1 Features
- ‘Turbo’ CAN:
 - All Devices Support Classic CAN and 2 Mbps CAN FD (Flexible Data Rate) and "G" Options Support 5 Mbps
 - Short and Symmetrical Propagation Delay Times and Fast Loop Times for Enhanced Timing Margin
 - Higher Data Rates in Loaded CAN Networks
- I/O Voltage Range Supports 3.3 V and 5 V MCUs
- Ideal Passive Behavior When Unpowered
 - Bus and Logic Terminals are High Impedance (no load)
 - Power Up/Down With Glitch Free Operation On Bus and RXD Output
- Protection Features
 - HBM ESD Protection: ±16 kV
 - IEC ESD Protection up to ±15 kV
 - Bus Fault Protection: ±58 V (non-H variants) and ±70 V (H variants)
 - Undervoltage Protection on V\text{CC} and V\text{IO} (V variants only) Supply Terminals
 - Driver Dominant Time Out (TXD DTO) - Data rates down to 10 kbps
 - Thermal Shutdown Protection (TSD)
- Receiver Common Mode Input Voltage: ±30 V
- Typical Loop Delay: 110 ns
- Junction Temperatures from −55°C to 150°C
- Available in SOIC(8) Package and Leadless VSON(8) Package (3.0 mm x 3.0 mm) with Improved Automated Optical Inspection (AOI) Capability

2 Applications
- All devices support highly loaded CAN networks
- Heavy Machinery ISOBUS Applications – ISO 11783
- Industrial Automation, Control, Sensors and Drive Systems
- Building, Security and Climate Control Automation
- Telecom Base Station Status and Control

- CAN Bus Standards Such as CANopen, DeviceNet, NMEA2000, ARNIC825, ISO11783, CANaerospace

3 Description
This CAN transceiver family meets the ISO11898-2 (2016) High Speed CAN (Controller Area Network) physical layer standard. All devices are designed for use in CAN FD networks up to 2 Mbps (megabits per second). Devices with part numbers that include the "G" suffix are designed for data rates up to 5 Mbps, and versions with the "V" have a secondary power supply input for I/O level shifting the input pin thresholds and RXD output level. This family has a low power standby mode with remote wake request feature. Additionally, all devices include many protection features to enhance device and network robustness.

Device Information

<table>
<thead>
<tr>
<th>ORDER NUMBER</th>
<th>PACKAGE</th>
<th>BODY SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCCAN1042x</td>
<td>SOIC (8)</td>
<td>4.90 mm × 3.91 mm</td>
</tr>
<tr>
<td></td>
<td>VSON (8)</td>
<td>3.00 mm x 3.00 mm</td>
</tr>
</tbody>
</table>

Functional Block Diagram

A. Terminal 5 function is device dependent; NC on devices without the "V" suffix, and V\text{IO} for I/O level shifting for devices with the "V" suffix.

B. RXD logic output is driven to V\text{CC} on devices without the "V" suffix, and V\text{IO} for devices with the "V" suffix.
Table of Contents

1 Features..1
2 Applications ..1
3 Description ..
4 Revision History ..2
5 Device Comparison Table ..4
6 Pin Configurations and Functions ...4
7 Specifications ...5
 7.1 Absolute Maximum Ratings ..5
 7.2 ESD Ratings ..5
 7.3 Recommended Operating Conditions ..6
 7.4 Thermal Information ..6
 7.5 Power Rating ..6
 7.6 Electrical Characteristics ...7
 7.7 Switching Characteristics ...10
 7.8 Typical Characteristics ...11
8 Parameter Measurement Information ..12
9 Detailed Description ..15
 9.1 Overview ..15
 9.2 Functional Block Diagram ...15
 9.3 Feature Description ..16
 9.4 Device Functional Modes ...19
10 Application and Implementation ..23
 10.1 Application Information ...23
 10.2 Typical Applications ..23
11 Power Supply Requirements ...27
12 Layout ..27
 12.1 Layout Guidelines ..28
 12.2 Layout Example ..28
13 Device and Documentation Support ..29
 13.1 Related Links ...29
 13.2 Receiving Notification of Documentation Updates29
 13.3 Community Resources ...29
 13.4 Trademarks ..29
 13.5 Electrostatic Discharge Caution ..29
 13.6 Glossary ...29
14 Mechanical, Packaging, and Orderable Information29

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision B (August 2016) to Revision C

- Deleted Feature "Meets the December 17th, 2015 Draft of ISO 11898-2 Physical Layer Update" ... 1
- Changed Feature From: "All devices support 2 Mbps CAN FD.." To: "All Devices Support Classic CAN and 2 Mbps CAN FD.." 1
- Added Storage temperature range to the Absolute Maximum Ratings table .. 5
- Changed Charged Device Model (CDM) From: ±750 To: ±1500 in the ESD table .. 5
- Changed TBD to values for the DRB (VSON) Package in the ESD table .. 5
- Added the Power Rating table ... 6
- Changed VSYM in the DRIVER ELECTRICAL CHARACTERISTICS table .. 8
- Changed VSYM,DC in the DRIVER ELECTRICAL CHARACTERISTICS table ... 8
- Deleted "V1 = 0.4 sin (4E6 π t) + 2.5 V" from the Test Condition of C2 in the RECEIVER ELECTRICAL CHARACTERISTICS table .. 9
- Deleted "V1 = 0.4 sin (4E6 π t)" from the Test Condition of C1 in the RECEIVER ELECTRICAL CHARACTERISTICS table .. 9
- Added "-30 V ≤ VCM ≤ +30" to the Test Condition of RIO and RNI in the RECEIVER ELECTRICAL CHARACTERISTICS table .. 9
- Changed the tMODE, TYP value From: 1 µs To: 9 µS in the DEVICE SWITCHING CHARACTERISTICS table ... 10
- Added Note 2 and Changed Table 3, BUS OUTPUT column 17
Changes from Revision A (May 2016) to Revision B

<table>
<thead>
<tr>
<th>Change</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Added devices: TCAN1042, TCAN1042G, TCAN1042GV, and TCAN1042V</td>
<td>1</td>
</tr>
<tr>
<td>Changed Feature From: AddeBus Fault Protection: ±70 V To: Bus Fault Protection: ±58 V (non-H variants) and ±70 V (H variants)</td>
<td>1</td>
</tr>
<tr>
<td>Added Feature "Available in SOIC(8) package and leadless VSON(8) package..."</td>
<td>1</td>
</tr>
<tr>
<td>Added new devices to the Device Comparison Table</td>
<td>4</td>
</tr>
<tr>
<td>Updated Absolute Maximum Ratings with new devices</td>
<td>5</td>
</tr>
<tr>
<td>Added the DRB package to the Thermal Information table</td>
<td>6</td>
</tr>
<tr>
<td>Changed Standby Mode</td>
<td>20</td>
</tr>
</tbody>
</table>

Changes from Original (March 2016) to Revision A

<table>
<thead>
<tr>
<th>Change</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Added the VSON (8) pin package to the Device Information table</td>
<td>1</td>
</tr>
<tr>
<td>Added the VSON (8) pin package to the Pin Configurations and Functions</td>
<td>4</td>
</tr>
<tr>
<td>Changed OTP to TSD in the Functional Block Diagram</td>
<td>15</td>
</tr>
<tr>
<td>Added Note 2 to Table 2</td>
<td>17</td>
</tr>
<tr>
<td>Added Note 1 to Table 3</td>
<td>17</td>
</tr>
<tr>
<td>Added pin number to the Layout Example image</td>
<td>28</td>
</tr>
</tbody>
</table>
5 Device Comparison Table

<table>
<thead>
<tr>
<th>DEVICE NUMBER</th>
<th>BUS FAULT PROTECTION</th>
<th>5-Mbps FLEXIBLE DATA RATE</th>
<th>3-V LEVEL SHIFTER INTEGRATED</th>
<th>PIN 8 MODE SELECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCAN1042 (Base)</td>
<td>±58 V</td>
<td>X</td>
<td>X</td>
<td>Low Power Standby Mode with Remote Wake</td>
</tr>
<tr>
<td>TCAN1042G</td>
<td>±58 V</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>TCAN1042GV</td>
<td>±58 V</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>TCAN1042V</td>
<td>±58 V</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>TCAN1042H</td>
<td>±70 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCAN1042HG</td>
<td>±70 V</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>TCAN1042HV</td>
<td>±70 V</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

6 Pin Configurations and Functions

D Package for Base, (H), (G) and (HG) Devices
8 PIN (SOIC)
Top View

DRB Package for Base, (H), (G) and (HG) Devices
8 PIN (VSON)
Top View

Pin Functions

<table>
<thead>
<tr>
<th>NAME</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>TXD</td>
<td>DIGITAL INPUT</td>
<td>CAN transmit data input (LOW for dominant and HIGH for recessive bus states)</td>
</tr>
<tr>
<td>GND</td>
<td>GROUND</td>
<td>Ground connection</td>
</tr>
<tr>
<td>VCC</td>
<td>POWER</td>
<td>Transceiver 5-V supply voltage</td>
</tr>
<tr>
<td>RXD</td>
<td>DIGITAL OUTPUT</td>
<td>CAN receive data output (LOW for dominant and HIGH for recessive bus states)</td>
</tr>
<tr>
<td>NC</td>
<td>No Connect</td>
<td></td>
</tr>
<tr>
<td>VIO</td>
<td>POWER</td>
<td>Transceiver I/O level shifting supply voltage (Devices with "V" suffix only)</td>
</tr>
<tr>
<td>CANL</td>
<td>BUS I/O</td>
<td>Low level CAN bus input/output line</td>
</tr>
<tr>
<td>CANH</td>
<td>BUS I/O</td>
<td>High level CAN bus Input/output line</td>
</tr>
<tr>
<td>STB</td>
<td>DIGITAL INPUT</td>
<td>Standby Mode control input (active high)</td>
</tr>
</tbody>
</table>
7 Specifications

7.1 Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{CC}) 5-V bus supply voltage range</td>
<td>–0.3</td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td>(V_{IO}) I/O Level Shifting Voltage Range</td>
<td>–0.3</td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td>(V_{BUS}) CAN Bus I/O voltage range</td>
<td>–58</td>
<td>58</td>
<td>V</td>
</tr>
<tr>
<td>(V_{ION}) Max differential voltage between CANH and CANL</td>
<td>–58</td>
<td>58</td>
<td>V</td>
</tr>
<tr>
<td>(V_{BUS}) CAN Bus I/O voltage range</td>
<td>–70</td>
<td>70</td>
<td>V</td>
</tr>
<tr>
<td>(V_{ION}) Max differential voltage between CANH and CANL</td>
<td>–70</td>
<td>70</td>
<td>V</td>
</tr>
<tr>
<td>(V_{Logic_IN}) Logic input terminal voltage range (TXD, STB)</td>
<td>–0.3</td>
<td>7 and (V_I \leq V_{IO} + 0.3)</td>
<td>V</td>
</tr>
<tr>
<td>(V_{Logic_OUT}) Logic output terminal voltage range (RXD)</td>
<td>–0.3</td>
<td>7 and (V_I \leq V_{IO} + 0.3)</td>
<td>V</td>
</tr>
<tr>
<td>(I_{O(RXD)}) RXD (Receiver) output current</td>
<td>–8</td>
<td>8</td>
<td>mA</td>
</tr>
<tr>
<td>(T_J) Virtual junction temperature range (see Thermal Information)</td>
<td>–55</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>(T_{STG}) Storage temperature range (see Thermal Information)</td>
<td>–65</td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

(1) Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values, except differential I/O bus voltages, are with respect to ground terminal.

7.2 ESD Ratings

<table>
<thead>
<tr>
<th>Package</th>
<th>TEST CONDITIONS</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>D (SOIC) Package</td>
<td>Human Body Model (HBM) ESD stress voltage</td>
<td>All terminals(1)</td>
<td>±6000</td>
</tr>
<tr>
<td></td>
<td>Charged Device Model (CDM) ESD stress voltage</td>
<td>All terminals(2)</td>
<td>±1500</td>
</tr>
<tr>
<td></td>
<td>Machine Model (MM)</td>
<td>All terminals(3)</td>
<td>±200</td>
</tr>
<tr>
<td></td>
<td>System Level Electro-Static Discharge (ESD)</td>
<td>CAN bus terminals (CANH, CANL) to GND</td>
<td>IEC 61000-4-2: Unpowered Contact Discharge</td>
</tr>
<tr>
<td></td>
<td>System Level Electrical fast transient (EFT)</td>
<td>CAN bus terminals (CANH, CANL) to GND</td>
<td>IEC 61000-4-2: Contact Discharge</td>
</tr>
<tr>
<td>DRB (VSON) Package</td>
<td>Human Body Model (HBM) ESD stress voltage</td>
<td>All terminals(1)</td>
<td>±6000</td>
</tr>
<tr>
<td></td>
<td>Charged Device Model (CDM) ESD stress voltage</td>
<td>All terminals(2)</td>
<td>±16000</td>
</tr>
<tr>
<td></td>
<td>Machine Model (MM)</td>
<td>All terminals(3)</td>
<td>±1500</td>
</tr>
<tr>
<td></td>
<td>System Level Electro-Static Discharge (ESD)</td>
<td>CAN bus terminals (CANH, CANL) to GND</td>
<td>IEC 61000-4-2: Unpowered Contact Discharge</td>
</tr>
<tr>
<td></td>
<td>System Level Electrical fast transient (EFT)</td>
<td>CAN bus terminals (CANH, CANL) to GND</td>
<td>IEC 61000-4-2: Contact Discharge</td>
</tr>
</tbody>
</table>

(1) Tested in accordance to JEDEC Standard 22, Test Method A114.
(2) Test method based upon JEDEC Standard 22 Test Method A114, CAN bus is stressed with respect to GND.
(3) Tested in accordance to JEDEC Standard 22, Test Method C101.
(4) Tested in accordance to JEDEC Standard 22, Test Method A115.
7.3 Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CC} 5-V Bus Supply Voltage Range</td>
<td>4.5</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>V_{IO} I/O Level-Shifting Voltage Range</td>
<td>3</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>$I_{OH(RXD)}$ RXD terminal HIGH level output current</td>
<td>–2</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>$I_{OL(RXD)}$ RXD terminal LOW level output current</td>
<td>2</td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>

7.4 Thermal Information

<table>
<thead>
<tr>
<th>THERMAL METRIC</th>
<th>TEST CONDITIONS</th>
<th>TCAN1042</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{θJA}$ Junction-to-air thermal resistance</td>
<td>High-K thermal resistance</td>
<td>105.8</td>
</tr>
<tr>
<td>$R_{θJB}$ Junction-to-board thermal resistance</td>
<td>46.8</td>
<td>49.7</td>
</tr>
<tr>
<td>$R_{θJC(TOP)}$ Junction-to-case (top) thermal resistance</td>
<td>48.3</td>
<td>15.7</td>
</tr>
<tr>
<td>$Ψ_{JT}$ Junction-to-top characterization parameter</td>
<td>8.7</td>
<td>0.6</td>
</tr>
<tr>
<td>$Ψ_{JB}$ Junction-to-board characterization parameter</td>
<td>46.2</td>
<td>15.9</td>
</tr>
<tr>
<td>T_{TSD} Thermal shutdown temperature</td>
<td>170</td>
<td>170</td>
</tr>
<tr>
<td>$T_{TSD,HYS}$ Thermal shutdown hysteresis</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.
(2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, High-K board, as specified in JESD51-7, in an environment described in JESD51-2a.
(3) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.
(4) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.
(5) The junction-to-top characterization parameter, $Ψ_{JT}$, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining $θ_{JA}$, using a procedure described in JESD51-2a (sections 6 and 7).
(6) The junction-to-board characterization parameter, $Ψ_{JB}$, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining $θ_{JA}$, using a procedure described in JESD51-2a (sections 6 and 7).

7.5 Power Rating

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>POWER DISSIPATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{D}</td>
<td>Average power dissipation</td>
<td>$V_{CC} = 5$ V, $V_{IO} = 5$ V (if applicable), $T_{J} = 27$°C, $R_{L} = 60$ Ω, S at 0 V, input to TXD at 250 kHz, $C_{L_{RXD}} = 15$ pF. Typical CAN operating conditions at 500 kbps with 25% transmission (dominant) rate.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CC} = 5.5$ V, $V_{IO} = 5.5$ V (if applicable), $T_{J} = 150$°C, $R_{L} = 50$ Ω, S at 0 V, input to TXD at 500 kHz, $C_{L_{RXD}} = 15$ pF. Typical high load CAN operating conditions at 1 Mbps with 50% transmission (dominant) rate and loaded network.</td>
</tr>
</tbody>
</table>
7.6 Electrical Characteristics

Over recommended operating conditions with \(T_A = -55^\circ C \) to 125\(^\circ C \) (unless otherwise noted).

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP(1)</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPPLY CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{CC})</td>
<td>S-V supply current</td>
<td>Normal mode (dominant)</td>
<td>See Figure 5, TXD = 0 V, (R_L = 60 \Omega), C(L) = open, R({CM}) = open, STB = 0 V, Typical Bus Load</td>
<td>40</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Normal mode (dominant – with bus fault)</td>
<td>See Figure 5, TXD = 0 V, STB = 0 V, CANH = -12 V, (R_L = 50 \Omega), C(L) = open, R({CM}) = open</td>
<td>45</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Normal mode (recessive)</td>
<td>See Figure 5, TXD = (V_{CC}) or (V_{IO}), (R_L = 50 \Omega), C(L) = open, R({CM}) = open, STB = 0 V, Typical Bus Load</td>
<td>1.5</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Standby mode</td>
<td>Devices with the ”V” suffix (I/O level-shifting), (V_{CC}) not needed in Standby mode, See Figure 5, TXD = (V_{CC}), (R_L = 50 \Omega), C(L) = open, R({CM}) = open, STB = (V_{CC})</td>
<td>0.5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Standby mode</td>
<td>Devices without the ”V” suffix (5-V only), See Figure 5, TXD = (V_{CC}), (R_L = 50 \Omega), C(L) = open, R({CM}) = open, STB = (V_{CC})</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>(I_O)</td>
<td>I/O supply current</td>
<td>Normal mode</td>
<td>RXD floating, TXD = STB = 0 or 5.5 V</td>
<td>90</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Standby mode</td>
<td>RXD floating, TXD = STB = (V_{IO}), (V_{CC} = 0) or 5.5 V</td>
<td>12</td>
<td>17</td>
</tr>
<tr>
<td>(U_{VCC})</td>
<td></td>
<td>Rising undervoltage detection on (V_{CC}) for protected mode</td>
<td>All devices</td>
<td>4.2</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Falling undervoltage detection on (V_{CC}) for protected mode</td>
<td>All devices</td>
<td>3.8</td>
<td>4.0</td>
</tr>
<tr>
<td>(V_{(UV)(UVCC)})</td>
<td></td>
<td>Hysteresis voltage on (U_{VCC})</td>
<td>All devices</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>(U_{VIO})</td>
<td></td>
<td>Undervoltage detection on (V_{IO}) for protected mode</td>
<td>Devices with the ”V” suffix (I/O level-shifting)</td>
<td>1.3</td>
<td>2.75</td>
</tr>
<tr>
<td>(V_{(UV)(UVIO)})</td>
<td></td>
<td>Hysteresis voltage on (U_{VIO}) for protected mode</td>
<td>Devices with the ”V” suffix (I/O level-shifting)</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

STB TERMINAL (MODE SELECT INPUT)

<table>
<thead>
<tr>
<th>(V_H)</th>
<th>High-level input voltage</th>
<th>Devices with the ”V” suffix (I/O level-shifting)</th>
<th>0.7 (x) (V_{IO})</th>
<th></th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_L)</td>
<td>Low-level input voltage</td>
<td>Devices with the ”V” suffix (I/O level-shifting)</td>
<td>0.3 (x) (V_{IO})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{IH})</td>
<td>High-level input leakage current</td>
<td>STB = (V_{CC} = V_{IO} = 5.5) V</td>
<td>-2</td>
<td>2</td>
<td>µA</td>
</tr>
<tr>
<td>(I_{IL})</td>
<td>Low-level input leakage current</td>
<td>STB = 0 V, (V_{CC} = V_{IO} = 5.5) V</td>
<td>-20</td>
<td>0</td>
<td>-2</td>
</tr>
<tr>
<td>(I_{IH(OFF)})</td>
<td>Unpowered leakage current</td>
<td>STB = 5.5 V, (V_{CC} = V_{IO} = 0) V</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

TXD TERMINAL (CAN TRANSMIT DATA INPUT)

<table>
<thead>
<tr>
<th>(V_H)</th>
<th>High-level input voltage</th>
<th>Devices with the ”V” suffix (I/O level-shifting)</th>
<th>0.7 (x) (V_{IO})</th>
<th></th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_L)</td>
<td>Low-level input voltage</td>
<td>Devices with the ”V” suffix (I/O level-shifting)</td>
<td>0.3 (x) (V_{IO})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{IH})</td>
<td>High-level input leakage current</td>
<td>TXD = (V_{CC} = V_{IO} = 5.5) V</td>
<td>-2.5</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(I_{IL})</td>
<td>Low-level input leakage current</td>
<td>TXD = 0 V, (V_{CC} = V_{IO} = 5.5) V</td>
<td>-100</td>
<td>-25</td>
<td>-7</td>
</tr>
<tr>
<td>(I_{IH(OFF)})</td>
<td>Unpowered leakage current</td>
<td>TXD = 5.5 V, (V_{CC} = V_{IO} = 0) V</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(C_{i})</td>
<td>Input capacitance</td>
<td>(V_{PB} = 0.4 \pi \times 2 \times 10^{6} \times t) + 2.5) V</td>
<td>5</td>
<td></td>
<td>pF</td>
</tr>
</tbody>
</table>

(1) All typical values are at 25\(^\circ C \) and supply voltages of \(V_{CC} = 5 \) V and \(V_{IO} = 5 \) V (if applicable), \(R_L = 60 \Omega \).
Electrical Characteristics (continued)

Over recommended operating conditions with \(T_A = -55°C \) to 125°C (unless otherwise noted).

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP(1)</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>RXD TERMINAL (CAN RECEIVE DATA OUTPUT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{OH})</td>
<td>High-level output voltage</td>
<td>Devices with the "V" suffix (I/O level-shifting), See Figure 6, (I_O = -2 \text{ mA}).</td>
<td>0.8 (V_{IO})</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Devices without the "V" suffix (5V only), See Figure 6, (I_O = -2 \text{ mA}).</td>
<td>4</td>
<td>4.6</td>
<td>V</td>
</tr>
<tr>
<td>(V_{OL})</td>
<td>Low-level output voltage</td>
<td>Devices with the "V" suffix (I/O level-shifting), See Figure 6, (I_O = +2 \text{ mA}).</td>
<td>0.2 (V_{IO})</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Devices without the "V" suffix (5-V only), See Figure 6, (I_O = +2 \text{ mA}).</td>
<td>0.2</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>(I_{LH(0FF)})</td>
<td>Unpowered leakage current</td>
<td>RXD = 5.5 (V), (V_{CC} = 0 \text{ V}), (V_{IO} = 0 \text{ V})</td>
<td>-1</td>
<td>0</td>
<td>1 (\mu A)</td>
</tr>
</tbody>
</table>

DRIVER ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP(1)</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{OD(DOM)})</td>
<td>Bus output voltage (dominant)</td>
<td>CANH</td>
<td>See Figure 5 and Figure 14, TXD = 0 (V), (STB = 0 \text{ V}), (50 \text{ \Omega} \leq R_L \leq 65 \text{ \Omega}), (C_{s} = \text{open}, R_{CM} = \text{open})</td>
<td>2.75</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CANL</td>
<td></td>
<td>0.5</td>
<td>2.25</td>
</tr>
<tr>
<td>(V_{OD(REC)})</td>
<td>Bus output voltage (recessive)</td>
<td>CANH and CANL</td>
<td>See Figure 5 and Figure 14, TXD = (V_{CC}) or (V_{IO}), (V_{IO} = V_{CC}), (STB = 0 \text{ V}), (R_L = \text{open (no load), R}_{CM} = \text{open})</td>
<td>2</td>
<td>0.5 (V_{CC})</td>
</tr>
<tr>
<td>(V_{OD(STB)})</td>
<td>Bus output voltage (Standby mode)</td>
<td>CANH</td>
<td>See Figure 5 and Figure 14, (STB = V_{IO}), (R_L = \text{open (no load), R}_{CM} = \text{open})</td>
<td>-0.1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CANL</td>
<td></td>
<td>-0.1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CANH - CANL</td>
<td></td>
<td>-0.2</td>
<td>0</td>
</tr>
<tr>
<td>(V_{OD(DOM)})</td>
<td>Differential output voltage (dominant)</td>
<td>CANH - CANL</td>
<td>See Figure 5 and Figure 14, (TXD = 0 \text{ V}), (STB = 0 \text{ V}), (45 \text{ \Omega} \leq R_L < 50 \text{ \Omega}), (C_{s} = \text{open}, R_{CM} = \text{open})</td>
<td>1.4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.5</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See Figure 5 and Figure 14, TXD = 0 (V), (STB = 0 \text{ V}), (50 \text{ \Omega} \leq R_L \leq 65 \text{ \Omega}), (C_{s} = \text{open}, R_{CM} = \text{open})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>See Figure 5 and Figure 14, TXD = 0 (V), (STB = 0 \text{ V}), (R_L = 2240 \text{ \Omega}), (C_{s} = \text{open}, R_{CM} = \text{open})</td>
<td></td>
<td>1.5</td>
<td>5</td>
</tr>
<tr>
<td>(V_{OD(REC)})</td>
<td>Differential output voltage (recessive)</td>
<td>CANH - CANL</td>
<td>See Figure 5 and Figure 14, TXD = (V_{CC}), (STB = 0 \text{ V}), (R_L = 60 \text{ \Omega}), (C_{s} = \text{open}, R_{CM} = \text{open})</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-120</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>See Figure 5 and Figure 14, TXD = (V_{CC}), (STB = 0 \text{ V}), (R_L = \text{open (no load), C}{S} = \text{open, R}{CM} = \text{open})</td>
<td></td>
<td></td>
<td></td>
<td>-50</td>
</tr>
<tr>
<td>(V_{SYM})</td>
<td>Output symmetry (dominant or recessive) ((V_{OD(CANH)} - V_{OD(CANL)}) / V_{CC})</td>
<td>See Figure 5 and Figure 17, (STB \text{ at } 0 \text{ V}), (R_{term} = 60 \text{ \Omega}), (C_{split} = 4.7 \text{ nF, C}{L} = \text{open, R}{CM} = \text{open, TXD = 250 kHz, 1 MHz})</td>
<td>0.9</td>
<td>1.1</td>
<td>V/V</td>
</tr>
<tr>
<td>(V_{SYM,DC})</td>
<td>DC Output symmetry (dominant or recessive) ((V_{CC} - V_{OD(CANH)} - V_{OD(CANL)}))</td>
<td>See Figure 5 and Figure 14, (STB = 0 \text{ V}), (R_L = 60 \text{ \Omega}), (C_{s} = \text{open, R}_{CM} = \text{open})</td>
<td>-0.4</td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>(I_{OS(SS, DOM)})</td>
<td>Short-circuit steady-state output current, dominant, Normal mode</td>
<td>See Figure 14 and Figure 11, (STB \text{ at } 0 \text{ V}, V_{CANH} = -5 \text{ V} \text{ to } 40 \text{ V}, \text{ CANL } = \text{open, TXD } = 0 \text{ V})</td>
<td>-100</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See Figure 14 and Figure 11, (STB \text{ at } 0 \text{ V}, V_{CANH} = -5 \text{ V} \text{ to } 40 \text{ V}, \text{ CANH } = \text{open, TXD } = 0 \text{ V})</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>(I_{OS(SS, REC)})</td>
<td>Short-circuit steady-state output current, recessive, Normal mode</td>
<td>See Figure 14 and Figure 11, (STB \text{ at } 0 \text{ V}, -27 \text{ V} \leq V_{BUS} \leq 32 \text{ V}, \text{ Where } V_{BUS} = \text{ CANH } = \text{ CANL, TXD } = V_{CC})</td>
<td>-5</td>
<td>5</td>
<td>mA</td>
</tr>
</tbody>
</table>
Electrical Characteristics (continued)

Over recommended operating conditions with $T_A = -55°C$ to 125°C (unless otherwise noted).

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP<sup>(1)</sup></th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CM}</td>
<td>Common mode range, Normal mode</td>
<td>See Figure 6 and Table 1, STB = 0 V</td>
<td>-30</td>
<td>+30</td>
<td>V</td>
</tr>
<tr>
<td>V_{IT+}</td>
<td>Positive-going input threshold voltage, Normal mode</td>
<td>See Figure 6, Table 6 and Table 1, STB = 0 V, -20 V ≤ V_{CM} ≤ +20 V</td>
<td>900</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>V_{IT-}</td>
<td>Negative-going input threshold voltage, Normal mode</td>
<td>See Figure 6, Table 6 and Table 1, STB = 0 V, -30 V ≤ V_{CM} ≤ +30 V</td>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{IT+}</td>
<td>Positive-going input threshold voltage, Normal mode</td>
<td>See Figure 6, Table 6 and Table 1, STB = 0 V, -30 V ≤ V_{CM} ≤ +30 V</td>
<td>1000</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>V_{IT-}</td>
<td>Negative-going input threshold voltage, Normal mode</td>
<td>Devices with the "V" suffix (I/O level-shifting), See Figure 6, Table 6 and Table 1, STB = V_{IO}, 4.5 V ≤ V_{IO} ≤ 5.5 V</td>
<td>400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{HYS}</td>
<td>Hysteresis voltage (V_{IT+} - V_{IT-}), Normal mode</td>
<td>Devices with the "V" suffix (I/O level-shifting), See Figure 6, Table 6 and Table 1, STB = 0 V</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{CM}</td>
<td>Common mode range, Standby mode</td>
<td>Devices without the "V" suffix (5V only), See Figure 6, Table 6 and Table 1, STB = V_{CC}</td>
<td>-12</td>
<td>12</td>
<td>V</td>
</tr>
<tr>
<td>$V_{IT(STANDBY)}$</td>
<td>Input threshold voltage, Standby mode</td>
<td>Devices with the "V" suffix (I/O level-shifting), See Figure 6, Table 6 and Table 1, STB = V_{IO}, 3.0 V ≤ V_{IO} ≤ 4.5 V</td>
<td>-2</td>
<td>+7</td>
<td></td>
</tr>
<tr>
<td>$I_{LKG(IOFF)}$</td>
<td>Power-off (unpowered) bus input leakage current</td>
<td>CANH = CANL = 5 V, V_{CC} = V_{IO} = 0 V</td>
<td>4.8</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>C_I</td>
<td>Input capacitance to ground (CANH or CANL)</td>
<td>TXD = V_{CC}, V_{IO} = V_{CC}</td>
<td>24</td>
<td>30</td>
<td>pF</td>
</tr>
<tr>
<td>C_{ID}</td>
<td>Differential input capacitance (CANH to CANL)</td>
<td>TXD = V_{CC}, V_{IO} = V_{CC}</td>
<td>12</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>R_ID</td>
<td>Differential input resistance</td>
<td>TXD = V_{CC} = V_{IO} = 5 V, STB = 0 V, -30 V ≤ V_{CM} ≤ +30 V</td>
<td>30</td>
<td>80</td>
<td>kΩ</td>
</tr>
<tr>
<td>R_N</td>
<td>Input resistance (CANH or CANL)</td>
<td></td>
<td>15</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>$R_{IN(M)}$</td>
<td>Input resistance matching: $[1 - R_{N(CANH)} / R_{N(CANL)}] \times 100%$</td>
<td>$V_{CANH} = V_{CANL} = 5$ V</td>
<td>-2%</td>
<td>+2%</td>
<td></td>
</tr>
</tbody>
</table>
7.7 Switching Characteristics

Over recommended operating conditions with $T_A = -55^\circ C$ to 125$^\circ C$ (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP(1)</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEVICE SWITCHING CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t_{PROP(LOOP1)}$</td>
<td>Total loop delay, driver input (TXD) to receiver output (RXD), recessive to dominant</td>
<td>See Figure 8, STB = 0 V, $R_L = 60 \Omega$, $C_L = 100 \text{ pF}$, $C_L(RXD) = 15 \text{ pF}$</td>
<td>100</td>
<td>160</td>
<td>ns</td>
</tr>
<tr>
<td>$t_{PROP(LOOP2)}$</td>
<td>Total loop delay, driver input (TXD) to receiver output (RXD), dominant to recessive</td>
<td></td>
<td>110</td>
<td>175</td>
<td>ns</td>
</tr>
<tr>
<td>t_{MODE}</td>
<td>Mode change time, from Normal to Standby or from Standby to Normal</td>
<td>See Figure 7</td>
<td>9</td>
<td>45</td>
<td>µs</td>
</tr>
<tr>
<td>t_{WK_FILTER}</td>
<td>Filter time for valid wake up pattern</td>
<td></td>
<td>0.5</td>
<td>1.85</td>
<td>µs</td>
</tr>
<tr>
<td>DRIVER SWITCHING CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{pHR}</td>
<td>Propagation delay time, high TXD to driver recessive (dominant to recessive)</td>
<td></td>
<td>75</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_{pLD}</td>
<td>Propagation delay time, low TXD to driver dominant (recessive to dominant)</td>
<td>See Figure 5, STB = 0 V, $R_L = 60 \Omega$, $C_L = 100 \text{ pF}$, R_{CM} = open</td>
<td>55</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>$t_{sk(p)}$</td>
<td>Pulse skew ($</td>
<td>t_{pHR} - t_{pLD}</td>
<td>$)</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>t_R</td>
<td>Differential output signal rise time</td>
<td></td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_F</td>
<td>Differential output signal fall time</td>
<td></td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{TXD_DTO}</td>
<td>Dominant timeout</td>
<td>See Figure 10, STB = 0 V, $R_L = 60 \Omega$, C_L = open</td>
<td>1.2</td>
<td>3.8</td>
<td>ms</td>
</tr>
<tr>
<td>RECEIVER SWITCHING CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{pRH}</td>
<td>Propagation delay time, bus recessive input to high output (Dominant to Recessive)</td>
<td>See Figure 6, STB = 0 V, $C_L(RXD) = 15 \text{ pF}$</td>
<td>65</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_{pDL}</td>
<td>Propagation delay time, bus dominant input to low output (Recessive to Dominant)</td>
<td></td>
<td>50</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_R</td>
<td>RXD Output signal rise time</td>
<td></td>
<td>10</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_F</td>
<td>RXD Output signal fall time</td>
<td></td>
<td>10</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>FD Timing Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t_{BIT(BUS)}$</td>
<td>Bit time on CAN bus output pins with $t_{BIT(TXD)} = 500 \text{ ns}$, all devices</td>
<td>See Figure 9, STB = 0 V, $R_L = 60 \Omega$, $C_L = 100 \text{ pF}$, $C_L(RXD) = 15 \text{ pF}$, $\Delta t_{REC} = t_{BIT(RXD)} - t_{BIT(BUS)}$</td>
<td>435</td>
<td>530</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit time on CAN bus output pins with $t_{BIT(TXD)} = 200 \text{ ns}$, G device variants only</td>
<td></td>
<td>155</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>$t_{BIT(RXD)}$</td>
<td>Bit time on RXD output pins with $t_{BIT(TXD)} = 500 \text{ ns}$, all devices</td>
<td>See Figure 9, STB = 0 V, $R_L = 60 \Omega$, $C_L = 100 \text{ pF}$, $C_L(RXD) = 15 \text{ pF}$, $\Delta t_{REC} = t_{BIT(RXD)} - t_{BIT(BUS)}$</td>
<td>400</td>
<td>550</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>Bit time on RXD output pins with $t_{BIT(TXD)} = 200 \text{ ns}$, G device variants only</td>
<td></td>
<td>120</td>
<td>220</td>
<td>ns</td>
</tr>
<tr>
<td>Δt_{REC}</td>
<td>Receiver timing symmetry with $t_{BIT(TXD)} = 500 \text{ ns}$, all devices</td>
<td></td>
<td>-65</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Receiver timing symmetry with $t_{BIT(TXD)} = 200 \text{ ns}$, G device variants only</td>
<td></td>
<td>-45</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

(1) All typical values are at 25°C and supply voltages of $V_{CC} = 5 \text{ V}$ and $V_{IO} = 5 \text{ V (if applicable)}$, $R_L = 60 \Omega$.

10 Submit Documentation Feedback Copyright © 2016–2017, Texas Instruments Incorporated

Product Folder Links: TCAN1042 TCAN1042G TCAN1042GV TCAN1042H TCAN1042HGV TCAN1042HV TCAN1042V
7.8 Typical Characteristics

Figure 1. $V_{OD(D)}$ over Temperature

Figure 2. $V_{OD(D)}$ over V_{CC}

Figure 3. I_{CC} Recessive over Temperature

Figure 4. Total Loop Delay over Temperature
8 Parameter Measurement Information

![Driver Test Circuit and Measurement](image1)

Figure 5. Driver Test Circuit and Measurement

![Receiver Test Circuit and Measurement](image2)

Figure 6. Receiver Test Circuit and Measurement

<table>
<thead>
<tr>
<th>INPUT</th>
<th>OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CANH}</td>
<td>V_{CANL}</td>
</tr>
<tr>
<td>-29.5 V</td>
<td>-30.5 V</td>
</tr>
<tr>
<td>30.5 V</td>
<td>29.5 V</td>
</tr>
<tr>
<td>-19.55 V</td>
<td>-20.45 V</td>
</tr>
<tr>
<td>20.45 V</td>
<td>19.55 V</td>
</tr>
<tr>
<td>-19.75 V</td>
<td>-20.25 V</td>
</tr>
<tr>
<td>20.25 V</td>
<td>19.75 V</td>
</tr>
<tr>
<td>-29.8 V</td>
<td>-30.2 V</td>
</tr>
<tr>
<td>30.2 V</td>
<td>29.8 V</td>
</tr>
<tr>
<td>Open</td>
<td>Open</td>
</tr>
</tbody>
</table>

Table 1. Receiver Differential Input Voltage Threshold Test (See Figure 6)
Figure 7. \(t_{\text{MODE}} \) Test Circuit and Measurement

Figure 8. \(T_{\text{PROP}(\text{LOOP})} \) Test Circuit and Measurement
Figure 9. CAN FD Timing Parameter Measurement

Figure 10. TXD Dominant Timeout Test Circuit and Measurement

Figure 11. Driver Short Circuit Current Test and Measurement
9 Detailed Description

9.1 Overview
These CAN transceivers meet the ISO11898-2 (2016) High Speed CAN (Controller Area Network) physical layer standard. They are designed for data rates in excess of 1 Mbps for CAN FD and enhanced timing margin / higher data rates in long and highly-loaded networks. These devices provide many protection features to enhance device and CAN robustness.

9.2 Functional Block Diagram
9.3 Feature Description

9.3.1 TXD Dominant Timeout (DTO)

During normal mode (the only mode where the CAN driver is active), the TXD DTO circuit prevents the transceiver from blocking network communication in the event of a hardware or software failure where TXD is held dominant longer than the timeout period t_{TXD_DTO}. The DTO circuit timer starts on a falling edge on TXD. The DTO circuit disables the CAN bus driver if no rising edge is seen before the timeout period expires. This frees the bus for communication between other nodes on the network. The CAN driver is re-activated when a recessive signal is seen on the TXD terminal, thus clearing the TXD DTO condition. The receiver and RXD terminal still reflect activity on the CAN bus, and the bus terminals are biased to the recessive level during a TXD dominant timeout.

![Example Timing Diagram for TXD DTO](image)

Figure 12. Example Timing Diagram for TXD DTO

The minimum dominant TXD time allowed by the TXD DTO circuit limits the minimum possible transmitted data rate of the device. The CAN protocol allows a maximum of eleven successive dominant bits (on TXD) for the worst case, where five successive dominant bits are followed immediately by an error frame. This, along with the t_{TXD_DTO} minimum, limits the minimum data rate. Calculate the minimum transmitted data rate by:

$$\text{Minimum Data Rate} = \frac{11}{t_{TXD_DTO}}.$$

9.3.2 Thermal Shutdown (TSD)

If the junction temperature of the device exceeds the thermal shutdown threshold (T_{TSD}), the device turns off the CAN driver circuits thus blocking the TXD-to-bus transmission path. The CAN bus terminals are biased to the recessive level during a thermal shutdown, and the receiver-to-RXD path remains operational. The shutdown condition is cleared when the junction temperature drops at least the thermal shutdown hysteresis temperature (T_{TSD_HYS}) below the thermal shutdown temperature (T_{TSD}) of the device.
Feature Description (continued)

9.3.3 Undervoltage Lockout

The supply terminals have undervoltage detection that places the device in protected mode. This protects the bus during an undervoltage event on either the V_{CC} or V_{IO} supply terminals.

Table 2. Undervoltage Lockout 5 V Only Devices (Devices without the "V" Suffix)

<table>
<thead>
<tr>
<th>V_{CC}</th>
<th>DEVICE STATE</th>
<th>BUS OUTPUT</th>
<th>RXD</th>
</tr>
</thead>
<tbody>
<tr>
<td>> V_{UVCC}</td>
<td>Normal</td>
<td>Per TXD</td>
<td>Mirrors Bus(2)</td>
</tr>
<tr>
<td>< V_{UVCC}</td>
<td>Protected</td>
<td>High Impedance</td>
<td>High Impedance</td>
</tr>
</tbody>
</table>

(1) See the V_{IT} section of the Electrical Characteristics.
(2) Mirrors bus state: low if CAN bus is dominant, high if CAN bus is recessive.

Table 3. Undervoltage Lockout I/O Level Shifting Devices (Devices with the "V" Suffix)

<table>
<thead>
<tr>
<th>V_{CC}</th>
<th>V_{IO}</th>
<th>DEVICE STATE</th>
<th>BUS OUTPUT</th>
<th>RXD</th>
</tr>
</thead>
<tbody>
<tr>
<td>> V_{UVCC}</td>
<td>> V_{UVIO}</td>
<td>Normal</td>
<td>Per TXD</td>
<td>Mirrors Bus(1)</td>
</tr>
<tr>
<td>< V_{UVCC}</td>
<td>> V_{UVIO}</td>
<td>STB = High: Standby Mode</td>
<td>Recessive</td>
<td>Bus Wake RXD Request(2)</td>
</tr>
<tr>
<td>> V_{UVCC}</td>
<td>< V_{UVIO}</td>
<td>STB =Low: Protected Mode</td>
<td>High Impedance</td>
<td>High (Recessive)</td>
</tr>
<tr>
<td>< V_{UVCC}</td>
<td>< V_{UVIO}</td>
<td>Protected</td>
<td>High Impedance</td>
<td>High Impedance</td>
</tr>
</tbody>
</table>

(1) Mirrors bus state: low if CAN bus is dominant, high if CAN bus is recessive.
(2) Refer to Remote Wake Request via Wake Up Pattern (WUP) in Standby Mode

NOTE

After an undervoltage condition is cleared and the supplies have returned to valid levels, the device typically resumes normal operation within 50 µs.

9.3.4 Unpowered Device

The device is designed to be ‘ideal passive’ or ‘no load’ to the CAN bus if it is unpowered. The bus terminals (CANH, CANL) have extremely low leakage currents when the device is unpowered to avoid loading down the bus. This is critical if some nodes of the network are unpowered while the rest of the network remains in operation. The logic terminals also have extremely low leakage currents when the device is unpowered to avoid loading down other circuits that may remain powered.

9.3.5 Floating Terminals

These devices have internal pull ups on critical terminals to place the device into known states if the terminals float. The TXD terminal is pulled up to V_{CC} or V_{IO} to force a recessive input level if the terminal floats. The terminal is also pulled up to force the device into low power Standby mode if the terminal floats.

9.3.6 CAN Bus Short Circuit Current Limiting

The device has two protection features that limit the short circuit current when a CAN bus line is short-circuit fault condition: driver current limiting (both dominant and recessive states) and TXD dominant state time out to prevent permanent higher short circuit current of the dominant state during a system fault. During CAN communication the bus switches between dominant and recessive states, thus the short circuit current may be viewed either as the instantaneous current during each bus state or as an average current of the two states. For system current (power supply) and power considerations in the termination resistors and common-mode choke ratings, use the average short circuit current. Determine the ratio of dominant and recessive bits by the data in the CAN frame plus the following factors of the protocol and PHY that force either recessive or dominant at certain times:

- Control fields with set bits
- Bit stuffing
- Interframe space
• TXD dominant time out (fault case limiting)
These ensure a minimum recessive amount of time on the bus even if the data field contains a high percentage
of dominant bits. The short circuit current of the bus depends on the ratio of recessive to dominant bits and their
respective short circuit currents. The average short circuit current may be calculated with the following formula:
\[
I_{OS(AVG)} = \%\text{Transmit} \times [\%\text{REC}_\text{Bits} \times I_{OS(SS)}\text{REC}] + [\%\text{DOM}_\text{Bits} \times I_{OS(SS)}\text{DOM}] + [\%\text{Receive} \times I_{OS(SS)}\text{REC}]
\]
(1)
Where:
• \(I_{OS(AVG)}\) is the average short circuit current
• \(\%\text{Transmit}\) is the percentage the node is transmitting CAN messages
• \(\%\text{Receive}\) is the percentage the node is receiving CAN messages
• \(\%\text{REC}_\text{Bits}\) is the percentage of recessive bits in the transmitted CAN messages
• \(\%\text{DOM}_\text{Bits}\) is the percentage of dominant bits in the transmitted CAN messages
• \(I_{OS(SS)}\text{REC}\) is the recessive steady state short circuit current
• \(I_{OS(SS)}\text{DOM}\) is the dominant steady state short circuit current

NOTE
Consider the short circuit current and possible fault cases of the network when sizing the
power ratings of the termination resistance and other network components.

9.3.7 Digital Inputs and Outputs

9.3.7.1 5-V \(V_{CC}\) Only Devices (Devices without the "V" Suffix):
The 5-V \(V_{CC}\) only devices are supplied by a single 5-V rail. The digital inputs have TTL input thresholds and are
therefore 5 V and 3.3 V compatible. The RXD outputs on these devices are driven to the \(V_{CC}\) rail for logic high
output. Additionally, the TXD and STB pins are internally pulled up to \(V_{CC}\). The internal bias of the mode pins
may only place the device into a known state if the terminals float, they may not be adequate for system-level
biasing during transients or noisy environments.

NOTE
TXD pull up strength and CAN bit timing require special consideration when these devices
are used with CAN controllers with an open-drain TXD output. An adequate external pull
up resistor must be used to ensure that the CAN controller output of the microcontroller
maintains adequate bit timing to the TXD input.

9.3.7.2 5 V \(V_{CC}\) with \(V_{IO}\) I/O Level Shifting (Devices with the "V" Suffix):
These devices use a 5 V \(V_{CC}\) power supply for the CAN driver and high speed receiver blocks. These
transceivers have a second power supply for I/O level-shifting \((V_{IO})\). This supply is used to set the CMOS input
thresholds of the TXD and pins and the RXD high level output voltage. Additionally, the internal pull ups on TXD
and STB are pulled up to \(V_{IO}\).
9.4 Device Functional Modes

The device has two main operating modes: Normal mode and Standby mode. Operating mode selection is made via the STB input terminal.

<table>
<thead>
<tr>
<th>STB Terminal</th>
<th>MODE</th>
<th>DRIVER</th>
<th>RECEIVER</th>
<th>RXD Terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOW</td>
<td>Normal Mode</td>
<td>Enabled (ON)</td>
<td>Enabled (ON)</td>
<td>Mirrors Bus State (1)</td>
</tr>
<tr>
<td>HIGH</td>
<td>Standby Mode</td>
<td>Disabled (OFF)</td>
<td>Disabled (OFF) (Low Power Bus Monitor is Active)</td>
<td>High (Unless valid WUP has been received)</td>
</tr>
</tbody>
</table>

(1) Mirrors bus state: low if CAN bus is dominant, high if CAN bus is recessive.

9.4.1 CAN Bus States

The CAN bus has two states during powered operation of the device: dominant and recessive. A dominant bus state is when the bus is driven differentially, corresponding to a logic low on the TXD and RXD terminal. A recessive bus state is when the bus is biased to \(\frac{V_{CC}}{2} \) via the high-resistance internal input resistors \(R_{IN} \) of the receiver, corresponding to a logic high on the TXD and RXD terminals.

Figure 13. Bus States (Physical Bit Representation)

Figure 14. Bias Unit (Recessive Common Mode Bias) and Receiver
9.4.2 Normal Mode

Select the Normal mode of device operation by setting STB terminal low. The CAN driver and receiver are fully operational and CAN communication is bi-directional. The driver translates a digital input on TXD to a differential output on CANH and CANL. The receiver translates the differential signal from CANH and CANL to a digital output on RXD.

9.4.3 Standby Mode

Activate low power Standby mode by setting STB terminal high. In this mode the bus transmitter will not send data nor will the normal mode receiver accept data as the bus lines are biased to ground minimizing the system supply current. Only the low power receiver will be actively monitoring the bus for activity. RXD indicates a valid wake up event after a wake-up pattern (WUP) has been detected on the Bus. The low power receiver is powered using only the \(V_{IO} \) pin. This allows \(V_{CC} \) to be removed reducing power consumption further.
9.4.3.1 Remote Wake Request via Wake Up Pattern (WUP) in Standby Mode

The TCAN1042 family offers a remote wake request feature that is used to indicate to the host microcontroller that the bus is active and the node should return to normal operation.

These devices use the multiple filtered dominant wake up pattern (WUP) from the ISO11898-2 (2016) to qualify bus activity. Once a valid WUP has been received the wake request will be indicated to the microcontroller by a falling edge and low corresponding to a "filtered" dominant on the RXD output terminal.

The WUP consists of a filtered dominant pulse, followed by a filtered recessive pulse, and finally by a second filtered dominant pulse. These filtered dominant, recessive, dominant pulses do not need to occur in immediate succession. There is no timeout that will occur between filtered bits of the WUP. Once a full WUP has been detected the device will continue to drive the RXD output low every time an additional filtered dominant signal is received from the bus.

For a dominant or recessive signal to be considered "filtered", the bus must continually remain in that state for more than t_{WK_FILTER}. Due to variability in the t_{WK_FILTER}, the following three scenarios can exist:

1. Bus signals that last less than $t_{WK_FILTER_MIN}$ will never be detected as part of a valid WUP
2. Bus signals that last more than $t_{WK_FILTER_MIN}$ but less than $t_{WK_FILTER_MAX}$ may be detected as part of a valid WUP
3. Bus signals that last more than $t_{WK_FILTER_MAX}$ will always be detected as part of a valid WUP

Once the first filtered dominant signal is received, the device is now waiting on a filtered recessive signal, other bus traffic will not reset the bus monitor. Once the filtered recessive signal is received, the monitor is now waiting on a second filtered dominant signal, and again other bus traffic will not reset the monitor. After reception of the full WUP, the device will transition to driving the RXD output pin low for the remainder of any dominant signal that remains on the bus for longer than t_{WK_FILTER}.

Figure 15. Wake Up Pattern (WUP)
9.4.4 Driver and Receiver Function Tables

Table 5. Driver Function Table

<table>
<thead>
<tr>
<th>DEVICE</th>
<th>INPUTS</th>
<th>OUTPUTS</th>
<th>DRIVEN BUS STATE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>STB(1)</td>
<td>TXD(1) (2)</td>
<td>CANH(1)</td>
</tr>
<tr>
<td>All Devices</td>
<td>L</td>
<td>H</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>H or Open</td>
<td>Z</td>
<td>Z</td>
</tr>
<tr>
<td></td>
<td>H or Open</td>
<td>X</td>
<td>Z</td>
</tr>
</tbody>
</table>

(1) H = high level, L = low level, ? = indeterminate. See and Figure 14 for bus state and common mode bias information.
(2) Devices have an internal pull up to \(V_{\text{CC}} \) or \(V_{\text{IO}} \) on TXD terminal. If the TXD terminal is open the terminal will be pulled high and the transmitter will remain in recessive (non-driven) state.

Table 6. Receiver Function Table

<table>
<thead>
<tr>
<th>DEVICE MODE</th>
<th>CAN DIFFERENTIAL INPUTS (V_{\text{ID}} = V_{\text{CANH}} - V_{\text{CANL}})</th>
<th>BUS STATE</th>
<th>RXD TERMINAL (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>(V_{\text{ID}} \geq V_{\text{IT}+(\text{MAX})})</td>
<td>Dominant</td>
<td>(L(2))</td>
</tr>
<tr>
<td></td>
<td>(V_{\text{IT}-(\text{MIN})} < V_{\text{ID}} < V_{\text{IT}+(\text{MAX})})</td>
<td>?</td>
<td>?(2)</td>
</tr>
<tr>
<td></td>
<td>(V_{\text{ID}} \leq V_{\text{IT}-(\text{MIN})})</td>
<td>Recessive</td>
<td>(H(2))</td>
</tr>
<tr>
<td></td>
<td>Open ((V_{\text{ID}} = 0 \text{ V}))</td>
<td>Open</td>
<td>H</td>
</tr>
</tbody>
</table>

(1) H = high level, L = low level, ? = indeterminate.
(2) See Receiver Electrical Characteristics section for input thresholds.
10 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information

These CAN transceivers are typically used in applications with a host microprocessor or FPGA that includes the data link layer portion of the CAN protocol. Below are typical application configurations for both 5 V and 3.3 V microprocessor applications. The bus termination is shown for illustrative purposes.

10.2 Typical Applications

10.2.1 Design Requirements

10.2.1.1 Bus Loading, Length and Number of Nodes

The ISO 11898-2 Standard specifies a maximum bus length of 40 m and maximum stub length of 0.3 m. However, with careful design, users can have longer cables, longer stub lengths, and many more nodes to a bus. A large number of nodes requires transceivers with high input impedance such as the TCAN1042 family of transceivers.

Many CAN organizations and standards have scaled the use of CAN for applications outside the original ISO 11898-2. They have made system-level trade-offs for data rate, cable length, and parasitic loading of the bus. Examples of some of these specifications are ARINC825, CANopen, DeviceNet and NMEA2000.

The TCAN1042 family is specified to meet the 1.5 V requirement with a 50 Ω load, incorporating the worst case including parallel transceivers. The differential input resistance of the TCAN1042 family is a minimum of 30 kΩ. If 100 TCAN1042 family transceivers are in parallel on a bus, this is equivalent to a 300 Ω differential load worst case. That transceiver load of 300 Ω in parallel with the 60 Ω gives an equivalent loading of 50 Ω. Therefore, the TCAN1042 family theoretically supports up to 100 transceivers on a single bus segment. However, for CAN network design margin must be given for signal loss across the system and cabling, parasitic loadings, network imbalances, ground offsets and signal integrity thus a practical maximum number of nodes is typically much lower. Bus length may also be extended beyond the original ISO 11898 standard of 40 m by careful system design and datarate tradeoffs. For example CANopen network design guidelines allow the network to be up to 1 km with changes in the termination resistance, cabling, less than 64 nodes and significantly lowered data rate.
Typical Applications (continued)

This flexibility in CAN network design is one of the key strengths of the various extensions and additional standards that have been built on the original ISO 11898-2 CAN standard. In using this flexibility comes the responsibility of good network design and balancing these tradeoffs.

10.2.2 Detailed Design Procedures

10.2.2.1 CAN Termination

The ISO 11898 standard specifies the interconnect to be a twisted pair cable (shielded or unshielded) with 120-Ω characteristic impedance (Z_0). Resistors equal to the characteristic impedance of the line should be used to terminate both ends of the cable to prevent signal reflections. Unterminated drop lines (stubs) connecting nodes to the bus should be kept as short as possible to minimize signal reflections. The termination may be on the cable or in a node, but if nodes may be removed from the bus, the termination must be carefully placed so that two terminations always exist on the network.

Termination may be a single 120-Ω resistor at the end of the bus, either on the cable or in a terminating node. If filtering and stabilization of the common mode voltage of the bus is desired, then split termination may be used. (See Figure 17). Split termination improves the electromagnetic emissions behavior of the network by eliminating fluctuations in the bus common-mode voltages at the start and end of message transmissions.

![Figure 17. CAN Bus Termination Concepts](image)

The family of transceivers have variants for both 5-V only applications and applications where level shifting is needed for a 3.3-V microcontroller.
Typical Applications (continued)

Figure 18. Typical CAN Bus Application Using 5V CAN Controller

Figure 19. Typical CAN Bus Application Using 3.3 V CAN Controller
Typical Applications (continued)

10.2.3 Application Curves

![Graph showing the relationship between VCC (V) and ICC Dominant (mA) over VCC supply voltage. The graph indicates a positive correlation between the two parameters.]

\[V_{CC} = 4.5 \text{ V to } 5.5 \text{ V} \quad V_{IO} = 3.3 \text{ V} \quad R_L = 60 \ \Omega \]

\[C_L = \text{Open} \quad \text{Temp} = 25^\circ\text{C} \quad \text{STB} = 0 \ \text{V} \]

Figure 20. ICC Dominant Current over VCC Supply Voltage
11 Power Supply Requirements

These devices are designed to operate from a V_{CC} input supply voltage range between 4.5 V and 5.5 V. Some devices have an output level shifting supply input, V_{IO}, designed for a range between 3.0 V and 5.5 V. Both supply inputs must be well regulated. A bulk capacitance, typically 4.7 μF, should be placed near the CAN transceiver's main V_{CC} supply output, and in addition a bypass capacitor, typically 0.1 μF, should be placed as close to the device's V_{CC} and V_{IO} supply terminals. This helps to reduce supply voltage ripple present on the outputs of the switched-mode power supplies and also helps to compensate for the resistance and inductance of the PCB power planes and traces.

12 Layout

Robust and reliable bus node design often requires the use of external transient protection device in order to protect against EFT and surge transients that may occur in industrial environments. Because ESD and transients have a wide frequency bandwidth from approximately 3 MHz to 3 GHz, high-frequency layout techniques must be applied during PCB design. The family comes with high on-chip IEC ESD protection, but if higher levels of system level immunity are desired external TVS diodes can be used. TVS diodes and bus filtering capacitors should be placed as close to the on-board connectors as possible to prevent noisy transient events from propagating further into the PCB and system.
12.1 Layout Guidelines

- Place the protection and filtering circuitry as close to the bus connector, J1, to prevent transients, ESD and noise from propagating onto the board. In this layout example a transient voltage suppression (TVS) device, D1, has been used for added protection. The production solution can be either bi-directional TVS diode or varistor with ratings matching the application requirements. This example also shows optional bus filter capacitors C4 and C5. Additionally (not shown) a series common mode choke (CMC) can be placed on the CANH and CANL lines between the transceiver U1 and connector J1.
- Design the bus protection components in the direction of the signal path. Do not force the transient current to divert from the signal path to reach the protection device.
- Use supply (V_{CC}) and ground planes to provide low inductance.

NOTE
High-frequency currents follow the path of least impedance and not the path of least resistance.

- Use at least two vias for supply (V_{CC}) and ground connections of bypass capacitors and protection devices to minimize trace and via inductance.
- Bypass and bulk capacitors should be placed as close as possible to the supply terminals of transceiver, examples are C1, C2 on the V_{CC} supply and C6 and C7 on the V_{IO} supply.
- Bus termination: this layout example shows split termination. This is where the termination is split into two resistors, R6 and R7, with the center or split tap of the termination connected to ground via capacitor C3. Split termination provides common mode filtering for the bus. When bus termination is placed on the board instead of directly on the bus, additional care must be taken to ensure the terminating node is not removed from the bus thus also removing the termination. See the application section for information on power ratings needed for the termination resistor(s).
- To limit current of digital lines, serial resistors may be used. Examples are R2, R3, and R4. These are not required.
- Terminal 1: R1 is shown optionally for the TXD input of the device. If an open drain host processor is used, this is mandatory to ensure the bit timing into the device is met.
- Terminal 5: For "V" variants of the family, bypass capacitors should be placed as close to the pin as possible (example C6 and C7). For device options without V_{IO} I/O level shifting, this pin is not internally connected and can be left floating or tied to any existing net, for example a split pin connection.
- Terminal 8: is shown assuming the mode terminal, STB, will be used. If the device will only be used in normal mode, R4 is not needed and R5 could be used for the pull down resistor to GND.

12.2 Layout Example
13 Device and Documentation Support

13.1 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to order now.

<table>
<thead>
<tr>
<th>PARTS</th>
<th>PRODUCT FOLDER</th>
<th>ORDER NOW</th>
<th>TECHNICAL DOCUMENTS</th>
<th>TOOLS & SOFTWARE</th>
<th>SUPPORT & COMMUNITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCAN1042</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
</tr>
<tr>
<td>TCAN1042G</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
</tr>
<tr>
<td>TCAN1042GV</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
</tr>
<tr>
<td>TCAN1042H</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
</tr>
<tr>
<td>TCAN1042HG</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
</tr>
<tr>
<td>TCAN1042HGV</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
</tr>
<tr>
<td>TCAN1042HV</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
</tr>
<tr>
<td>TCAN1042V</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
</tr>
</tbody>
</table>

13.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

13.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

13.4 Trademarks

E2E is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

13.5 Electrostatic Discharge Caution

⚠️ These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

13.6 Glossary

SLYZ022 — *TI Glossary.*
This glossary lists and explains terms, acronyms, and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15], per side.
4. This dimension does not include interlead flash.
5. Reference JEDEC registration MS-012, variation AA.
EXAMPLE BOARD LAYOUT

D0008B

SOIC - 1.75 mm max height

SOIC

IPC-7351 NOMINAL
.150 [3.81] CLEARANCE / CREEPAGE

HV / ISOLATION OPTION
.162 [4.1] CLEARANCE / CREEPAGE

LAND PATTERN EXAMPLE
SCALE:6X

SOLDER MASK DETAILS

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.
EXAMPLE BOARD LAYOUT

DRB0008F
VSON - 1 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

LAND PATTERN EXAMPLE
SCALE: 20X

SOLDER MASK DETAILS

NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.
NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead finish/ Ball material</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCAN1042HD</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-55 to 125</td>
<td>1042</td>
<td>Samples</td>
</tr>
<tr>
<td>TCAN1042HDR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-55 to 125</td>
<td>1042</td>
<td>Samples</td>
</tr>
<tr>
<td>TCAN1042HGDR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-55 to 125</td>
<td>1042</td>
<td>Samples</td>
</tr>
<tr>
<td>TCAN1042HGVD</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-55 to 125</td>
<td>1042V</td>
<td>Samples</td>
</tr>
<tr>
<td>TCAN1042GVDR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-55 to 125</td>
<td>1042V</td>
<td>Samples</td>
</tr>
<tr>
<td>TCAN1042HVD</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-55 to 125</td>
<td>1042V</td>
<td>Samples</td>
</tr>
<tr>
<td>TCAN1042HVDR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>RoHS & Green</td>
<td>NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-55 to 125</td>
<td>1042V</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) **RoHS**: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

- **RoHS Exempt**: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
- **Green**: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI’s knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI’s liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TCAN1042H, TCAN1042HG, TCAN1042HGV, TCAN1042HV:
- Automotive: TCAN1042H-Q1, TCAN1042HG-Q1, TCAN1042HGV-Q1, TCAN1042HV-Q1

NOTE: Qualified Version Definitions:
- Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects
TAPE AND REEL INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCAN1042HDR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.4</td>
<td>5.2</td>
<td>2.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>TCAN1042HGDR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.4</td>
<td>5.2</td>
<td>2.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>TCAN1042HGVDR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.4</td>
<td>5.2</td>
<td>2.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>TCAN1042HVDR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.4</td>
<td>5.2</td>
<td>2.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>

All dimensions are nominal.
TAPE AND REEL BOX DIMENSIONS

All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCAN1042HDR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>853.0</td>
<td>449.0</td>
<td>35.0</td>
</tr>
<tr>
<td>TCAN1042HGDR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>853.0</td>
<td>449.0</td>
<td>35.0</td>
</tr>
<tr>
<td>TCAN1042HGVDR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>853.0</td>
<td>449.0</td>
<td>35.0</td>
</tr>
<tr>
<td>TCAN1042HVDR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>340.5</td>
<td>338.1</td>
<td>20.6</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2020, Texas Instruments Incorporated