMBER OF VCO'S</th>
<th>COMPL'</th>
<th>ENABLE</th>
<th>RANGE INPUT</th>
<th>V_{EXT}</th>
</tr>
</thead>
<tbody>
<tr>
<td>'LS624</td>
<td>'LS324</td>
<td>single</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>'LS625</td>
<td>'LS325</td>
<td>dual</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>'LS626</td>
<td>'LS326</td>
<td>dual</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>'LS627</td>
<td>'LS327</td>
<td>dual</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>'LS628</td>
<td>'LS324</td>
<td>single</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>'LS629</td>
<td>'LS124</td>
<td>dual</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>

description

These voltage-controlled oscillators (VCOs) are improved versions of the original VCO family: SN54LS124, SN54LS324 thru SN54LS327, SN74LS124, and SN74LS324 thru SN74LS327. These new devices feature improved voltage-to-frequency linearity, range, and compensation. With the exception of the 'LS624 and 'LS628, all of these devices feature two independent VCOs in a single monolithic chip. The 'LS624, 'LS625, 'LS626, and 'LS628 have complementary Z outputs. The output frequency for each VCO is established by a single external component (either a capacitor or crystal) in combination with voltage-sensitive inputs used for frequency control and frequency range. Each device has a voltage-sensitive input for frequency control; however, the 'LS624, 'LS628, and 'LS629 devices also have one for frequency range. (See Figures 1 thru 6).

The 'LS628 offers more precise temperature compensation than its 'LS624 counterpart. The 'LS624 features a 600 ohm internal timing resistor. The 'LS628 requires a timing resistor to be connected externally across V_{EXT} pins. Temperature compensation will be improved due to the temperature coefficient of the external resistor.

Figure 3 and Figure 6 contain the necessary information to choose the proper capacitor value to obtain the desired operating frequency.

A single 5-volt supply can be used: however, one set of supply voltage and ground pins (VCC and GND) is provided for the enable, synchronization-gating, and output sections, and a separate set (OSC VCC and OSC GND) is provided for the oscillator and associated frequency-control circuits so that effective isolation can be accomplished in the system. For operation of frequencies greater than 10 MHz, it is recommended that two independent supplies be used. Disabling either VCO of the 'LS625 and 'LS625 and 'LS627 can be achieved by removing the appropriate OSC VCC. An enable input is provided on the 'LS624, 'LS626, 'LS628, and 'LS629. When the enable input is low, the output is enabled: when the enable input is high, the internal oscillator is disabled, Y is high, and Z is low. Caution! Crosstalk may occur in the dual devices ('LS625, 'LS626, 'LS627 and 'LS629) when both VCOs are operated simultaneously. To minimize crosstalk, either of the following are recommended: (A) If frequencies are widely separated, use a 10-μh inductor between VCC pins. (B) If frequencies are closely spaced, use two separate VCC supplies or place two series diodes between the VCC pins.

The pulse-synchronization-gating section ensures that the first output pulse is neither clipped nor extended. The duty cycle of the square-wave output is fixed at approximately 50 percent.

The SN54LS624 thru SN54LS629 are characterized for operation over the full military temperature range of −55°C to 125°C. The SN74LS624 thru SN74LS629 are characterized for operation from 0°C to 70°C.
logic diagram (positive logic)

logic symbols\(^\dagger\)

\(^\dagger\)These symbols are in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12. Pin numbers shown are for D, J, N, and W packages.
schematics of inputs and outputs

Absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, \(V_{CC} \) (see Notes 1 and 2) .. 7 V
Input voltage: Enable input† .. 7 V
Frequency control or range input‡ \(V_{CC} \)
Operating free-air temperature range: SN54LS\(^{2}\) Circuits ... –55°C to 125°C
SN74LS\(^{2}\) Circuits ... 0°C to 70°C
Storage temperature range ... –65°C to 150°C

† The enable input is provided only on the ‘LS624, ‘LS626, ‘LS628, and ‘LS629.
‡ The range input is provided only on ‘LS624, ‘LS626, and ‘LS629.

NOTE:
1. Voltage values are with respect to the appropriate ground terminal.
2. Throughout the data sheet, the symbol \(V_{CC} \) is used for the voltage applied to both the \(V_{CC} \) and OSC \(V_{CC} \) terminals, unless otherwise noted.
recommended operating conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SN54LS'</th>
<th>SN74LS'</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage, V_{CC}</td>
<td>4.5 5 5.5</td>
<td>4.75 5 5.25</td>
<td>V</td>
</tr>
<tr>
<td>Input voltage at frequency control or range input, $V_{IL(freq)}$ or $V_{IL(rng)}$</td>
<td>0 5</td>
<td>0 5</td>
<td>V</td>
</tr>
<tr>
<td>High-level output current, I_{OH}</td>
<td>-1.2 -1.2</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Low-level output current, I_{OL}</td>
<td>12 24</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Output frequency, f_o</td>
<td>1 20</td>
<td>1 20</td>
<td>MHz</td>
</tr>
<tr>
<td>Operating free-air temperature, T_A</td>
<td>-55 125</td>
<td>0 70</td>
<td>°C</td>
</tr>
</tbody>
</table>

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>TEST CONDITIONS†</th>
<th>SN54LS'</th>
<th>SN74LS'</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IH} High-level input voltage at enable#</td>
<td>2</td>
<td>2</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{IL} Low-level input voltage at enable#</td>
<td>0.7 0.8</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{I} Input clamp voltage at enable#</td>
<td>$V_{CC} = \text{MIN}$, $I_{I} = -18 \text{ mA}$</td>
<td>-1.5</td>
<td>-1.5</td>
<td>V</td>
</tr>
<tr>
<td>V_{OH} High-level output voltage</td>
<td>$V_{CC} = \text{MIN}$, EN at V_{IL} max, $I_{OH} = -1.2 \text{ mA}$, See Note 3</td>
<td>2.5 3.4</td>
<td>2.7 3.4</td>
<td>V</td>
</tr>
<tr>
<td>V_{OL} Low-level output voltage</td>
<td>$V_{CC} = \text{MIN}$, EN at V_{IL} max, See Note 3</td>
<td>$I_{OL} = 12 \text{ mA}$</td>
<td>0.26 0.4</td>
<td>0.26 0.4</td>
</tr>
<tr>
<td>I_{I} Input current</td>
<td>Frequent control or range†</td>
<td>$V_{CC} = \text{MAX}$</td>
<td>$V_{I} = 5 \text{ V}$</td>
<td>50 250</td>
</tr>
<tr>
<td>I_{I} Input current at maximum input voltage</td>
<td>$V_{CC} = \text{MAX}$, $V_{I} = 7 \text{ V}$</td>
<td></td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>I_{IH} High-level input current</td>
<td>Enable#</td>
<td>$V_{CC} = \text{MAX}$, $V_{I} = 2.7 \text{ V}$</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>I_{IL} Low-level input current</td>
<td>Enable#</td>
<td>$V_{CC} = \text{MAX}$, $V_{I} = 0.4 \text{ V}$</td>
<td></td>
<td>-0.8</td>
</tr>
<tr>
<td>I_{OS} Short-circuit output current§</td>
<td>$V_{CC} = \text{MAX}$</td>
<td>-40 -225</td>
<td>-40 -225</td>
<td>mA</td>
</tr>
<tr>
<td>I_{CC} Supply current, total into V_{CC} and OSC V_{CC} pins</td>
<td>$V_{CC} = \text{MAX}$, Enable# = 4.5 V See Note 4</td>
<td>'LS624 20 35</td>
<td>20 35</td>
<td>mA</td>
</tr>
</tbody>
</table>

†For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
‡All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25\degree C$.
§Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.
†The range input is provided only on the 'LS624, 'LS628, and 'LS629.
#The enable input is provided only on the 'LS624, 'LS626, 'LS628, and 'LS629.

NOTES:
3. V_{OH} for Y outputs and V_{OL} for Z outputs are measured while enable inputs are at V_{IL} max, with individual 1-kΩ resistors connected from CX1 to V_{CC} and from CX2 to ground. The resistor connections are reversed for testing V_{OH} for Z outputs and V_{OL} for Y inputs.
4. For 'LS624, 'LS626, 'LS628, and 'LS629, I_{CC} is measured with the outputs disabled and open. For 'LS625 and 'LS627, I_{CC} is measured with one OSC $V_{CC} = \text{MAX}$, and with the other OSC V_{CC} and outputs open.
switching characteristics, \(V_{CC} = 5 \) V (unless otherwise noted), \(R_L = 667 \) \(\Omega \), \(C_L = 45 \) pF, \(T_A = 25 \) °C

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>('LS624, 'LS628, 'LS629)</th>
<th>('LS625, 'LS626, 'LS627)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_0)</td>
<td>Output frequency</td>
<td>(C_{ext} = 60) pF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V_I(freq) = 5) V, (V_I\text{(rng)} = 0) V</td>
<td>15 20 25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V_I(freq) = 1) V, (V_I\text{(rng)} = 5) V</td>
<td>1.1 1.6 2.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V_I(freq) = 5) V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V_I(freq) = 0) V</td>
<td>0.9 1.2 1.5</td>
<td></td>
</tr>
<tr>
<td>UNIT</td>
<td>MHz</td>
<td>MHz</td>
<td>MHz</td>
</tr>
</tbody>
</table>

TYPICAL CHARACTERISTICS

\('LS624, 'LS628, 'LS629\)

OUTPUT FREQUENCY

FIGURE 1

\(f_0 = \text{Output Frequency} - \) MHz

\(V_{CC} = 5 \) V

\(C_{ext} = 50 \) pF

\(R_{ext} = 600 \) \(\Omega \) (\'LS628\)

\(T_A = 25 \) °C

\(V_I(freq) \), \(V_I\text{(rng)} \) vs FREQUENCY-CONTROL INPUT VOLTAGE†

\(V_I(freq) \) = 0 V

\(V_I\text{(rng)} \) = 1 V

\(V_I\text{(rng)} \) = 2 V

\(V_I\text{(rng)} \) = 3 V

\(V_I\text{(rng)} \) = 4 V

\(V_I\text{(rng)} \) = 5 V

FIGURE 2

\(f_0 = \text{Output Frequency} - \) MHz

\(V_{CC} = 5 \) V

\(C_{ext} = 15 \) pF

\(R_{ext} = 600 \) \(\Omega \) (\'LS628\)

\(T_A = 25 \) °C

\(V_I(freq) \), \(V_I\text{(rng)} \) vs FREQUENCY-CONTROL INPUT VOLTAGE†

†Due to the effects of stray capacitance the output frequency may be unstable when the frequency control voltage is less than 1 volt.
TYPICAL CHARACTERISTICS

'LS624, 'LS628, 'LS629
OUTPUT FREQUENCY
vs
EXTERNAL CAPACITANCE

\[f_0 - \text{Output Frequency} - \text{Hz} \]
\[C_{\text{ext}} - \text{External Capacitance} - \text{F} \]

\[f_0 \sim \frac{1}{2\pi \sqrt{C_{\text{ext}} C_{\text{in}}} \cdot V_{\text{cc}}} \]

\[V_{\text{cc}} = 5 \text{ V} \]
\[T_A = 25^\circ \text{C} \]

\[V_{I(freq)} = 5 \text{ V} \]
\[V_{I(freq)} = 0 \text{ V} \]
\[V_{I(freq)} = 2.5 \text{ V} \]

FIGURE 3

'LS625, 'LS626, 'LS627
OUTPUT FREQUENCY
vs
FREQUENCY-CONTROL INPUT VOLTAGE

\[f_0 - \text{Output Frequency} - \text{MHz} \]
\[V_{I(freq)} - \text{Frequency-Control Input Voltage} - \text{V} \]

\[f_0 \sim \frac{1}{2\pi \sqrt{C_{\text{ext}} C_{\text{in}}} \cdot V_{\text{cc}}} \]

\[V_{\text{cc}} = 5 \text{ V} \]
\[C_{\text{ext}} = 50 \text{ pF} \]
\[T_A = 25^\circ \text{C} \]

FIGURE 4

'LS625, 'LS626, 'LS627
OUTPUT FREQUENCY
vs
EXTERNAL CAPACITANCE

\[f_0 - \text{Output Frequency} - \text{Hz} \]
\[C_{\text{ext}} - \text{External Capacitance} - \text{F} \]

\[f_0 \sim \frac{1}{2\pi \sqrt{C_{\text{ext}} C_{\text{in}}} \cdot V_{\text{cc}}} \]

\[V_{\text{cc}} = 5 \text{ V} \]
\[T_A = 25^\circ \text{C} \]

\[V_{I(freq)} = 5 \text{ V} \]
\[V_{I(freq)} = 2.5 \text{ V} \]
\[V_{I(freq)} = 0 \text{ V} \]

FIGURE 5

† Due to the effects of stray capacitance the output frequency may be unstable when the frequency control voltage is less than 1 volt.
TYPICAL CHARACTERISTICS

ENABLE TIME

vs

FREQUENCY

VCC = 5 V
TA = 25°C

3 V
1.3 V
0 V

1000

100

10

1

2

4

2

40

100

f₀ — Output Frequency — MHz

t₀ — Enable Time — ns

FIGURE 7

TYPICAL APPLICATIONS DATA

† The range input is provided only on the 'LS624, 'LS628, and 'LS629.
‡ The enable input is provided only on the 'LS624, 'LS626, 'LS628, and 'LS629.
§ Input voltages may be variable (analog) depending upon application.

FIGURE A — PHASE-LOCKED LOOP.
TAPE AND REEL INFORMATION

All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN74LS624DR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>330.0</td>
<td>16.4</td>
<td>6.5</td>
<td>9.0</td>
<td>2.1</td>
<td>8.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
<tr>
<td>SN74LS624NSR</td>
<td>SO</td>
<td>NS</td>
<td>14</td>
<td>2000</td>
<td>330.0</td>
<td>16.4</td>
<td>8.2</td>
<td>10.5</td>
<td>2.5</td>
<td>12.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
<tr>
<td>SN74LS628DR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>330.0</td>
<td>16.4</td>
<td>6.5</td>
<td>9.0</td>
<td>2.1</td>
<td>8.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>
TAPE AND REEL BOX DIMENSIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN74LS624DR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>853.0</td>
<td>449.0</td>
<td>35.0</td>
</tr>
<tr>
<td>SN74LS624NSR</td>
<td>SO</td>
<td>NS</td>
<td>14</td>
<td>2000</td>
<td>853.0</td>
<td>449.0</td>
<td>35.0</td>
</tr>
<tr>
<td>SN74LS628DR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>853.0</td>
<td>449.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>

All dimensions are nominal
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2020, Texas Instruments Incorporated